
Electric Circuit Analysis, KTH EI1120
N. Taylor

Topic 04: Circuit Theorems

Last time, Topic 03, we looked at nodal analysis
for systematically writing up a solvable equation
system from a circuit consisting of the two-terminal
components that we have studied up to now. There
were several approaches to this, depending on the
circuit and on whether the aim was to do the solution
by hand or by computer. This new Topic 04 is not
about systematic solutions. It is more like an extension
of Topic 02, giving further methods that can be put
together as steps to help solving a circuit.

If nodal analysis can solve all our circuits anyway, then
why do we have this extra topic . . . or even Topic
02? There are at least two reasons. One reason is
that we sometimes can get easier calculations, by the
simplifications and theorems. This is less important
when we have computers to help us, but there are
still cases where one can save time by realising
that, for example, a circuit of one thousand linear
components connected to our two-terminal voltage
source can all be modelled as a single source and
resistor! Another, probably more important reason is
that simplifications and theorems sometimes can help
our understanding: they can allow us to make some
quick judgements about how a circuit will behave,
or what effect a proposed modification can have. For
many sorts of analysis and design we have many
options of which components and connectivity there
are, and what values the components have; it is not
feasible to explore all the combinations in detail, so it
is important to have a feeling for what effects various
changes will have. A lot of ideas and useful proofs are
based on other theorems.

The main reasons for leaving the Circuit Theorems
until after Nodal Analysis are that: 1) it is often
helpful to use nodal analysis to find an equivalent
circuit; and 2) the equations from nodal analysis help
up to justify the superposition and equivalent circuit
theorems if we feel like going into that much theory.
The main approach in this Topic is axiomatic: a circuit
theorem is asserted, and its use explained. Proofs are
interesting, and might, some year, get included in the
“Extra” part at the end.

1 Superposition

Superposition applies to the currents and the voltages
in the linear circuits that we consider in this course.
Linearity means that there is a direct proportionality
between a cause (independent source) and its effect
(voltages and currents in the circuit due to just
this independent source), and that the effects due to
different causes can be summed.

Superposition is an immensely useful principle in
circuits, fields, and many non-electrical subjects.

Essentially, “when multiple sources contribute to a
quantity in a linear system, that quantity is the
sum of the separate effects from all the sources”.
In electromagnetic fields, superposition is a very
important tool. For example, the electric field at
a point can be seen as the (vector) sum of all
contributions from all the different charges everywhere
else.

In circuits, any circuit quantity (current, voltage,
potential) is the sum of all the values that it would
have due to each of the independent sources acting
alone. A particularly important thing to get right
when using superposition is what to do with the
other independent sources when calculating what
one independent source would do by itself. The
correct choice is to replace voltage sources by short-
circuits, and current sources by open-circuits; but
many mistakes are made by doing this the wrong way
round.

Why do we not need to look at the separate effects
of dependent sources too? After all, they are also
voltage or current sources that can drive energy
into the circuit. The difference is that each one
would do nothing by itself: its output is proportional
to a controlling current or voltage somewhere in
the circuit; with no independent source to drive
the circuit, these quantities will all be zero.1 The
dependent sources are rather similar to resistors in
this way: their voltage and current can be found as
the result of all the separate contributions caused
by the separate independent sources. So dependent
sources are simply left in the circuit, unchanged, when
calculating the effect of each independent source.2

1.1 Superposition procedure

Here are the rules for applying superposition.

1. Divide the independent sources into groups,
so that each source appears exactly once. For
example, three independent sources called a, b
and c could be grouped as a and b in one group
and c in another, or they could be in three
separate groups, etc.

2. For each group, find the circuit solution for the
quantity or quantities that you are trying to solve,
with just this group of independent sources at
their proper values, and all other independent
sources set to zero (nollställd). Note that a
voltage source set to zero is a short-circuit, and a
current source set to zero is an open-circuit.

1Zero values of dependent sources in the absence of
independent sources: this is a simplification for ‘nice’ cases. We
can invent cases where a dependent source stimulates its own
controlling variable in a way that has a nonzero solution or is
unstable. But we tend to ignore these special cases when looking
for some simple rules to solve many practical circuits.

2This isn’t the only choice possible, for getting a circuit
solution: see a link in the Extra Section. But it’s the common
choice when making a list of how to perform superposition in
circuit analysis.



3. For each quantity, add together the solutions
found from solving for each group . . . this sum
is the solution to the complete circuit where all
sources are active.

A more conventional view of superposition tells you
that you just have to take each indepdenent source
by itself, one at a time. The above procedure is more
general: when handling large circuits it can often be
useful to do superposition with groups of independent
sources instead of always one at a time.

