Chaper 1

P1.3-1 $\quad 3.5 n C$

P1.3-3 3.204 nA

P1.5-1 (a) A and D, (b) B and C, (c) 60 mW , (d) -60 mW , (e) 60 mW

P1.7-3 The reference direction of the resistor between node b and d has been reversed.

Chaper 2

P2.4-5 $i_{1}=4 A, i_{1}=-8 A, R_{1}$ absorbs 800W and R_{2} absorbs 1600W.

P2.4-6 $\quad V_{1}=-0.4 \mathrm{~V}, \mathrm{~V}_{2}=0.8 \mathrm{~V}, \mathrm{R}_{1}$ absorbs $20 \mathrm{~mW}, \mathrm{R}_{2}$ absorbs 40 mW .

P2.6-5 (a) $V_{R}=165 \mathrm{~A}$
(b) 30Ω resistor supplies -750 W , 5A current source supplies 825W, 15 V voltage source supplies -75W

P2.6-6 (The resistor changes to 30Ω, the voltage source changes 15 V)
(a) $i_{R}=-1.5 \mathrm{~A}$
(b) 30Ω resistor supplies -7.5 W ,

2A current source supplies 30W, 15 V voltage source supplies -22.5 W
P2.6-7 $\quad V_{b}=5 \mathrm{~V}$

Chaper 3

P3.2-4 The 5Ω resistor absorbs 80W, the 6Ω resistor absorbs 24 W , the 9Ω resistor absorbs 81 W .

P3.2-6 The 4mA current source supplies -8mW, the 2 mA current source supplies 20 mW .

P3.2-14 (The answer is dependent on the reference directions that one chooses.)
The 10Ω resistor on the top: $i_{1}=-1.5 \mathrm{~A}, \mathrm{~V}_{1}=-15 \mathrm{~V}$
The 10Ω resistor in the middle: $\mathrm{i}_{5}=1 \mathrm{~A}, \mathrm{~V}_{5}=10 \mathrm{~V}$
The 10Ω resistor on the bottom: $\mathrm{i}_{8}=-0.5 \mathrm{~A}, \mathrm{~V}_{5}=-5 \mathrm{~V}$
The 25Ω resistor on the left: $i_{4}=-0.4 \mathrm{~A}, \mathrm{~V}_{4}=-10 \mathrm{~V}$
The 5 V voltage source: $\mathrm{i}_{4}=1.1 \mathrm{~A}$
The 15 V voltage source: $\mathrm{i}_{6}=0.1 \mathrm{~A}$
The 1.5A current source: $i_{3}=20 \mathrm{~V}$
The 0.5 A current source: $i_{7}=10 \mathrm{~V}$

P3.2-27 $\quad V_{6}=-12 \mathrm{~V}$

P3.3-4 $\quad V=-8 V$

P3.6-1 (a) $R=64 \Omega$,
(b) $i=1 / 2 \mathrm{~A}, \mathrm{~V}=32 \mathrm{~V}$,
(c) $i=1 / 3 \mathrm{~A}$.

P3.6-4 (a) $\mathrm{R}_{1}=12 \Omega, \mathrm{R}_{2}=8 \Omega$,
(b) $i_{a}=3 \mathrm{~A}, i_{b}=2.25 \mathrm{~A}$,
(c) $i_{2}=1.125 \mathrm{~A}, \mathrm{~V}_{1}=-20 \mathrm{~V}$

Chaper 4

P4.2-4 $\quad R_{1}=250 \Omega, R_{2}=500 \Omega$.

P4.3-6 (a) $R=12 \mathrm{k} \Omega$, (b) 1.4 V .

P4.4-8 The power supplied by the dependent source is 1.04 W .

P4.4-23 $\quad V_{1}=88 \mathrm{~V}, \mathrm{~V}_{2}=-40 \mathrm{~V}, \mathrm{~V}_{3}=-16 \mathrm{~V}$.

P4.5-4 $\quad i_{a}=-5.4 \mathrm{~mA}, \mathrm{i}_{\mathrm{b}}=-7.8 \mathrm{~mA}$

P4.5-6 (a) The power supplied by 12 V source is 0.48 W ;
the power supplied by 8 V source is 0.32 W .
(b) The power absorbed by the 30Ω resistor is 0.048 W .

P4.6-4 $\quad V_{c}=-7.95 \mathrm{~V}$

P4.7-12 $\quad i_{x}=-0.29 \mathrm{~A} \quad$ [corrected 2013-02-12; previously had 0.146A]

P4.11-5 The mesh currents are not correct.

Chaper 5

$5.5-2 \quad \mathrm{I}_{\mathrm{a}}=2 \mathrm{~A}$

5.2-9 $\quad \mathrm{P}=117.72 \mathrm{~W}$
5.3-1 $\quad \mathrm{A}=1 / 4, \mathrm{~b}=3 / 5$
5.3-4 $\quad \mathrm{v}=\mathrm{v}_{1}+\mathrm{v}_{2}=40+60=100$
5.3-8 $\quad i_{x}=i_{1}+i_{2}=2 / 3-1 / 2=1 / 6$
5.4-4 $\quad \mathrm{V}_{\text {ос }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{t}}=6 \Omega$
5.4-6 $\quad \mathrm{V}_{\mathrm{oc}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}=-6 \mathrm{~A}, \mathrm{R}_{\mathrm{t}}=-3 \Omega$
5.5-3 $\mathrm{I}_{\mathrm{sc}}=-7.5 \mathrm{~A}, \mathrm{R}_{\mathrm{t}}=2 \Omega$
5.6-5 $\quad \mathrm{V}_{\mathrm{oc}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{t}}=3 \Omega=\mathrm{R}_{\mathrm{L}}, \mathrm{P}_{\max }=3 / 4$
5.6-8 $\quad \mathrm{V}_{\text {oc }}=-27 \mathrm{~V}, \mathrm{R}=\mathrm{R}_{\mathrm{t}}=196 \Omega, \mathrm{P}_{\max }=0.93$

Chaper 6

6.3-7 $\quad i_{o}=\frac{R_{2}+R_{3}}{R_{1} R_{3}} v_{S} \quad v_{o}=\frac{R_{2} R_{4}}{R_{1} R_{3}} v_{S}$
6.3-10 $\frac{v_{o}}{i_{s}}=R_{1}+R_{3}+\frac{R_{1} R_{3}}{R_{2}}$
for having $\frac{v_{o}}{i_{s}}=20 \frac{V}{m A} \quad$ e.g. $R_{1}=5 \mathrm{k} \Omega \quad$ and $R_{2}=R_{3}=10 \mathrm{k} \Omega$
6.4-5
6.4-6 $\quad v_{a}=-24 / 13, v_{c}=-30 / 13$
6.4-7 $\mathrm{V}_{\mathrm{o}}=12 \mathrm{~V}, \mathrm{i}_{\mathrm{o}}=-0.7 \mathrm{~mA}$
$6.4-11 \quad v_{o}=4 v_{s}$

