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Topic 02: Simplifications

Topic 02 is mainly about ways of manipulating a
circuit diagram into a form that is easier for us to
solve. That is a bit like rearranging and simplifying a
mathematical expression into a form that you know
how to solve. Indeed, a circuit diagram showing ideal
components is really just another way of expressing
equations.

A common task in circuit analysis is to find a
particular subset (perhaps just one) of the currents
and voltages in the circuit. The known data might be
all the values of the components in a circuit (voltage
for a voltage-source, resistance of resistor, gain of a
controlled source, etc). Or it might be some of these
values, and some other marked voltages and currents
in the circuit. A design-problem often requires us to
choose a value of one or more components, in order
to satisfy a specification of particular voltages and
currents in the circuit. Even this type of task can be
approached by finding an equation for the specified
values in terms of the components, then using the
equation backwards to find the component values.

Therefore, a common task in circuit analysis, and in
this course, is to start from a circuit diagram with
components’ values given, and to find an equation that
uses these values to find a particular voltage or current
(or power, etc). Having “given” values does not have
to mean we know numbers: we can use a symbol. In
many cases, not all of the components will even be
relevant to the particular voltage or current we are
studying; other components might be able at least to
be combined, to simplify the analysis.

We can choose to make simplifications in the diagram
before we write the equations, or instead to write more
complicated equations based on the original diagram,
in which case the simplifications have to be done in the
algebra. It is often not obvious which option will be
better; this depends on the circuit, and even on how
reliable we are at manipulating algebra compared to
diagrams. As with so many subjects, making the best
choice it is something we get better at with experience,
but never perfect.

In Topic 03 we will consider more general and
automatable methods of analysis, suitable for finding
equations that could be solved for any solvable circuit
containing the linear components that we have met.
However, this Topic 02 includes some principles that
can be useful for avoiding unnecessary calculation in
any circuit problem that you are solving by hand, even
if you then use a more systematic method from Topic
03 as a later stage in the solution. For a practical
user of circuit analysis, it is useful to train one’s
ability to see which parts in a circuit are not relevant,
or are most relevant; and when numeric values of
components are given, we might be able to identify

even more components that do not have much effect
on the result that is being sought.

1 Re-draw the circuit

We get used to conventions. A map with north at
the bottom can be confusing. It is common to draw
circuits where any ground node is at the bottom, lines
are vertical and horizontal, and sources are mainly
on the left with their + terminals upwards. If you
try to solve a circuit diagram that is very different
from what you are familiar with, it might be worth
drawing exactly the same circuit in an easier form, as
your first step towards solving it.
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By the same circuit, it is meant that there are the
same components, with the same connectivity relation
between them (the nodes), and the same directions
of any marked voltages and currents relative to the
nodes and components. Thus, any quantity that we
are trying to find – such as ix in this example – will
be the same as in the original circuit.
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Sometimes a circuit becomes more easily solved in
this way, with less chance of making a mistake when
converting the circuit diagram to equations. On the
other hand, you might make a mistake when re-
drawing, and thereby solve the wrong circuit! There
is, as usual, some compromise between the advantages
and disadvantages of a method. It is important to be
careful: double-check that the original circuit and the
re-drawn circuit are the same, so that you don’t waste
time on the wrong problem.



Here is a suggestion for a method of redrawing:
1. Identify the nodes: draw a ring all around each node,
going up to where it joins to the components.
2. Give each node its own number or letter.
3. If there are sources with negative values (−U) consider
reversing the source direction and writing a positive value.
The meaning is identical, but it is sometimes helpful to
avoid the negative value.
4. Choose one node to start with: if one node clearly
connects to many components, consider starting with this
and having it as a line along the bottom of your diagram.
5. Select a component that connects to this first node;
draw the component either vertically or horizontally,
connected to the node, being careful to get the direction
right if the component has a specific direction. Do the same
for each component that connects to the first chosen node.
6. Then move to the next node: it’s sensible to choose
a node that is the other end of one of the components
you already have drawn. Keep doing step 5, on each node,
until all the nodes, components and marked quantities
have been transferred to the new diagram. 7. Double-
check that all the information is equivalent between the
two diagrams!

Like rearranging an equation or playing a strategy
game, you will get better results if you think ahead.
Look at the whole circuit and make judgements about
where you want the main parts to be in your final
diagram; the goal is to get a final form that you are
comfortable with.

