
Electric Circuit Analysis, KTH EI1120
N. Taylor

Topic 03: Systematic methods

Topic 02 was mainly about ways of manipulating a
circuit diagram into a form that is easier for us to
solve. That is a bit like rearranging a mathematical
expression into a form that you know how to solve.

It is convenient if we don’t always have to search for
the right steps and “tricks” to get to the solution;
there are a lot of simplifications and theorems that
you would have to consider for some complicated
circuits. Many practical circuits, such as power
systems with thousands of nodes, or electronic circuits
with thousands of devices, really need a systematic
method if they are to be solved as whole systems.

Here in Topic 03, a more detailed title would be
“Systematic conversion of circuit problems to solvable
systems of equations”. The word systematic suggests
several interesting things: we expect a quite simple
set of rules, convenient for programming a computer;
we also can hope for generality, such that we will be
able to find solvable equations for any solvable circuit
by following our set of rules. A useful property of
systematic methods is that when we know that any
of a whole class of circuit diagrams can be converted
to particular type of equation system, we can use the
properties of these equation systems to form proofs
of circuit theorems, such as the Thevenin or Norton
equivalents that we come to in Topic 04.

On the bad side, finding a solvable system of equations
does not necessarily mean the same thing as finding a
simple and convenient set of equations! There may be
cases where other methods give simpler calculations,
or where a mixture of simplifications, systematic
methods, and circuit theorems (Topics 02, 03, 04)
is best. In some cases the non-systematic methods
may also have an advantage by giving us a ‘feeling’
for the circuit while we handle it, so that we would
be good at making intuitive judgements. Intuition is
important in some design questions, where the number
of possibilities of components and connections is too
great for doing an unguided search for a good design.

We will study almost exclusively the systematic
method known as nodal analysis. Nodal analysis is
commonly the core of circuit simulation programs,
from microelectronics to power systems. Its dual
(complementary) method is loop analysis, which is
often presented in textbooks in the more restricted
form of mesh analysis. In this course we do not
properly study these other methods, but only mention
them to prevent the names from coming as a total
surprise in some later studies or work. A little more
comparison can be found in the Extra section of
this Chapter. Instructions for using mesh analysis are
found in most Circuits textbooks.

At this stage in the course, the circuits consist of two-

terminal components that are voltage- and current
sources (independent or dependent) and resistors. The
components are connected in a particular way by
nodes. Each component has a voltage and current,
and it partly determines these by fixing one of them
or fixing a ratio between them. Then the connections
impose the demands given by Kirchhoff’s laws, KCL
and KVL.

Given a circuit like this, we could define the voltage
and current for every component, without thinking
whether we actually know the value. Then we could
write an equation to describe what each component
demands about its voltage and current: for example,
a source fixes one of these quantities, and a resistance
fixes the ratio. Then we could write KCL and KVL
for every node and closed loop that we can find. The
resulting equations, for a well defined circuit (without
silly things like parallel ideal voltage sources), should
then have a solution. By a lot of work, or by giving
these equations to a computer, the values of all the
voltages and currents could be found.

However, that method would contain a lot of
unnecessary work. Some of the equations, such as
KVL, could end up being applied in cases that are
just linear combinations of each other, unless care is
taken to choose just the minimal set of loops. And
not all the variables really have to be solved in order
to give us a useful solution; this is particularly clear
in the quite common case where we are wanting to
solve for just one quantity. The main difficulty with
big circuits is that one quantity can depend on a lot
of components in different places; there can be a lot
of interdependence. If we can calculate just the node
potentials, for example, then it is trivial to calculate
any voltage, and thereby the currents in resistors; it
is not really necessary to define and solve every single
quantity in the circuit.

One aim of a systematic method should therefore be
to produce equations that are sufficient to show all
necessary information to get a solution, and are also
independent so that we aren’t doing any more work
than necessary.

Nodal analysis uses node potentials as the unknowns.
All the potentials are defined, and one is chosen
as the reference of zero, marked by the ‘ground’
symbol. Then Kirchhoff’s current law is applied at the
nodes, producing an equation system in the unknown
potentials.

1 Nodal analysis

[More should be put here some day, about starting
from smaller cases. We do that a bit in this topic’s
lecture. For now, in the Chapter we just start with
following the rules.]

2 Forming the nodal equations

In the following, we start by showing a simple set
of rules for converting circuits to equations. The
resulting equations can be many, and even for the
quite small circuits that we use as examples it could
be tedious to solve the equations by hand. Then
we see a more human-friendly approach, that makes
some simplifications before and during writing the
equations. Finally, it is shown that the simplifications
from Topic 02 can be useful as steps before and/or
after nodal analysis, when doing the solution by hand.
The Extra section gives examples of using a computer
to solve the equations.

We will start with the following circuit, as an example
that contains independent and dependent voltage and
current sources, along with several resistors.

+

− hix

R1

ix

v1

I
v2

R2

v4

+
−U

v3

R3

gux

R4

+ −
ux

First, we note that the following necessary steps have
already been made, to define the node potentials:
* Define one node as the reference potential (earth).
* Define the other nodes’ potentials as v1, v2, etc.

2.1 Extended (‘simple’) method

This is a simple way to write nodal equations. The
number of equations can become quite large: for
a circuit with N nodes, V voltage sources, and
D controlling variables of dependent sources, this
method would give N − 1 + V + D equations and the
same number of unknowns. In the above circuit, this
is 5− 1 + 2 + 2, so we expect 8 equations.