One reason that superposition can be useful is that
the replacement of some sources by open and short
circuits can make the circuit a lot simpler in each
case. If you’re lucky, then you might solve for three
superposition states, each one with a one-node nodal
analysis or divider equation, instead of getting three
simultaneous equations when applying nodal analysis
without superposition. In other cases it might be
quicker to do nodal analysis or other methods directly.
However, the usefulness of superposition is even
greater for handling special cases in transient and ac
solutions that we come to later.

1.2 Superposition example

Let’s try an example, about as simple as possible
without being trivial. All component values are, as
usual, assumed by default to be known. We want
to find the marked current i. The potential v and
earth node have been defined for convenience in the
calculations.

+
−U

R1

R2

i

v

I

If we’re going to use superposition at all, in this case
with just two independent sources, there’s no choice
about which groups to use! One superposition state
must be with just the voltage source active, and the
other must be with just the current source active.

It is useful to be very clear about marking which state
is being solved: for example, we can mark the current i
as i(1) when it’s being solved in the first superposition
state, etc.

Superposition state 1 Let’s choose to have the
voltage source active in this first state. Then all other
sources, meaning the current source, must be set to
zero. A current source set to zero is an open-circuit.
Therefore, the original circuit can be re-drawn as
follows.

+
−U

R1

R2

i(1)

v(1)

This circuit has a very easy solution for i(1), using a
series equivalent and Ohm’s law, or just KVL.

i(1) =
U

R1 + R2
.

Superposition state 2 Now the other state is
calculated, where the current source is active. The
voltage source is set to zero, and thus becomes a short-
circuit.

R1

R2

i(2)

v(2)

I

This also has a simple solution, using methods from
Topic 02. Current division between the resistors gives

i(2) =
IR1

R1 + R2
.

Superposition: add the solutions The final step
is to combine the calculated values of the desired
quantity with the different groups of independent
sources acting separately: Hence,

i = i(1) + i(2) =
U + IR1

R1 + R2

1.3 Check the example

It’s wise, and educational, to check a supposed
solution. Dimensional analysis is a good start. We can
usually find several different methods for solving a
circuit, without being very confident about which will
be easiest until we’ve tried it. Using an alternative
method is a good way to double-check results.

Let’s try using nodal analysis directly on the example
that we’ve just solved by superposition. (That’s why
the potential v was marked!)

We only need to find i, so it is sufficient to find v then
use Ohm’s law. The supernode method tells us that we
can ignore KCL at the node above the voltage source,
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as we know its potential is U . Just the one node v
needs to be considered,

v − U

R1
+

v

R2
− I = 0 KCL(v,out),

from which

v =
R1R2

R1 + R2

(
U

R1
+ I

)
=

(U + IR1)R2

R1 + R2
.

The desired solution was i, not v, so we divide by R2.

i =
v

R2
=

U + IR1

R1 + R2
,

which matches the solution obtained by superposition.
I’d say the nodal analysis was a bit easier this
time. But it required a bit more manipulation of the
equations, and would quickly lose its ease if there had
been more than one equation to solve symbolically (as
you know from HW03).

2 Two-terminal equivalents

We looked in Topic 02 at all the possible combinations
of two components (chosen out of sources and
resistors) in series or parallel. The behaviour of each
component and combination was considered in the u-i
plane, for u and i at the two terminals that connect
to the component or combination of components.

Almost all the combinations simply behaved like a
single component. For example, two resistors are like
another resistor, and a current source in series with
anything else would look just like a current source
when seen from the terminals.

resistor
(passive convention)

voltage source

current source

Thevenin / Norton circuit
(any straight line)

voltage, u

current, i

There were however two special cases that could not
in general be equivalently represented by any single
component. These were the two special sources, called
the Thevenin and Norton source.

The Thevenin source is a series voltage source and
resistor. We previously defined it with a current i
going in to the positive reference direction of the

voltage u. But now we will define the current in the
opposite direction, which is convenient when we are
mainly going to think of it as a source that uses its
voltage to push a current out of it and into a resistor
or other simple component connected between the two
terminals where u is marked.

+
−UT

RT i

+

−

u

The Norton source is a parallel current source and
resistance. The resistance is somtimes expressed as a
conductance instead, GN = 1/RN.

IN RN

i

+

−

u

We have already seen source transformation, whereby
the Thevenin and Norton sources are equivalent to
each other if RN = RT and IN = UT/RT.

The equation relating u and i for a Thevenin source,
with the directions marked on the diagram above, is

u = UT − iRT.

The Norton source is the dual case, where

i = IN − u
1

RT
,

which could instead be written

u = INRN − iRN

to show the equivalence to a Thevenin source. The
following analyses will focus on the Thevenin equi-
valent; we already know from source transformation
(Topic 02) that similar properties can be obtained
from a Norton source.