Both of the following circuit-diagrams are further
ways of re-drawing the previous one. They actually
look quite similar compared to some less conventional
forms that could have been found by choosing a
different node to go at the bottom, or rotating
everything by 90◦, etc.

Look at them and try to think in both of the following
ways to check the similarity:
1) Convert by the steps listed above, such as labelling
nodes.
2) Imagine the circuit made of bendable, stretchable
wires, so that you can pick up a diagram, then turn,
twist and bend it into another shape. See if you
can, in this way, with pictures in your imagination,
see how to go between the diagrams. When you get
familiar with re-drawing circuit diagrams, you might
not need to think through steps, but just to think
about the shape. People seem to differ a lot in their
liking of this sort of “visualisation”.
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Notice how parallel branches, such as R3 and U , can
be drawn in different order, or on different sides of
the other components: they are still connected to the
same nodes, which is all that matters.

2 Resistors in series and parallel

Multiple resistors in series or parallel connection can
be combined to give an equivalent resistance. This is
probably well known from school.

The concept of equivalence can be useful in reducing a
more complex circuit to an easier form for solving. For
example, assume that all components’ values in the
following diagram are known, and i1 or ux is sought.
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If we want to find i1, we simply need to reduce all four
resistors to one equivalent. The only resistors that are
in series or parallel with each other are R3 and R4. If
they are converted to their series equivalent, then this
becomes parallel with R2, so it can be converted to a
parallel equivalent which is then in series with R1.

If instead the aim is to find u4, then it actually
becomes more difficult. An equivalent can be made
as above, to find i1. Then look at the original circuit,
and find the voltage across R2, which is U − i1R1.
From this, the current in the equivalent of R3 and R4

can be found by Ohm’s law, then the voltage u4 can
be found by Ohm’s law.

This seems a bit complicated for such a simple-looking
circuit. The principle of voltage division is a shortcut
for the last step. (And nodal analysis, in Topic 03, will
solve the whole problem more neatly.)

Using the rules from Topic 01, we can now derive the
equations for equivalent resistors. Voltage and current
division are related to series and parallel resistors,
so these rules will also be derived. Some effects of
nonideal meters (voltmeter, ammeter) will be shown,
since these are related to voltage and current division.
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2.1 Series resistors

Consider two resistors, R1 and R2, in series. The total
voltage and current between the ends of the series pair
are defined as u and i. The voltages and currents on
the separate resistors are defined using subscripts 1
and 2.

i
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+ −
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−
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+

−

u

With the chosen reference directions of current,

i1 = i2 = i.

You might consider this obvious: “the current is the
same for each component in a series circuit”.1 If we
want to be more formal, by using just the basic circuit
rules from Topic 01, we could apply KCL at each node;
for example, i2 − i1 = 0 at the junction between the
resistors.

With the chosen reference directions of voltage,

u = u1 + u2.

This can be seen from KVL around the whole loop,
u− u1 − u2 = 0.

2.1.1 Series equivalent

In the above case of two series resistors, the quantities
u and i are what are directly ‘seen’ by any circuit
that we connect to the two terminals on the left. It is
therefore these two quantities that must behave in the
same way for any equivalent that we try to make for
the two resistors.

By Ohm’s law, u1 = R1i1 and u2 = R2i2.

Substituting i instead of i1 and i2, gives

u = i(R1 + R2).

This tells us that the relation of u and i at the
terminals is a direct proportionality, with a factor
of R1 + R2. That is the behaviour of a resistance of
R1 + R2! A single resistor Req = R1 + R2 connected
between the terminals will therefore behave in exactly
the same way as the series pair did.

1‘Current is the same for each component in a series circuit.’
That’s true if we follow the current through the series group of
components, noticing that there is no way for current to enter
or leave the path; but when we are writing equations like i1 = i
we need to be careful about the direction in which the currents
are defined: the correct equation could be i1 = −i if one of the
reference directions is reversed.

i

Req = R1 + R2

+

−

u

i

+

−

u

For any number of resistors all in series, the equivalent
resistance is just the sum of the individual resistances.
This is easy to remember, as the resistance is the
difficulty of pushing a current through: if all the
current has to go through one resistor then another,
the difficulty is increased by each.

2.1.2 Voltage division

We often want to find a voltage across one of two
series resistors, Voltage division is a direct relation for
finding this voltage as a proportion of the total voltage
across both resistors, without having to calculate the
current. Voltage division is used very often as a step
in circuit analysis.

From the above diagram of two series resistors, we
found that i = i1 = i2 = u

R1+R2
.