I call this the ‘simple’ method because each of the
equations can be directly written based on the part of
the circuit it concerns: for example, we know that one
equation is KCL at node n, and another equation is
the relation of node potentials imposed by a particular
voltage source. That should make it easy to write the
equations reliably, easy to update the equations if the
circuit is changed, and easy to program a computer to
generate the equations from a circuit description.

Sometimes this type of method is called ‘extended’
because the unknown variables are not just the
node potentials but also the currents in voltage-
sources, and the controlling variables of dependent
sources. If a computer is doing the solution, it’s
usually not problem to introduce the extra equations
and unknowns, and one then gets solutions of these
quantities too.

2.1.1 Procedure for Extended method

The following steps can be used to write an equation
system corresponding to the circuit:

1. For every marked node except the ground node,
write Kirchhoff’s current law, KCL. Be very clear
about which node each KCL equation relates to,
and which direction of current you are considering;
I usually equate all outgoing currents to zero. In order
to write KCL in each node you need to express the
current in each branch1 connecting to that node:

For resistors, the currents can be found from
the node potentials between which the resistor
is connected, e.g. (v2 − v3)/R3.

For current sources, the current is just the
source’s value; be careful about the direction. (If
it’s a dependent current source, the expression
for current is not just a constant such as ‘I’, but
an expression containing the controlling variable,
e.g. guz.)

For voltage sources (independent or dependent)
we don’t know the current directly. Instead, just
define a new (unknown) current through the
source, to use in KCL: for example, iα, iβ , etc.
Mark the current’s name and direction clearly by
the source, so you don’t make an error with the
direction in KCL.

2. For each voltage source, write a further equation
that describes the constraint the source puts on the
potentials of the two nodes that it connects between.
For example, in the circuit above, U = v2− v4. In this
way, you use the known property of a voltage source
(its voltage) to compensate for this source having
introduced a new unknown quantity (its current),
and you thereby ensure there are still as many
equations as unknowns. This is done for independent
or dependent voltage sources: the dependent sources
will have a controlling variable in their value instead
of a constant, e.g. hix = v1 − 0.

3. If the controlling variable of any dependent source
is unknown (like ux and ix in this example), you must
write a further equation that expresses this variable
in terms of existing known or unknown variables. For

1Branches are the parts joining nodes; in our case here, each
component is a branch, but in other cases we might view a
group of components as a single equivalent branch if we don’t
care about the individual voltages and currents between those
components.

2

example, ux = v4 − v3. Note how each controlling
variable introduces a new unknown but also a new
equation, into the equation system.

x. Finally: have a good look at your equations.
Compare them with the diagram, to double-check
the directions (and values) in each KCL. Identify the
unknown variables: check that this number matches
the number of equations.

2.1.2 Example: extended method

Now we perform the steps decsribed above, for the
example circuit.

Write KCL for each node. Let’s sum the currents out
of each node. Nodes are numbered according to the
marked potentials (v1 etc.). Let’s denote the currents
in the voltage sources as iα in the independent voltage
source U , and iβ in the dependent voltage source hix,
with both having their reference direction into the
voltage-source + terminal.

I +
v1 − v4
R1

+ iβ = 0, KCL(1,out)

−I +
v2
R2

+
v2 − v3
R3

+ iα = 0, KCL(2,out)

−gux +
v3 − v2
R3

+
v3 − v4
R4

= 0, KCL(3,out)

v4 − v1
R1

− iα +
v4 − v3
R4

= 0, KCL(4,out)

The above 4 equations have 4 unknown node
potentials v1, v2, v3 and v4.

But they also have an unknown current for each
voltage source, iα and iβ , and an unknown controlling
variable for each controlling variable of a dependent
source, ix and ux. More unknowns than equations is a
problem, if we want a unique solution of all the node
potentials.

The voltage sources which have caused the problem of
unknown currents can also solve this problem. They
provide some more information about the circuit,
which we haven’t yet used. Each voltage source
fixes a relation between the potentials of the nodes
that it connects to. These relations provide two new
equations without any new unknowns.

v2 − v4 = U voltage source U

v1 − 0 = hix voltage source hix

By looking at how these controlling variables are
defined in the circuit, we can express them in terms
of other known and unknown variables that already
are the equations. Here again, we get new equations
(information) without new unknowns.

ux = v4 − v3 definition of ux

ix =
v4 − v1
R1

definition of ix

Now there are 8 equations and 8 unknowns. Because
we used a suitable method for choosing which
equations to write, the equations can be expected
to be independent provided that the circuit is a
sensible one that has a single solution. However, if the
equations had been derived by “just searching around
the circuit trying to write down some true statements”
there would be a real risk of the equations having
linear dependence. In that case, 8 equations might
turn out to be only 7 truly different equations, and
there would not be a unique solution to 8 unknowns.
Unless you’re sure you have another suitable way, then
use a systematic method for choosing the equations!

Some simple checks can (and should) be made
immediately after writing the KCL equations. For
example, if we always intend to write outgoing
currents, then at node n the sign of every vn/Rx term
should be positive, while the sign of every vm/Rx term
(m 6= n) should be negative. So v3−v2

R3
is valid at node 3

but not elsewhere. If we choose incoming currents the
opposite is true. We can also check that the number of
terms at each node matches the numbers of branches
connecting to that node.