In general, UT and RT can be positive or negative
or zero; a negative resistance is feasible when there
are dependent sources in the circuit. Thus, the above
equation can describe any straight line “y = mx+ c”.
A Thevenin (or Norton) source described in the u-i
plane then can therefore have any slope and any offset.

For example, if UT = U and RT = 0, the Thevenin
source behaves like an ideal voltage source U . If
instead UT = 0 and RT = R, it behaves as a resistor. If
UT and RT are very large and have the ratio UT

RT
= I,

then it tends to an ideal current source I. Besides these
single components, the Thevenin (or Norton) source
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can fit all the other lines that don’t pass through the
origin and don’t go purely vertical or horizontal.

The big step now is the [Helmholtz-]Thevenin
theorem, or its current-source equivalent that is
sometimes called the Norton theorem. That is, any
linear circuit, when we connect to it by just two
terminals, gives some straight-line relation of u and
i, and therefore a Thevenin or Norton source can be
found that is equivalent to this whole circuit. That is
potentially a very big reduction of complexity, if one
wants to analyse what is happening outside the circuit
that has been replaced.

The necessary conditions are that: the circuit that is
to be replaced with an equivalent must be linear; this
circuit must have only the two terminals by which
we connect to it; and the controlling variables of
dependent sources in this circuit must all be inside
the circuit, not somewhere outside the terminals.

So, how do we find the Thevenin equivalent or Norton
equivalent of a more complicated circuit?

If we accept that a two-terminal circuit will have a
u-i relation that is a straight line, then we just need
to define that line. It should then be easy to find the
correct UT and RT (or IN) values, by fitting them to
the line: u = UT − iRT.

2.1 General equation

One way to find the equivalent parameters is to find
the equation that relates the two quantities u and i at
the terminals. According to Thevenin’s theorem, this
relation should be in the form u = c+ki. We just need
to group all the terms that correspond to the additive
and multiplicative constants c and k, which will tell
us respectively the Thevenin voltage and resistance.

One way of thinking of this is to take the circuit for
which an equivalent is to be made, and connect a
current source i to its terminals. Then find the voltage
between the terminals as a function of this current.
One could alternatively connect a voltage source and
find current as a function of voltage.

The same principle applies experimentally, by setting
the current or voltage to several different values, and
measuring the other quantity that corresponds in each
case; for a circuit where Thevenin’s theorem applies,
this should ideally result in a straight line relation,
whose gradient and slope can be calculated.

The disadvantage of this general method, for circuit
analysis, is that one has to analyse a slighly more
complicated circuit than the original one. The method
in the next section solves for two special points in the
u-i plane, that tend to be easier to calculate.

2.2 Two points: e.g. SC and OC

A straight line can be defined by two numbers: two
points on the line, or one point and the gradient
(slope).

If two points on the u-i line are to be found, it tends
to be easiest to find the points where the line crosses
the axes. That’s because these points correspond to
the short-circuit and open-circuit conditions, in which
it is common that one or more of the components near
the circuit’s terminals can be ignored, thus simplifying
the circuit solution.

Let’s take this simple example, which comes up a
great deal in practical uses of two-terminal equivalent
circuits.

+
−U

R1

R2

i

+

−

u

The three components, connected to two terminals
shown on the right, are the circuit that we want to
replace with an equivalent.

Take the case where the two terminals are left open-
circuited, as shown above; in this case, i = 0, and
we need to find the corresponding voltage u. Due to
the open circuit, the two resistors are truly in series,
so voltage division can be used to find the voltage u
in this case, which is called the circuit’s open-circuit
voltage (sv: tomg̊angsspänning),

uoc =
R2

R1 + R2
U.

Now we can find another point in the u-i plane, where
the terminals are short-circuited, as shown below. In
this case, u = 0, and we need to find the corresponding
current i.

+
−U

R1

R2

i

isc

Due to the short-circuit, the lower resistor can be
ignored. Its top and bottom are at the same potential,
so no current passes through it. The full voltage U is
across the upper resistor, and the resulting current
passes between the terminals. Ohm’s law provides the
circuit’s short-circuit current (sv: kortslutningsström),

isc =
U

R1
.
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If we accept the theorem that any two-terminal linear
circuit must have a straight line in the u-i plane, then
these two points have fully defined the circuit’s u-i
behaviour. The two components of a Thevenin (or
Norton) ‘equivalent source’ now need to be chosen to
give identical short-circuit and open-circuit properties
to the ones calculated for our circuit above.

Given the Thevenin source equation

u = UT − iRT,

the open-circuit voltage is uoc = UT and the short-
circuit current is isc = UT/RT. The Thevenin source
voltage can therefore be directly fillen in as

UT =
UR2

R1 + R2
,

and the Thevenin source resistance is

RT =
UT

isc
=

UR2

R1+R2

U
R1

=
R1R2

R1 + R2
.