By Ohm’s law we can then easily find the voltage
across just one of the resistors, in terms of the current:
for example, u1 = i1R1 = iR1.

If we know the resistances R1 and R2, and the voltage
u across both resistors together, then the current can
be eliminated, u1 = R1i = R1

u
R1+R2

.

This is voltage division:

u1 = u
R1

R1 + R2

The total voltage is divided between the resistors, in
proportion to their resistance.

2.1.3 Voltage measurement

It is important to remember that voltage division and
series equivalents are based on the assumption of series
connection. True series connection means that all the
current out of one series-connected component must
be going in to the other component.

This is often forgotten. For example, we see a
diagram like the following one, with two resistors
joined end to end, and we write the voltage division
equation without thinking that another component
also connects to the node between the two resistors.

A classic practical case of this is when adding a
voltmeter or oscilloscope to a circuit to measure the
voltage across one part of a voltage divider.
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The results from the voltage divider equation will
then be slightly or very wrong, depending on whether
the current in this extra component is small or large
compared to the current that would flow through the
two resistors by themselves.

The input resistance of a digital voltmeter is typically
1 MΩ or 10 MΩ. This means that, for example, when
measuring a voltage of 1 V, there will be a current of

1 V
1 MΩ = 1 µA, passing through the meter.

Very simple analog voltmeters that you might see
on an old car’s dashboard use magnetic coils to
move a pointer, or use a heater to move a bimetallic
strip; these would have much lower resistance. Special
laboratory electrometers can have much higher input
resistances when measuring voltage, for example
100 TΩ! A meter with lower resistance will more
strongly load (draw current from) the circuit that it
is measuring.

If the voltmeter’s resistance is so low that we cannot
assume iin � i1, then the voltmeter, by being
connected to the circuit, is changing the voltage that
it was supposed to measure! If the voltage we want to
know is u1 in the simple series circuit of R1 and R2,
then by connecting the voltmeter we are changing the
measured value. The voltmeter measures the voltage
that is there, but the voltage is different from what it
would be if the voltmeter were not connected.

A car lamp might have a resistance of a few ohms,
and be supplied from a battery and cable that have
a total impedance of less than one ohm. The voltage
across the lamp will not be significantly changed by a
1 MΩ meter being connected in parallel with it! The
meter is practically an open circuit compared to the
resistances in the circuit. On the other hand, some
sensitive electronics, or insulation samples in a high-
voltage lab, have far higher resistance than 1 MΩ. For
these, the normal voltmeter is practically a short-
circuit, and connecting this meter across two nodes
will make the measured voltage come almost to zero.

2.2 Parallel resistors

When two resistors are truly in parallel, they each
have one terminal the voltage across both of them
must be the same.

i
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+

−
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+

−
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i2

+

−

u

[The following should be able to be obtained by
applying duality to the case of series resistors.]

With the chosen reference directions of voltage,

u1 = u2 = u.

This could come from applying KVL around various
loops, or just because “it’s obvious these three voltages
are connected in the same direction between the same
two nodes”.

With the chosen reference directions of current,

i = i1 + i2,

which can be found from KCL at either of the nodes.

2.2.1 Parallel equivalent

The quantities u and i for the parallel connection can
be related by including what Ohm’s law requires on
the two resistors.

Substituting u instead of u1 or u2,

i =
u

R1
+

u

R2
= u

R1 + R2

R1R2
.

Thus, like the series case, the relation of u and i is a
direct proportionality, like a resistance. The resistor
that would behave equivalently is Req = R1R2

R1+R2
.

When more than two resistors are in parallel, it is often
neater to think of the conductances which are the
reciprocals of the resistances. Conductance describes
the easiness of pushing a current. It becomes more
easy when there are multiple parallel paths. So, Geq =
G1 + G2 · · · + Gn, or equivalently but less neatly,

1
Req

= 1
R1

+ 1
R2
· · · + 1

Rn
. However, when there are

just two parallel resistors, it is often convenient to use
the rearrangement shown above, Req = R1R2

R1+R2
.

2.2.2 Current division

If we know the total current i through the parallel
pair of resistors shown above, the voltage u across the
pair can be found by the parallel equivalent resistance
and Ohm’s law, u = i R1R2

R1+R2
. The current through

one of the resistors can be found from this voltage,
by Ohm’s law again. By eliminating the voltage from
the equations, we get an expression for the current
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through one of the two parallel resistors as a fraction
of the total current.

i1 =
u

R1
= i

R1R2

R1 + R2

/
R1 = i

R2

R1 + R2

This is current division: the total current is divided
between the parallel resistors in proportion to their
conductance. It looks suspiciously similar to the
equation for voltage division, but the resistance in the
numerator is the one where we are not calculating the
current.