2.2 Supernode method

This method is a way to avoid caring about the
currents in voltage sources. Its advantage is that the
number of equations to write down and solve can be
reduced. A disadvantage is that currents in voltage
sources are not directly solved for, and more conscious
thought is needed when writing the equations at the
start.

Instead of writing KCL for every separate node, any
group of nodes that are connected to each other by
voltage sources are treated as a single region; KCL
is written for currents going between this region and
the rest of the circuit. In this way, the current in any
voltage source is just an internal current within one of
these groups of nodes, so it is not included in the KCL
equation. Sometimes the grouped nodes are referred to
as a supernode. A supernode is a set of nodes between
which one can travel by going through just voltage
sources; it can be two or more actual nodes.

The trouble with combining nodes like this is that
less information is provided by the smaller number
of KCL equations; there are fewer equations, so
fewer unknowns can be solved. This reduced number
of equations is compensated by defining unknown
potentials for only one node in each supernode. After
solving for this reduced number of potentials, the
potentials of the unsolved nodes in each supernode can
be found by looking at the one solved node potential
and the values of the voltage sources that connect the
member nodes in the supernode.

By the supernode method we get a simpler equation
system, but arguably have to think harder when
writing it. The equations provided by the extended
method could be simplified to give the same result;

3

the difference in the methods is whether the equations
are simplified before or after writing them down!
For solving the equations by hand, the supernode
method’s early simplification will very likely be a
better choice than writing and simplifying more
equations. For on a computer by numeric linear-
algebra functions, the equations need to be in a neat
matrix form such as Ax = b; the supernode method
can provide suitable equations for its reduced number
of nodes. However, if you will put the nodal equations
directly into a symbolic computer program, there is
no need for a particular layout of the equations. It is
then more sensible to use the extended method. The
equations can be directly related to the circuit; they
are easy to check, and if you change the circuit a bit,
it will be obvious how to change the equations. The
extended method will also directly provide solutions
for the currents in the voltage sources, which in some
cases is useful.

2.2.1 Procedure: supernode method

* Make sure a ground node is defined.

* Any set of nodes that are joined by voltage sources
is defined as a supernode. So: identify the nodes and
identify any groups of them that are supernodes.

* For each supernode, define the potential of just one
of its constituent nodes (the nodes inside it). Write
this on the diagram. Then write expressions for the
potentials of the other nodes in the supernode in terms
of this potential and the source values. For example,
in the above question, we see that v2 = v4+U , so only
v2 or v4 should be defined as an unknown.

* For each dependent source, define its value in
terms of the known quantities and the defined node
potentials that you chose in the above step. In the
example circuit, it is unusually hard work to do this
for ix, since v1 depends on hix; but you can write this
equation and rearrange to get ix in terms of h, R1, U
and v4 or v2 (depending on whether you chose v4 or
v2 as the defined value within the supernode created
by the voltage source U).

* Write a KCL equation at each supernode and each
other node (that is not part of a supernode) except
for the ground node.
Do not try to write KCL for each separate node inside
the supernode: that extra information is not needed, as we
already know a relation between all the potentials within
the supernode.
If a supernode contains the ground node, then you don’t
need to do KCL on any part of that supernode.
For a supernode that does not contain ground, write
just one KCL equation for all currents out of the whole
supernode.

* This should lead to a modest number of equations:
in the circuit that we used as an example for the
simple method, there would be two KCL equations
in two unknown potentials. After solving this pair
of equations for the unknown potentials, the other
potentials can quickly be found.

2.2.2 Example: supernode method

The supernode method is now used, on the same
example circuit.

There are two voltage sources.

The independent source, U , has connections to v4 and
v2, such that v2 = v4 + U . A supernode is therefore
formed from nodes 2 and 4 together. Only one of
those node potentials should be used as a variable:
let’s choose v4. The other is expressed in terms of this
one: thus the potential at node 2 will be written v4+U
in the KCL equations.

The dependent source, hix, has one terminal
connected to the ground node, and the other to
node 1. Node 1 therefore becomes part of the ground
supernode. The potential at node 1 still needs to be
known, as nodes 1 and 2 are linked by a resistor, and
the current in this will be used in KCL at node 2. The
source tells us that v1 = 0+hix; but this unfortunately
involves an unknown variable, ix, which we would like
to eliminate now so that we can get the minimum
number of equations, with just some node potentials
as the unknowns. We know that ix = (v4 − v1)/R1,
and so v1 = (v4 − v1)h/R1, which is rearranged to
v1 = v4h/(h+R1) so that we can use v4h/(h+R1) in
place of v1 in the KCL equations.

There are now just two places to apply KCL: one is
node 3, and the other is the supernode that combines
nodes 2 and 4. Remember that v1 is part of the ground
supernode, and we do not apply KCL to any part of
this [super]node. Potentials v4 and v3 are the only ones
that should appear in the KCL equations.