These can be written into the equivalent Thevenin
source. To be extra careful, it would be wise to mark
the two terminals, for example as ‘a’ and ‘b’, to ensure
that the Thevenin source has the correct direction of
voltage to match the original circuit; here we will just
assume that the upper and lower terminal have stayed
in the same positions as in the original.

+
−UT = UR2

R1+R2

RT = R1R2

R1+R2 i

+

−

u

If a Norton equivalent had been desired instead,
its components could be determined by source
transformation from the Thevenin equivalent, or
directly from the short-circuit and open-circuit
properties of the circuit that it is equivalent to. The
short-circuit current of a Norton source is the current
of its internal source: isc = IN. The resistance is known
to be the same as the Thevenin source’s resistance,
RN = uoc/isc.

IN = U
R1

RN = R1R2

R1+R2

i

+

−

u

Short-circuit and open-circuit measurements can also
easily be made on some physical circuits, using a
multimeter to measure current in the short-circuit and
voltage across the open-circuit.

Of course, some physical circuits might have
dangerously high open-circuit voltage or short-circuit
current, in which case one has to measure other points
on the u-i line instead. A related problem arises when
analysing ideal circuits: if a circuit behaves as an ideal
source then the u-i line only passes through one axis.
For example, for an ideal voltage source there isn’t a
nice solution for short-circuit current. In such cases
one can fall back to deriving a general equation for
the u-i relation, or can try finding another point that
is not a short-circuit or open-circuit. In the symbolic
case these options are similar, but when dealing with
numbers it might be easiest to look at a particular
point.

2.3 Source-resistance directly

If the circuit that is being replaced with an equivalent
contains no dependent sources, then the equivalent
resistance can be found directly by combining resistors
to a single resistor. That can sometimes be a lot
easier than calculating the short-circuit and open-
circuit conditions and then dividing long expressions
for uoc/isc.

To use this method, start by drawing the circuit with
all the independent sources set to zero, so that they
become short or open circuits as already described in
the Section on superposition. There will then be only
resistors remaining. Find the equivalent resistance
between the two terminals: this is the equivalent
source’s resistance.

For the above example, there is just the one
independent source. Setting it to zero, we replace this
voltage source with a short-circuit.

R1

R2

The equivalent resistance of this circuit, between the
two terminals shown on the right, is easily found by
the rule for parallel resistors: note that R1 and R2 are
now in parallel, when the voltage source is a short-
circuit. The equivalent source’s resistance is therefore

RT ( = RN ) =
R1R2

R1 + R2
,

as was found earlier by the method of uoc/isc.

To find the two-terminal equivalent of a circuit
that has only independent sources and resistors, it
is common to find just the open-circuit voltage if
wanting a Thevenin equivalent, or the short-circuit
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current if wanting a Norton equivalent, and then to
find the equivalent source’s resistance directly.

When there are dependent sources in the circuit, one
cannot just use equivalent resistor rules, but has to
consider forcing a particular voltage or current at the
terminals and calculating the corresponding current
or voltage, respectively. For solving a diagram, this is
seldom any better than just using the short-circuit and
open-circuit method; but, for solving with a simulation
program or by measurement on a real circuit, this
method might be useful.

2.4 The most general

The most general way to find equivalent-circuit
parameters is to find two u,i points that do not have to
be the open-circuit voltage and short-circuit current.
Then calculate the necessary source and resistance
from that line, to make the Thevenin or Norton
equivalent.

This can occasionally be useful if dealing with strange
circuits that have dependent sources that misbehave
when short-circuited or open-circuited.3 If it feels
strange to define some arbitrary current or voltage, try
drawing a current or voltage source connected between
the pair of terminals where you are trying to find the
equivalent. Define the source’s value, which will fix
either i or u, then calculate the other quantity.

In practical situations one often measures the current
and voltage at two terminals of a circuit, for two
different states of loading, e.g. different resistances
connected to the terminals. Then the equivalent
parameters are calculated from these two points. It
would often be impractical to do a test with a real
short-circuit or open-circuit.

3 Maximum power transfer

A common question of interest is what maximum
power can be obtained from some circuit that has
two terminals. From a circuit theory perspective,
this question does not consider such petty details as
whether wires will melt: it is idealised, considering just
the u-i relation that the circuit has.

The circuit behind the two terminals can be modelled
by a Thevenin or Norton equivalent, subject to
the conditions described in the previous Section.
A Thevenin equivalent, with a generic component
connected to its terminals, is shown here. The generic
component is called the load (sv: last). It is common
to assume the load to be a resistor whose value we can
chose; but we start with the more general case where
the load could be a voltage or current source, or even
another circuit with a Thevenin equivalent model!

3One example of a strange circuit is Question 3c, EI1120
exam 2014-03-20, [pdf].

+
−UT

RT i

load

+

−

u

The question is what power can be got from the
Thevenin circuit shown at the left of the terminals,
to this other two-terminal thing that we call the load.