Note the word truly in the above cases. When
applying division formulas, be very careful that
the components are in series or parallel, and that
you do know the voltage across the two, or the
current through the two. One common error is
to use the voltage division equation even when a
current is coming in or out of the middle point
of a voltage divider. Another common error is to
use the current division equation when seeing a
current coming into node and having to pass out
through two resistors; but that is only valid if the
other sides of those resistors are guaranteed to be
at the same potential, as is the case if the resistors
are truly in parallel.

3 Reduction of multiple components

We have now studied equivalents for multiple resistors.
It is time to move on to the other possible
combinations of two components in series or parallel,
and how they behave when “seen from outside”.

When the aim is to find a quantity somewhere else in
the circuit, replacing components by an equivalent is
a useful simplification. Even when the aim is to find a
quantity within the region that is being replaced by an
equivalent, it can be useful to find an external quantity
based on the equivalent and then to use the external
quantity to find quantities within the region that the
equivalent represents. Such a procedure was seen with
resistors in the example at the start of Section 2, when
finding u4.

We will use the term branch to describe a part of
a circuit that connects through just two terminals
into the rest of the circuit; a branch could be a
single component, or a pair, or a far more complicated
mixture of series and parallel connections.

In the first of the re-drawn circuits of Section 1, we
could say that between the top and bottom nodes
there are three branches. One branch is the voltage
source U , one is the current source and two parallel
resistors (I, R1, R2), and the other is the resistor R3.
This shows several type of branch (single component,
series, series and parallel components).

In this section we generalise the idea of equivalents
for pairs of components in series or parallel that are

connected to the rest of a circuit by two terminals
(nodes). In some cases a principle is found that allows
a reduction of very complex branches into a single
component. In other cases, it might be necessary to
have at least two components to make an equivalent
of the branch.

We have considered (Topic 01) the relation between
the two circuit-variables, current and voltage, for the
three main two-terminal components. These all give
straight lines in the i/u or u/i plane.
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In the following, it will be seen that except for two
special cases, all the possible pairs of two components
in series or parallel behave like just one of these basic
types of component. In some cases it will therefore be
possible to reduce an apparently complex branch to
a single component, by successively combining pairs
of components in the way we have already done for
resistors. Topic 04 generalises this idea further, by
claiming that any linear circuit with just two terminals
can be equivalently modelled by a single pair of
components, with regard to its terminal quantities of
voltage and current.

Consider series or parallel pairs of components, which
can connect to a circuit through just two terminals,
a and b. We are interested in how each pair behaves
when treated as a two-terminal component itself.

thing
1

+

−

u1 i1

thing
2

+

−
u2 i2
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thing 1

+ −
u1

i1
thing 2

+ −
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i2
b

One good way of reasoning is to think what
requirement each component puts upon the terminals
of the pair of components. In this way we can try to
find the u/i relation of the pair: if this matches the
u/i relation of a known type of component, we can
replace the branch with that component, which will
be equivalent when seen at the terminals a and b.

There are several possible combinations. If we consider
just the three basic components of U , I and
R (independent voltage- and current-sources, and
resistors), then there are six different possible pairs:
UU , II, RR, UI, UR, IR. Each pair could be
connected in series or parallel, giving a total of twelve
cases.

To try to learn this sort of thing as a random list
(like irregular verbs!) does not seem a good use of
time. We should be able to learn how to deduce these
properties: then we have also increased our intuitive
understanding of circuits, and will see the right answer
quickly.

3.1 Sources

Take a strange combination such as the parallel
voltage sources shown below.

b

+
−U1

+
−U2

a

Think of what a voltage-source determines. It can
have any current that the rest of the circuit wants. All
it sets is the voltage: it rigidly requires the difference
in potential (energy) between its terminals to be a
set amount.

A node defines that all the terminals connected to it
have the same potential. So the left source requires
that the voltage uab (potential at a, relative to at b)
is U1. And the right source requires that uab is U2.