The two KCL equations, with outgoing currents, are

KCL(2&4):

v4 − v4h
h+R1

R1
+

v4+U

R2
+

v4+U − v3
R3

+
v4 − v3
R4

− I = 0

KCL(3):

v3 − v4
R4

+
v3 − (v4+U)

R3
− g(v4 − v3) = 0

These can be written more neatly, to group coefficients
of unknown node potentials v3 and v4,

v3

(
− 1
R3
− 1

R4

)
+v4

(
1
R1
− h

hR1+R2
1

+ 1
R2

+ 1
R3

+ 1
R4

)
= I − U

(
1
R2

+ 1
R3

)
,

v3

(
1
R4

+ 1
R3

+ g
)

+ v4

(
− 1
R4
− 1

R3
− g

)
= U 1

R3
.

These two simultaneous equations can be solved,
but any manipulation is hindered by the quite long
coefficients; if we had numeric values of components
it would be much easier, as each coefficient would
become a single number.

The eight equations from the extended method
could have been put into this two-equation form by

4

successively substituting one equation into the others
to eliminate variables. However, it often feels easier,
even more reliable, to make the simplifications in the
circuit. That’s particularly true when there are several
voltage sources, which would make a large number of
equations in the extended method, but very few in the
supernode method.

3 Combination with simplifications

When using nodal analysis ‘by hand’ it can be
useful to apply some simplifications before and
possibly afterwards. This is particularly common
when the aim is to find one quantity instead of
all the node potentials. Simplifications that remove
irrelevant components are surely a good idea, and
other simplifications may also help in some cases.

3.1 Equivalent branches between nodes

Consider the following circuit, in which the aim is to
find the potential v. Component values are assumed
to be known, but marked currents (e.g. ir) are not;
they are just definitions.

If we just followed the rigid set of rules for nodal
analysis from Section 2.1.1, this circuit might be
analysed as having 8 nodes apart from the ground
node. That might be good for a simple computer
program where the programmer doesn’t want lots of
“if, then” cases. But an electrically-oriented person
would probably prefer to do a little more thinking, to
write an easier equation.

If we are solving the problem by hand, and only care
about finding the potential v, then we don’t really
want to calculate potentials at the other 7 nodes: the
good features of simplifications and nodal analysis can
be combined.

il

I

R
0

Ra

Rb

im

+−

U1 R1

R2

+−

U2

R3

+ −

U3

ir

v

Notice that the circuit can be seen as three ‘branches’
between v and the ground node. If we can describe
the current in each branch as a function of the known
values of components and the unknown v, then a single
KCL equation can be written and solved for node v.

On the left, the branch behaves as a current source:
the current is determined by the source, regardless of

the irrelevant component R0,

il = I.

In the middle, the branch behaves as an equivalent
resistor Rab, where

im =
v

Ra + Rb
=

v

Rab
.

On the right, the branch behaves as a Thevenin source,
with voltage U ′ = U1 + U2 + U3 and resistance R′ =
R1 + R2 + R3. The result is that

ir =
v − U1 − U2 − U3

R1 + R2 + R3
=

v − U ′

R′
.

Note that in an equivalent branch the order of the
components does not matter. All that matters is the
relation between the current in the branch and the
voltage across the total branch. It is therefore possible
to put U1, R1, U2 etc in any order in the branch,
which makes it easier to see that all the voltage sources
and all the resistors can be combined. That is obvious
if you consider that the voltage across the branch is
expressed in terms of the current by U1+irR1+irR2+
U2 + irR3 +U3, and that addition can be done in any
order.

The simplified branches are shown in the following
diagram.

il

I Rab

im

+
− U ′

R′

ir

v

The nodal equation KCL(v,out) is

I +
v

Rab
+

v − U ′

R′
= 0,

which can be rewritten in terms of the given values of
the components,

I +
v

Ra + Rb
+

v − U1 − U2 − U3

R1 + R2 + R3
= 0.

The only unknown is v, which solves as

v =
(U1+U2+U3 − I (R1+R2+R3)) (Ra + Rb)

R1 + R2 + R3 + Ra + Rb
.

It is useful in such cases to do the algebra with the
simplified variables such as U ′, then substitute the

5

known values such as U1 + U2 + U3 in the very final
expression to give the answer.

We could get the same result by defining potentials
at all nodes, writing the full node equations from the
extended method, and then substituting one equation
into another until we end up with the above equation
for v. The supernode method would have made this
look a bit simpler, but if we applied it in exactly
the standard way without simplifying even the left
or middle branches, there would still be 4 potentials
being solved.

3.2 Simplify before and after

This example is less obviously beneficial than the
previous one. It was given in Topic 02, as an
example where a solution can be found by repeatedly
equivalencing components in series and parallel.
Potentials have been defined for nodal analysis; the
potential about the source U is clearly U , so it has
not been given a further name.

+
−U

i1
R1 v1

R2

R3 v2

R4

+

−

u4

Let’s suppose we need to find i1 and u4. By the
supernode method, which is generally a good way for
manual calculation, we write KCL for the two nodes
of unknown potentials v1 and v2; the other two nodes
have known potentials of 0 and U .

v1 − U

R1
+

v1
R2

+
v1 − v2
R3

= 0 KCL(1,out)

v2 − v1
R3

+
v2
R4

= 0 KCL(2,out).

The solution is

v1 =
R2(R3 + R4)U

R1R2 + (R1 + R2)(R3 + R4)

v2 =
R2R4U

R1R2 + (R1 + R2)(R3 + R4)
,

from which u4 is directly given as

u4 = v2,

and i1 is found as

i1 =
U − v1
R1

=
(R2 + R3 + R4)U

R1R2 + (R1 + R2)(R3 + R4)
.