A Thevenin equivalent, with finite positive resistance,
does have a maximum power that it can supply out
of its terminals. Nothing that is connected at the
terminals can extract more power than this. (The
same applies, of course, to a Norton equivalent.)

Consider the behaviour of the Thevenin equivalent in
the u-i plane. From the relation

u = UT − iRT

the power out from the terminals to the load can be
expressed as a function of the current,

P = ui = UTi− i2RT,

which can be seen to be the power provided by the
voltage source UT, minus the power consumed by the
Thevenin resistance RT.

If the load is like an open-circuit, taking no current
from the source, i = 0, then P = 0: there is no power
into or out of the load. In this case, there is no power
in or out of any of the three components.

If the load is like a short-circuit, taking so much
current that there is zero voltage at the terminals,
u = 0, then there is also no power transfer between the
Thevenin equivalent and the load. In this case, all the
power out of the Thevenin equivalent’s voltage source
is then lost in the Thevenin equivalent’s resistance.4

If we force even more current through the circuit, so
that i > isc, by having a ‘load’ that is a voltage or
current source that helps the current to flow, then
power flows into the Thevenin equivalent.

These situations are shown in the following figure,
where the horizontal axis shows the current i. The
vertical axis shows three different variables, that are
plotted against current in the three curves.

4For amusement, notice a difference between the Thevenin
and Norton cases: it is in open-circuit conditions that the
Norton equivalent’s current source is feeding a high power to
the equivalent’s resistance. We only require that the two types
of source behave in the same way at their terminals: the internal
power consumptions are neglected.
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power 
into
load

load current

load voltage

point of
maximum 

power transfer
to the load

special axis: showing
current, voltage, and power 
as functions of the current 

current i

The voltage u decreases from the Thevenin equiva-
lent’s open-circuit value at i = 0, to zero when i = isc.
A line showing the current i is marked as well, but
this is trivial as it is just a plot of i versus i . . . its
purpose is to make clearer how the product of the u
versus i and i versus i lines gives the quadratic curve
of P versus i.

This curve of P , the power delivered to the load, shows
that at the open-circuit and short-circuit conditions
there is zero power transfer between the Thevenin
equivalent and the load, and at currents between these
two points there is a power transfer from the Thevenin
equivalent to the load, with a maximum point in the
middle.

For currents outside this range, the power flow is
into the Thevenin equivalent, which indicates that the
load in such cases cannot be a normal resistor! There
is no limit to how much power can be pushed into
the Thevenin equivalent. The limit on the power out
comes from the Thevenin resistance consuming the
power that the Thevenin voltage-source generates: the
power to the resistance increases quadratically with
current.

How can we find the current needed for maximum
power transfer to the load, without just guessing by
looking at the curve? The maximum point corresponds
to a zero gradient, which means that the derivative
of P versus i curve must be zero at the point
where maximum power is obtained. (We can see from
the curve that this curve has a maximum, not a
minimum.) This derivative is

dP

di
=

d

di

(
UTi− i2RT

)
= UT − 2iRT,

which has its zero point when

i =
UT

2RT
.

Thus, the maximum possible power is obtained from
the Thevenin equivalent when its current half of its
short-circuit. You should also be able to show that
the voltage u at this point is half of the open-circuit
voltage.

3.1 Maximum power to a resistor

All the above was based on a load of “something”
connected to the two terminals of a Thevenin
equivalent; this is the general case of getting maximum
power, where we even consider negative currents and
currents greater than the Thevenin equivalent’s short-
circuit current.

More traditionally, maximum power transfer considers
the load to be just a resistor, as with Rx in the
following circuit. We can vary the resistance to
achieve maximum power transfer to the load, from a
given Thevenin equivalent. In this more limited case,
negative powers are not possible, as a resistor cannot
provide power.

+
−UT

RT i

Rx

+

−

u

When the resistor is varied from zero to a huge
resistance, the situation changes from short-circuit to
open-circuit conditions for the Thevenin equivalent.
This corresponds to the range of currents for which
positive powers were transferred to the load, in the
previous Section. The following figure shows the power
transferred to the load resistor Rx, as a function of
Rx/RT. The numbers shown for power can be assumed
to be ‘arbitrary units’.5

0 1 5 10 15
0

0.05

0.1

0.15

0.2

0.25

R
x
 / R

T

P

This was calculated by

P = Rxi
2 = Rx

(
UT

RT + Rx

)2

.