This can only be true if U1 = U2. So we see that
parallel voltage sources are in general a contradiction:
unless they have exactly the same value, then the
circuit diagram is contradicting itself, like an equation
that tells us x = 2 = 3. You will therefore not
see parallel voltage sources in a typical question in
a circuits course. It would be meaningful only in the
special case that the sources have the same value and
direction, and there is even then a problem in defining
how any current between a and b is shared between the
sources.

Consider now two series voltage sources.

b

+
−U1

c

+
−U2

a

−→ b

+
−U1 + U2

a

The lower one, U1, requires that the potential at
c must be U1 greater than the potential at b. The
upper one, U2, requires that the potential at a is
U2 greater than the potential at c. Together, they
therefore require that uab = U1 + U2. Neither of
them cares about the current: it can be any amount.
The series connection of course requires that the two
sources have the same current: but nothing about this
connection or the sources determines how much this is.
From the above description, this combination clearly
behaves exactly like a single voltage source of U1 +U2.

The same style of thinking can be applied to current
sources, with the opposite result. In series they will
contradict unless they both have the same value and
direction. In parallel they will add to be equivalent to
a single current source.

Any two different ones of the three main components
will produce a combination that is not contradictory
(as long as resistor has a value that is not 0 or ∞).

Whenever a voltage source has something else (resistor
or current source) in parallel with it, the combination
is the same as the voltage source. This means the
other component is irrelevant to the rest of the circuit.
Why? Well, it’s enough to say that the voltage source
fixes the voltage of the combination. But you might
wonder how this works if a parallel current source
keeps injecting a huge current into the nodes, or if a
very low resistance is connected. The answer is simply
that the ideal voltage source will provide whatever
current is needed, to hold the output voltage fixed. If
a parallel current source adds a current, the voltage
source will let this current pass through it, back to the
other side of the current source.
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Whenever a current source has something else (resistor
or voltage source) in series with it, the combination
is the same as the current source. The voltage of the
current source will simply adjust to whatever it needs
to, to ensure this current keeps passing through the
total branch.

A common mistake: Do not assume that a current
source has zero voltage across it! A current-source
simply does not determine its voltage. For a
particular circuit that it is connected to, we can
calculate this voltage as one of the unknowns. . .
it might happen to be zero as a particular case,
but in general it isn’t ! In the dual case, a voltage
source does not necessarily have a zero current.
For some reason, almost everyone seems to realise
this: it is only the current-source’s voltage that
commonly causes people to have problems in
tests.

The only remaining combinations are voltage source
with series resistor, and current source with
parallel resistor. These do not behave like any
single component: they are treated in the source
transformation section.

3.2 Controlled [dependent] sources?

Dependent voltage- or current-sources could also
be considered as components in the branch that
we simplify. If the “controlling variable” of the
dependent source is outside the branch, then we can
treat the branch in the same way as if the source
were independent. Then, if the dependent source
is still present in the simplified branch after we
remove irrelevant components, the external controlling
variable is included in the expression for the branch
voltage and current. If the controlling variable is
inside the branch, we should be able to find a
simplified branch where this variable does not have
to be considered, because it has been substituted in
terms of other known quantities. Even quite simple
circuits with dependent sources can do strange things,
depending on the relation of the source and its
controlling variable: for example, a branch could be
made to look like a negative resistor, or an infinite
resistor (open circuit) etc. We can leave these issues
for Topic 04, where the general case of simplifying a
two-terminal circuit is considered.

4 Source transformation

In the earlier section we saw that a voltage source and
parallel resistor appear identical to the voltage source
(to the rest of the circuit): the resistor is irrelevant.
In fact, most pairs of components can be reduced to a
single component. There are two exceptions. A voltage
source with a series resistor does not behave like any
of the three basic components that we have considered.
Nor does a current source with a parallel resistor.

+
−U

R

i
a

+

−

uo

b

Applying KVL around this loop, starting at the
bottom left, we have that

U + iR− uo = 0

from which
uo = U + iR

The values i and uo are not known: they are the
quantities that are seen about this branch of series
U and R components from the rest of the circuit. The
equation gives a relation between the two quantities,
allowing either one to be found from the other. This,
of course, is all that we can expect: without specifying
the circuit outside the branch, we cannot know both
the current and voltage of the branch (or of any
component or two-terminal circuit). If the branch
behaved like an ideal source, then one of uo or i would
be fixed, and the other completely undetermined; if
instead the branch behaved like a resistor, then neither
uo nor i would be fixed, but the relation between them
would be a direct proportionality.