The above was a bit tedious to write, for solving just
a couple of quantities in such a simple-looking circuit;
it perhaps doesn’t feel terribly much easier than the
successive reduction of resistors that we could have
used in Topic 02.

In order to try simplifications, we can look ahead and
see that u4 could be found from voltage division of v1.
Thus, only v1 really needs to be solved; node v2 can
be ignored by combining R3 and R4 into an equivalent
resistor. Writing the single KCL at node v1,

v1 − U

R1
+

v1
R2

+
v1

R3 + R4
= 0,

which solves to

v1 =
R2(R3 + R4)U

R1R2 + (R1 + R2)(R3 + R4)
.

The current i1 can be calculated as before, and the
voltage u4 (equal to potential v2 can be found by
voltage division as

u4 =
R4

R3 + R4
v1,

which does indeed result in the same expression as in
the first calculation,

v2 =
R2R4U

R1R2 + (R1 + R2)(R3 + R4)
.

As a joke, we could try mesh analysis, for which
this type of circuit is a classic case of two loops.
Define a ‘mesh current’ i1 clockwise around the
left loop, as already indicated on the diagram.
Define a new mesh current i2 clockwise around
the right loop. The mesh equations are then

U = i1(R1 + R2)− i2R2

0 = −i1R2 + i2(R2 + R3 + R4).

After solution, we note that i1 is directly solved,
and u4 = i2R4. The results are (as we would
hope!) the same as by nodal analysis. But the
process of solving still doesn’t feel easier than the
nodal analysis with two equations.

I would say that the method of simplification and node
analysis was about ‘as good as it gets’ for this example.

6

4 – Extra –

4.1 Loop and Mesh analysis

Another form of systematic circuit analysis is loop
analysis. It is in many ways the dual of node analysis:
it defines currents in a set of closed loops around the
circuit (instead of potentials at nodes), and obtains
equations by KVL around these loops (instead of KCL
at the nodes), by expressing resistor-voltages in terms
of the unknown loop currents.

It is more common to find descriptions of mesh
analysis, for hand calculations. Mesh analysis has the
same solution principle as loop analysis, but it has a
restrictive definition of how the loops are chosen. It
requires that the circuit is planar, meaning that it can
be represented in two dimensions without any parts
crossing each other. The meshes are then the smallest
loops in this representation of the circuit: i.e. any loop
that contains another loop is not treated for KVL. The
mesh method is therefore only suited to a subclass of
circuits.

The loop method is more general, but defining the
right number of indepdendent loops to analyse in a
complicated circuit is likely to be hard (by hand)
compared to using node analysis. Programming a
nodal method is easy and direct, with input describing
a list of components along with the nodes that each
connects to. The nodal approach is used in basically
all circuit calculation programs I’m aware of, for
electronics or power. For the dual methods, one would
have to work out the sufficient set of loops, or the
circuit’s meshes.

Node analysis deals with potentials and branch
currents, which are all directly associated with the
circuit. Loop currents are not necessarily actual
quantities in a circuit, but can be subparts of
the actual currents. An apt quotation in the old
Thomas/Rosa textbook cited in Topic 01 is,

“(The) advantage of the nodal formulation results
from the fact that the equations can be more directly
correlated with the physical structure of the network
than is possible with the mesh formulation.”
Hendrik W. Bode, 1945.

Mesh analysis was commonly taught in circuit theory
as an equal to node analysis. If one knew both
methods, one would choose whether a particular
circuit could more easily be solved by the mesh or node
method. Typically, one would prefer to have a small
number of equations, so a circuit with fewer meshes
than nodes would typically be solved by mesh analysis.

The nodal equations typically have lots of reciprocals
in the coefficients, such as 1

R1
+ 1
R2
· · · , while the mesh

equations have neater coefficients like R1+R2 · · · . This
could seem like a disadvantage of the nodal method;
but it is not fundamental, and not very important.
If one uses conductance instead of resistance, this

situation is reversed; computers will happily handle
the calculations in any case.

It’s good to know what mesh analysis means. It might
be an easier method in some problems. You might even
prefer it. You are welcome to use it in solutions that
allow you to choose your own method. But make sure
first that you are good at doing node analysis, with
all the types of components that we consider. Don’t
risk mixing the two, or learning two methods but not
to a reliable ‘expert’ level. Being good at one method
is better than being mediocre at several.

Mesh analysis has caused more exam troubles than
I care to remember. It has its advantages in some
cases, but there is no compelling need to learn it when
one has nodal analysis. The small advantage of its
being arguably a big quicker to solve by hand in some
particular cases is outweighed by extra time taken
from getting really good at nodal and other analysis,
and on confusion between the two. There is a trend in
circuits education towards cutting mesh analysis, as a
step in focusing the curriculum!

7

4.2 Solutions by Computer

The following are some examples of how one can use numeric or symbolic equation solvers, or a specific circuit
solver, to get or check answers.

It is not required material in this course.

It is hoped to be stimulating to a few people who might already be getting familiar with using computers for
symbolic solutions and linear algebra. The use of computers for checking can be helpful to you even in this
course, for confirming your solutions to homeworks and other problems. Familiarity with numerical and symbolic
programs is likely to be useful in later courses and in later work.