In the previous Section, the maximum power transfer
was found to occur when the current to the load was

5Assume them arbitrary for simplicity . . . but in fact, the
numbers plotted here are relative to the product uocisc which
is equivalent to U2

T/RT, which has the physical meaning that
it’s the power that would go from the Thevenin equivalent’s
voltage source to its resistor if you short-circuit the Thevenin
equivalent. At “maximum power transfer” conditions, only half
of this power comes from the source, as the current is half of
the short-circuit current; then half of this gets wasted in the
Thevenin resistance; so only a quarter gets to the load.
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i = isc
2 = UT

2RT
. When the load is a resistor, this current

will occur when the total circuit resistance is twice
the Thevenin resistance; thus, the maximum power
criterion is that

Rx = RT.

This is the way that the maximum power transfer
theorem is usually expressed. Deriving it directly for
Rx involves a rather uglier derivative, and does not
show the generality beyond resistive loads.

3.2 Who cares?

The interest in maximum power arises in many cases.

In electronic design, one might want to choose a load
that will extract the maximum possible signal power
from a source of known Thevenin resistance. Or one
might want to know the worst case of how much power
a given part of a circuit would be able to put into a
variable resistor, to check that the resistor won’t get
burned.

In electric power engineering there is a wide use of
Thevenin equivalents to model the rest of the power
system that is hidden behind the 230 V socket outlet,
or behind the 400 kV busbars in a substation. In some
highly stressed cases in the high-voltage system, the
loading can approach the maximum power transfer
conditions, and some types of load then try to take
even more current, leading to “voltage collapse”.

3.3 Special cases

A load resistance can be chosen with a value that
maximises the power in this resistance for a given
resistance in the source. Making Rx too high will
make the current very low, so P = ui is low. But
making Rx too low will make the voltage very low, also
making P = ui be low. Somewhere in between these
extremes is the highest product of the output voltage
and current, P = ui. The source’s resistance causes
the terminal voltage to decrease when more current
comes out in the direction that can give power to the
load.

The other way round is meaningless: if the task is
to maximise the power in a given load resistor by
choosing the source parameters, then the best case
is to have a zero resistance of the source, RT = 0. If
the source voltage UT can be chosen, it should be as
big as possible.

Another case where there isn’t really a well defined
maximum power is when it is the load that can
be chosen, but the source is a pure voltage source
or current source. A Thevenin source with zero
resistance is an ideal voltage source. It will hold its
constant voltage UT across any load resistor Rx that
is connected to it. In this case, we see the power
in the load, as a function of the load resistance, is
Px = U2

T/Rx . . . which just gets bigger and bigger as
Rx → 0. (In its dual, a Norton source with current IN
and infinite internal resistance will supply more and

more power to a load Rx as the value Rx →∞, since
in this case Px = I2NRx.)

See the Extra section for some subtleties of negative
source resistance: we have assumed in the above that
the source and load have positive resistance!
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4 — Extra —

4.1 Links

Some interesting history of the equivalent cir-
cuits is found here, for [Voltage-source] and
[Current-source].

There is a far-from-complete page on Wikipedia,
summarising and linking to [CircuitTheorems]. The
[MaxPower] theorem is presented in the more classic
textbook way on Wikipedia, by differentiating with
respect to load resistance, which provides a rather less
elegant working than the method we introduced earlier
in this Chapter.

The following is rather advanced. It’s an interesting
paper about ignoring the usual rules given by
circuit courses on how to treat dependent sources
when using superposition, [SuperposDepSrc]. The
principle seems sound to me. It appears that for some
of his examples, this alternative method (of treating
dependent sources in the same way as independent
sources, but with a value that has to be matched
with the requirements of a controlling variable) may
actually help the solution. We can see that the
examples are rather typical small-signal models of
transistor circuits. What makes it a particularly
interesting paper is its history of being rejected from
publication in two journals, in one case for the silly
reason that it couldn’t solve an undefined problem
with series current sources!

More about the [Wye-Delta] transform (mentioned
in Section 4.3) and its more general form of
the [Star-Polygon] transform, can be seen on
Wikipedia.

4.2 Negative resistance

A resistor is a basic component in circuit theory.
When we start dealing with two-pole equivalents, of
Thevenin or Norton type, we talk of the equivalent
source’s resistance. If the circuit that the equivalent
is modelling contains just independent sources and
resistors, then the source resistance RT or RN will
always be positive, just like the resistors that we’re
familiar with.

However, when dependent sources are included, it is
possible to have circuits whose equivalent resistance
is negative. This is not surprising when one considers
a very simple case of a dependent source where
the controlling variable is that same source’s other
variable. For example, take a current-controlled
voltage source, and define its controlling variable to
be the current through this same source.

+

− hi

i

+

−

u

+

− hi

i+

−

u

Depending on the relative direction of the current and
voltage definitions, this could look like a positive or
negative resistance. In the example shown at the left,
the gain h is equivalent to a resistance: the relation of
i and u is u = hi. By making this value negative, or by
swapping the current definition as shown on the right,
the component looks like a negative resistor, such that
u = −hi when the current is defined into the positive
side of the voltage reference direction.