In the above case, we see that neither of these cases
is true. We have an expression relating the two
quantities, but it is not a direct proportionality: it is a
general straight-line graph, y = mx+ c, so it can have
any gradient m and any offset c.. This combination of
series U and R is known as a Thevenin source (Topic
04), and one example of its u/i line is shown here:

resistor
(passive convention)

voltage source

current source

Thevenin / Norton circuit
(any straight line)

voltage, u

current, i

Now we can consider the dual of the above case,
where we swap current with voltage, and series with
parallel. We note how a current source with a series
resistor is just like the current source: the resistor
is irrelevant. But a current source with a parallel
resistor is different: it turns out to behave similarly
to a voltage source with series resistor.
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iR
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+

−

uo

A good way of “attacking” this diagram is to see that
the output voltage uo must equal the voltage across
resistor R, as they are in parallel, and that this voltage
is RiR. By KCL in the top node, we can write iR =
i + I. Therefore,

uo = R (I + i) = IR + iR

Again, this is a straight line in the u/i plane, with
arbitrary slop and offset. This combination of parallel
current-source and resistor is sometimes known as a
Norton source. For these two circuits — the Thevenin
or Norton source — we can therefore get exactly the
same behaviour between the terminals: for this, we
need the same R in both, and the source-values must
fulfill the condition IR = U . Check this in the above
equations.

In the above diagrams and equations, the
definition of i followed the passive convention
with respect to u. This was done to be similar
to the previous section about other series or
parallel combinations. When handling Thevenin
or Norton sources it is more usual to expect them
to be used as sources that supply power, meaning
that the current would come out of the positive
voltage terminal. It is therefore common to use
active convention, by swapping the direction of
current definition. This would mean that the + in
our equations becomes −, and the line in the u/i
plane slopes downwards.

This ability to swap between a series and parallel pair
of components can be useful in simplifying a circuit
problem. For example, if you have a Norton source
of IN and R within a bigger series loop in which you
want to find the current,

+
−U1

R1

+−

U2
R2

+
−U3

IN R

ix

you could reduce the circuit to a single loop by
transforming this Norton source to the equivalent
Thevenin source of UT = RIN and R, then combine
all the series components into a single voltage source
and resistance,

+
− U1 + U2 − U3 + INR

R1 + R2 + R

ix

8



5 — Extra —

5.1 Links

Various types of [Multimeter] for measuring
voltage, current and resistance, ranging from ana-
logue handheld to large benchtop. More generally,
[TestEquipment].

5.2 Regarding parallel voltage sources

Even if parallel voltage sources have the same voltage,
so that they are not a contradition, the currents in the
two are not uniquely defined by the (idealised) circuit
equations.

One could argue intuitively by symmetry, that the
total current is equally shared if we believe the voltage
sources to be identical; in the idealised world of circuit
theory, any ideal voltage-source of size U is identical to
any other of the same size. But that requires further
logic (programming) in the common case where we
want to get a numerical implementation of a solution.

In reality, one can argue that realistic sources always
have some internal resistance, so they are like an ideal
source and a series resistor (a Thevenin source) or
perhaps like a more complicated nonlinear function.
But there are some sources with feedback loops
that could try to maintain a very constant voltage.
If two such are connected in parallel, they could
share the current very unevenly, or even get into
an oscillation, with the sharing of the total current
“moving” between the two. Even with no other
components connected in parallel with them, there
could be large currents circulating between the two
sources. For this reason, parallel-operated sources
often have deliberate “droop” to make them more
like a source with resistance. The same principle is
true in many physical contexts, such as the sharing of
mechanical load between very stiff springs.2

Similar concepts apply to the case of series current
sources, where the currents must all agree, and the
voltages across the sources are not well defined by the
circuit equations.

The problem of contradictions is more general than
just pairs of current or voltage sources in series or
parallel. Any complete loop that consists only of
voltage sources will pose a problem, as Kirchhoff’s
voltage law puts a hard condition on the sum of the
source values; this is true regardless of what other
components are also connected branching off from this
loop. Any node or groups of nodes at which Kirchhoff’s
current law demands a zero sum of a group of current

2Within electrical engineering this situation with mechanical
load is also similar to sharing a big current between two short
wires: if the wires have a slight difference in length, and therefore
different resistance, then most of the current will pass through
just one, which may overheat. To a circuit-theorist this could
be seen as a subset of the voltage-source problem, since a low-
resistance wire is like a zero voltage-source with a small series
resistance!

source values is also a problem if the source values do
not happen to agree with KCL.
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