4.2.1 Observations on Computer-assisted checking

I often use computers for deriving and double-checking results. For example, I try two solution methods and put
in the same randomly set input variables to both, to check the solution is the same. I can’t claim to be very
familiar with using symbolic programs: I know Mathematica for differential equations and integrals, but most I
do most other checks numerically.

My experience of Computer Algebra (symbolic) programs is that the results are often very messy. Even the
FullSimplify[] (Mathematica) or simplify() (Matlab) is frequently not in a form that is good compared to
hand calculation. But some of this is the user’s fault: there are ways to give these programs further clues about
what sort of simplification one wants.

For many calculations, the checking can be done purely numerically: for example, if you want to compare two
equations that are functions of one variable, then plot them both and look for a difference; or plot the difference;
or sum the absolute value of the differences, etc.

The Matlab element-wise operators .*, ./ and .^ are useful for making an equation operate on a whole vector
of input, to produce a vector of output. Typically the vector can be time-points or multiple possibilities for a
voltage or component-value. But that is getting a little advanced for now.

8

4.2.2 Numerical result, from arbitrarily-expressed equations

The extended nodal analysis generates a lot of unknown variables and corresponding equations: one per node
(except ground), another per voltage source, and another per controlling variable of a dependent source.

Even if we have numeric values for all the unknowns, we can’t simply write these equations directly in a simple
computer language that only uses the processor’s ability to do addition, multiplication etc. Such languages take
known numbers in an expression on the right-hand side of the = symbol, and assign the result to a single variable
on the left-hand side. A typical example is x = 2*a + b with a and b already defined as numeric values.

An invalid example is 0 = 2*a + b - x, which would be accused of having an invalid lvalue (value on the left-
hand side). This could however be easily rearranged by us when writing the equation. The bigger trouble here is
that our equations are simultaneous: each one can have several unknowns, so it cannot be rearranged to have just
one unknown value, on the left. Multiple equations must be solved together.

If the nodal analysis did not include voltage sources, it is quite easy to use the KCL equations to write a matrix
of numerical coefficients that can be solved by linear algebra functions available in many computer programs.

However, there now exist more general programs that can handle equations that are expressed in arbitrary form.
This can be useful in allowing us to write the equations in exactly the way that we found from looking at the
circuit. Then they can easily be double-checked and easily be modified if the circuit is modified.

In the following, a symbolic solver (from Matlab R2012b) is used to give a numeric result from the original
equations that we derived for the circuit in Section 2.1.2. The main part is clearly the solve() function, which
you can look up in the help. The equations are given as arguments with the == symbol, then the unknowns to
solve for are listed.

syms v1 v2 v3 v4 ia ib ux ix real % define as real symbolic variables

U = 20.0; I = 5.0; h = 4.0; g = 6.0;

R1 = 10.0; R2 = 12.0; R3 = 15.0; R4 = 9.0;

s = solve(...

0 == I + (v1-v4)/R1 + ib, ...

0 == -I + v2/R2 + (v2-v3)/R3 + ia, ...

0 == -g*ux + (v3-v2)/R3 + (v3-v4)/R4, ...

0 == (v4-v1)/R1 - ia + (v4-v3)/R4, ...

U == v2 - v4, ...

h*ix == v1 - 0, ...

ux == v4 - v3, ...

ix == (v4-v1)/R1, ...

v1, v2, v3, v4, ia, ib, ux, ix);

% the "structure" s now contains "fields" giving the solutions;

s.v1, s.v2, s.v3, s.v4

% because we’re using the symbolic toolbox, the results such

% as s.v1 are still "perfect precision", treating the numerical

% values as exact: so they appear as fractions

6800/1807 59940/1807 24190/1807 23800/1807

% to convert them into the normal numeric values on

% the computer (double-precision floating-point), we do

double(s.v1), double(s.v2), double(s.v3), double(s.v4)

% this gives node potentials 1--4 as:

3.7631 33.1710 13.3868 13.1710

% other variables can be shown similarly,

double(s.ia)

0.9168

This way of writing the equations relies on a quite new version of the Matlab symbolic toolbox; for example, it
works in R2013b, but not R2009b.

9

4.2.3 Solve for symbolic result

The Matlab symbolic toolbox can be used without even giving numbers for the components’ values; it then returns
expressions defining the solved quantities such as v1 and ix, in terms of the component values such as R1, U ,
and g. These expressions can be used to check our own hand-written ones, or as an alternative, or they can have
numeric values substituted into them. Unfortunately, the expressions are often rather long and complicated, even
if neater ones could be found.

The following is the same set of equations as before, but now in a different format that works in the older symbolic
toolbox found in Matlab R2009b. The symbolic expressions in the code below are given as strings (i.e. text, within
quotation marks ’...’), which means that the variables do not all have to be declared with the syms command
before calling solve(), Only single = symbols need to be used within the strings. The list of variables to solve for
is given as a single string in the last argument to solve(). These older versions of Matlab interpret the symbolic
variable I automatically as being the imaginary unit:

√
−1. We therefore have to write the current source as I .2

This time we also change the situation by calling solve() without having given any numeric definitions of
parameters. All variables that we are not asking it to solve for are assumed to be symbolic variables: in the
terminology we’ve used in the course, these would be our known variables. If we wanted this type of solution in
the previous example (with newer Matlab) the line U = 20.0; ... etc, could be replaced with syms U I ...

etc., so as to define the component values as symbolic variables instead of numbers.

s = solve(...