Looking at the equations for Ohm’s law or power
dissipation, the nature of a negative resistance is that:

1. Its current is proportional to the voltage across
it, but always in the direction that flows from low
to high potential; and

2. It therefore never absorbs power, but can only
produce power.

I have said that dependent sources and negative
resistance are mainly a matter for people dealing with
“small signal models” of electronic circuits. I don’t
retract that claim, but it’s only “mainly”. There are
examples relevant to electric power engineering where
sources can have negative resistance, due to some form
of feedback.

More than a hundred years ago, dc (likström)
generators were being used to supply loads such as
lighting. A magnetic field is needed, to allow the
generator’s rotation to induce a voltage in the moving
conductors. This field could be produced by passing
a current through a set of thin copper “field coils”.
The current was supplied from a voltage source, with
a variable resistance in series to allow the desired field
current to be set and thus the desired output voltage
to be generated. The output voltage could even be
used as the voltage source for the field current.

However, the voltage supplied to the load will fall
when the load draws more current, such as when more
lamps are connected. That is like a Thevenin source
with a positive resistance. The physical reason is that
there is resistance in the wires in the generator, and
in the wires between the generator and load; there is
also an effect of the load current producing a magnetic
field that reduces the field in the generator.

To help maintain a steady voltage at the load,
engineers made the wires carrying the load current
out of the generator wrap a few times around the same
pieces of iron where the main field coils were producing
magnetic field; this was done in the direction so that
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higher load current would assist the field coils by
increasing the magnetic field, and therefore would
increase the voltage generated! By careful choice of the
number of turns of wire in these coils, the generator
could be made to have a quite constant voltage at
its terminals, in spite of different load currents: that
is like a near-zero Thevenin resistance. Indeed, by
even more turns of the load current around the field
coils, the generator could be made have an increasing
voltage with increasing load. This was sometimes
desired, so that the generator’s increase would balance
the voltage drop in the line connecting the load to
the generator: then the voltage near the loads would
remain quite steady. In this case, the generator has
a negative resistance, since its output voltage rises
when supply more current into a normal load that
has positive resistance.

That is called line-drop compensation. The generator’s
negative resistance can be seen as cancelling the line’s
positive resistance. It is still done in some modern
power distribution systems, but nowadays it is done by
controlling variable transformers, usually by switching
their turns ratio in discrete steps. With ac, the
situation is a little more complicated, too.

Still, the principle is that a source can appear to have
negative resistance. This is usually only valid within a
narrow range of voltage or current, e.g. ±10% of the
normal value, due to the design of the equipment.

4.2.1 Max-power with negative resistance

To use the maximum (delivered) power theorem
sensibly, we should really add the condition that the
source’s resistance RT is positive. Then it makes sense
to say that the maximum possible power delivered
by the Thevenin or Norton equivalent source happens
when the load behaves as a positive resistance equal
to RT. If RT and Rx are both negative, the maximum
power point is still true, but in the sense that it is a
maximum of the power out of Rx.

In the main Section on equivalent sources, we saw that
there was no meaning to a maximum power when the
source is an ideal voltage source or current source. The
idea of a finite maximum value of power makes sense
when the source limits the available output power by
having a finite resistance. This source resistance, in a
Thevenin source, causes the output voltage to decrease
when there is an increase in the current coming out in
the direction that can provide power from the source
UT.

If a Thevenin source has negative resistance, then
other strange things can happen. If we just follow the
rule of “Rx = RT for maximum power”, this tells us
that the load resistance Rx should also be negative
for maximum power. But if we plot the function of
power into the load versus load resistance, or versus
current, we see that this choice of load resistance
gives the maximum value of power out from the
load into the source! The maximum power theorem

therefore still works when both resistances – source
and load – are negative, but the power in question is
negative, meaning that it is generated by Rx. After
all, a negative resistor cannot absorb power, just as a
positive resistor cannot generate power.

However, if we allow the source and load resistances
to have opposite signs, more interesting things can
happen! Choosing Rx very close to −RT will result in
the complete circuit loop resistance, RT + Rx, being
very close to zero: the current around the loop is
therefore very high. By the relation for load power
P = i2Rx, this results in a very high power to the load:
the equivalent source’s negative resistance is supplying
power to the positive load resistance. Whether the
equivalent source’s voltage source is supplying or
consuming power depends on the direction of current,
which depends on which of the two resistances has
the higher absolute value. So in this case of source
and load resistors with opposite sign, there’s again no
real meaning to a maximum power: you can have as
much as you want!