’0 = I_ + (v1-v4)/R1 + ib’, ...

’0 = -I_ + v2/R2 + (v2-v3)/R3 + ia’, ...

’0 = -g*ux + (v3-v2)/R3 + (v3-v4)/R4’, ...

’0 = (v4-v1)/R1 - ia + (v4-v3)/R4’, ...

’U = v2 - v4’, ...

’h*ix = v1 - 0’, ...

’ux = v4 - v3’, ...

’ix = (v4-v1)/R1’, ...

’v1, v2, v3, v4, ia, ib, ux, ix’)

% looking inside one of the solutions shows the LONG expression:

s.v4

-((R1 + h)*(R3*U + R4*U - I_*R2*R3 - I_*R2*R4 + R2*R4*U*g + R3*R4*U*g

- I_*R2*R3*R4*g))/((R1 + R2 + h)*(R3 + R4 + R3*R4*g))

% will the simplify() function give a reduction in length?

simplify(s.v4)

[unfortunately not .. just as long!]

% now try putting in the numbers

U = 20.0; I_ = 5.0; h = 4.0; g = 6.0;

R1 = 10.0; R2 = 12.0; R3 = 15.0; R4 = 9.0;

% s.v1 still is a symbolic equation; the "subs" function substitutes

% the numeric values, assuming them to be exact,

subs(s.v1)

6800/1807

% convert to normal double-precision computer-numbers

double(subs(s.v1)), double(subs(s.v2)), double(subs(s.v3)), double(subs(s.v4))

3.7631 33.1710 13.3868 13.1710

The result for each solved variable, such as s.v2, is then an expression the defines the solution in terms of the
parameters. This expression is symbolic, and can be used in further calculations in the symbolic toolbox.

2It’s rather silly that Matlab has ever had i or I or j to mean an imaginary unit. In symbolic work this causes trouble by
surprising us when we try to use it for something else . . . no warning is given. In numeric work, someone might use these variables as
the imaginary unit, but overwrite the variable with another value: a classic case is when using ai notation for subscripts, a(i). When
using Matlab, always write the imaginary unit as 1i or 1j; as this starts with a number it can never be confused with a variable.
Scilab manages nicely by having special things like π and j defined with a special prefix, e.g. %i, so they can never be redefined by
treating them as normal variables in an assignment.

10

4.2.4 Or, for Mathematica users . . .

All the same things as above can — of course — be done in Mathematica. Matlab was originally a numeric
matrix-algebra interface, with a language for this focus; it has then grown into further directions. Mathematica
was from its outset designed to be very versatile for handling a wide range of symbolic manipulations, useful for
mathematicians in their proofs as well as for natural scientists and engineers in their calculations. Mathematica
has therefore a significantly different syntax.

A symbolic solution and attempted simplification
can be done in the way shown on the right. The
result is not given any name, so the solutions for
the 8 solved variables will be shown on the screen.

Alternatively, by putting s := before the
FullSimplify at the beginning, the whole
solution could be assigned to the convenient
name s, by which it could be called within later
manipulations.

FullSimplify[Solve[

0 == Isrc + (v1-v4)/R1 + ib

&& 0 == -Isrc + v2/R2 + (v2-v3)/R3 + ia

&& 0 == -g*ux + (v3-v2)/R3 + (v3-v4)/R4

&& 0 == (v4-v1)/R1 - ia + (v4-v3)/R4

&& Usrc == v2 - v4

&& h*ix == v1 - 0

&& ux == v4 - v3

&& ix == (v4-v1)/R1 ,

{ v1, v2, v3, v4, ia, ib, ux, ix }

]]

The symbolic results after the
FullSimplify are formatted on
the screen as shown on the right.

The final lines show the result for
just v1 (which evaluates to the
expected 3.7631 if the component
values used in the other examples
are inserted). There are other long
symbolic expressions for other
potentials too.

If the solution has been given a name such as s then the /. operator can be used to substitute a set of further
equations into this symbolic solution. By substituting numeric values of the known variables, the numeric values
of the solution will be given.

snum = s /. {Usrc -> 20.0, Isrc -> 5.0, h -> 4.0, g -> 6.0,

R1 -> 10.0, R2 -> 12.0, R3 -> 15.0, R4 -> 9.0 }

{v1 -> 3.76314, v2 -> 33.171, v3 -> 13.3868, v4 -> 13.171,

ia -> 5.94079, ib -> -0.916805, ux -> -0.215827, ix -> 0.940786}}

The equations and numbers could instead be stated all in one go, for an immediate numeric output.

Solve[0 == Isrc + (v1-v4)/R1 + ib

&& 0 == -Isrc + v2/R2 + (v2-v3)/R3 + ia

&& 0 == -g*ux + (v3-v2)/R3 + (v3-v4)/R4

&& 0 == (v4-v1)/R1 - ia + (v4-v3)/R4

&& Usrc == v2 - v4

&& h*ix == v1 - 0

&& ux == v4 - v3

&& ix == (v4-v1)/R1 ,

{ v1, v2, v3, v4, ia, ib, ux, ix }] /.

{ Usrc -> 20.0, Isrc -> 5.0, h -> 4.0, g -> 6.0,

R1 -> 10.0, R2 -> 12.0, R3 -> 15.0, R4 -> 9.0 }

11

4.2.5 Numerically, on well-arranged equations

A common way of solving linear circuits is numerically, by putting in the known numbers to a matrix equation and then
solving by elimination. The equation system that we get directly from nodal analysis needs to be arranged into a neat form
of, for example, A*x = b, in order to be solved with simple numerical linear algebra functions.

With just resistors and independent current sources it would be easy to write the equations in this form. The addition
of voltage sources and dependent sources necessitates a bit more thought. The supernode method is one useful way for
setting up suitble equations even when voltage sources are included. Its equations use just a subset of the potentials as the
unknowns.

We show the use of this method below, using the equations from the example of the supernode method in Section 2.1.2,
and choosing the same arbitrary values for the components as have been used in the other computer-solution examples.
Notice the choice of defining every variable as a number and name, then forming the matrix based on names. This makes
it easy to change a number and re-run the program.

% define the known variables (component values)

U = 20.0; I = 5.0; h = 4.0; g = 6.0;

R1 = 10.0; R2 = 12.0; R3 = 15.0; R4 = 9.0;

% form the known arrays

A = [-1/R3 - 1/R4, 1/R1 - h/(h*R1+R1^2) + 1/R2 + 1/R3 + 1/R4 ;

1/R4 + 1/R3 + g, -1/R4 - 1/R3 - g];

b = [I - U*(1/R2 + 1/R3) ;

U/R3];

% these now have the following values:

% A = [

% -0.17778 0.33254

% 6.17778 -6.17778]

% b = [2.0000

% 1.3333]

% solve (the "proper" way by elimination and back-substitution)

x = A\b;

% alternatively, "less efficient", by full matrix inversion,

%x = inv(A)*b;

% extract the two potentials from the solution vector

v3 = x(1);

v4 = x(2);

% calculate the other potentials in the supernodes

v1 = v4*h/(h+R1);

v2 = v4 + U;

% this gives

v1, v2, v3, v4

3.7631 33.1710 13.3868 13.1710

12

Circuit-solver

One quicker way of checking (or making) a solution for more complicated circuits is a specific circuit-solver. There are
many graphical-based solvers available nowadays.

SPICE (Simulation Program with Integrated-Circuit Emphasis) is very well known and very versatile, with a long history.
Various interfaces and extra component-libraries exist for it, often proprietary. The basic program, however, works on
text-based input and output. Its main strengths are in analysis of circuits that contain semiconductor devices such as
transistors and diodes (highly nonlinear); however, it can also be used for our simpler cases of linear circuits.

This following text is a SPICE ‘netlist’ that specifies the circuit used as the example in Section 2 and in the above computer
solutions.

EI1110_HT14_HW04

V1 2 4 DC 20.0

I1 1 2 DC 5.0

V41 5 1 DC 0

H1 1 0 V41 4.0

G1 0 3 4 3 6.0

R1 4 5 10.0

R2 2 0 12.0

R3 3 2 15.0

R4 4 3 9.0

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4)

.END

The first column shows the type of component and its name. The second and third columns show the nodes that the
component connects between; some components in SPICE have more than just two terminals. The final column gives the
component’s value. Other columns may be used, such as for specifying the controlling variables of dependent sources.

An extra voltage source of zero voltage had to be added here in series with R1 in order to define the current marked as ix
in the circuit diagram, which controls a dependent source! SPICE uses the extended nodal analysis that solves for voltage-
source currents as unknowns; it therefore can use this method of a ‘fake’ voltage source as way to measure a current. A
voltage can more easily be measured as simply a difference between node potentials.

Running the above in Spice (spice 2g.6, from 1983-03-15!) gives node potentials of:
(1) 3.7631 (2) 33.1710 (3) 13.3868 (4) 13.1710

Fortunately, this agrees with our earlier calculations. . . Of course, SPICE can solve much more than our simple nodal
analysis, as its main purpose is solutions of circuits with hundreds of highly nonlinear multiterminal devices like transistors.

Command-line SPICE programs are freely available, and various graphical interfaces also exist. There’s an online solver
at [NGspice]. If the above example is entered as text, nothing will show in the plot (no plot is requested in the text), but
you can see the text output, including the numbers, by clicking the Raw output file option below the plot.

This [Spiceoverview] is a good source for understanding the format and the different components. Each of the main lines
specifies a component. The first letter shows what type of component, the columns 2 and 3 show the nodes that the + and
− terminals connect to (even a resistor has + and −, so that its current and voltage can be easily defined). The voltage
source V41 was added in series with R1 to allow the current in R_1 to be measured as the input to the current-controlled
source H1.

13

http://www.ngspice.com/
http://www.seas.upenn.edu/~jan/spice/spice.overview.html

	Nodal analysis
	Forming the nodal equations
	Extended (`simple') method
	Procedure for Extended method
	Example: extended method

	Supernode method
	Procedure: supernode method
	Example: supernode method

	Combination with simplifications
	Equivalent branches between nodes
	Simplify before and after

	– Extra –
	Loop and Mesh analysis
	Solutions by Computer
	Observations on Computer-assisted checking
	Numerical result, from arbitrarily-expressed equations
	Solve for symbolic result
	Or, for Mathematica users …
	Numerically, on well-arranged equations