Looking graphically, one can draw the lines in the u-i
plane to represent a source with negative resistance,
and a positive load-resistor connected to it. It’s
convenient to draw the current out of the source and in
to the load, so that the current and voltage reference
directions are the same for the equivalent source and
the load: then the point where the two lines meet in
the u-i plane is the solution of the circuit. In this
condition of a positive and negative resistance of quite
similar magnitude, the lines are nearly parallel, but
the Thevenin voltage gives a displacement between
the lines. The crossing point of the lines, which is
the solution of the circuit for u and i, will therefore
occur at a very large voltage and current. This is true
whether the load has a positive and the source has
a negative resistance, or vice versa. The difference is
only in the direction of power flow: remember that
a positive resistor can only consume, and a negative
resistor can only produce power. On the other hand,
if both resistances are, say, positive, then the two
lines have very different slopes, one negative and one
positive, since we defined the current in the loop to
go into the voltage positive reference for the load and
out of the voltage positive reference for the equivalent
source. There is then a solution at a moderate value of
voltage and current, and it cannot be changed much
without making the resistances very low. From the
above, we note again that there is only a meaning
to the “maximum power” when the source and load
resistance are constrained to have the same sign.

If you’re puzzled about “resistances” producing power,
just remember that these resistances are simply a
voltage/current relation created by more complex
devices that have their own power sources; a real
resistor made of a chunk of metal or carbon, etc, only
has positive resistance.
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4.3 Other Circuit Theorems

The following will not be required for solutions in
this course. They are mentioned for “the interested
reader”, as just a sample of the various theorems that
people have thought it worthwhile to publish: the
usefulness is sometimes not obvious unless one has
worked with the specific sorts of design or analysis
that the theorem was developed for.

4.3.1 Tellegen’s theorem

For each branch of a circuit, take the product of
voltage across the branch and the current through
it, using the same relation of the directions for
each branch (for example that the current reference
goes into the positive voltage reference, i.e. ‘passive
convention’). The sum of all these values is zero. This
is probably “more useful than it sounds”. It may seem
obvious, thinking in terms of “power generated equals
power consumed”. But its generality is claimed to be
surprisingly useful. It is helpful in showing some other
theorems.

4.3.2 Reciprocity

In general, reciprocity means that if we know how an
input at one point affects a second point, then we also
know how an input at that second point would affect
the first point.

Reciprocity is found in fields and circuits. In a circuit
example, if applying a voltage u across branch 1
results in current i in branch 2 (somewhere in the
same circuit), then current i in branch 1 will result
in voltage u in branch 2. If there are other sources in
the circuit, then the current and voltage mentioned
above should be seen as changes (i.e. as superposition
of the other sources and the thing we’re adding).

This reciprocity is true for the circuits we’ve seen
as long as there are not dependent sources. If
there are dependent sources, we could easily make
a circuit where there is only a one-directional
causal relation between two parts, in which case
there is very obviously no chance of the ‘backward’
relation happening: think of two separate loops, where
one contains the controlling variable and the other
contains the source that it controls.

4.3.3 Substitution

Consider a part of a circuit: e.g. a single component
or a more complicated two-terminal ‘chunk’ of the
circuit. The solution of the complete circuit tells us
the current through and voltage across this part. If the
part is replaced by a voltage or current source whose
value is that voltage or current that the part had in the
circuit, then For example, if one knows there is voltage
u across an R ohm resistor in the circuit solution, then
this resistor can be replaced by a voltage source u,
or by a current source u/R, and all the currents and
voltages in the circuit will remain the same as before.

Of course, this does not mean that one can then
change another component to some arbitrary value.
It has to be a specially chosen value, that fixes one
of the two ‘degrees of freedom’ (the quantities voltage
and current) to the same as in the original case. And
it’s only valid for that particular case of the rest of
the circuit: if one does a valid substitution but then
changes something elsewhere in the circuit, the value
of the substituted component would have to change in
order to give the voltage and current that the original
component would have in that new situation. Note the
big difference compared to, for example, a Thevenin
equivalent, which is a genuine equivalent for all cases
of what we connect to it.

To try to justify the substitution theorem, recall that
linear two-terminal components or circuits all give
straight lines in the u, i plane, at varying gradients
and offsets: this includes the main components – U ,
I, R – as well as the Thevenin or Norton sources. For
any interface between two parts of the circuit, such as
between a two-terminal component and the rest of a
circuit, the solution to the circuit is the point where
the lines for these two parts intersect.6 As long as a
substituted component has a line that passes through
the same solution point as the original component, it
will give the same solution. However, if other parts in
the circuit are changed, then the line describing these
other parts changes, and the new intersection point
(solution) will be different depending on what type of
component we used for the substitution; this shows
how the substitution is only valid for the specific case.

4.3.4 Star-Polygon or Nodal-Mesh (Rosen’s)

Given a set of N nodes, and one other node that is
connected to each of the N by an arbitrary impedance
(i.e. it can be a different impedance for each node),
and equivalent behaviour is given by a set of N nodes
in which every node has a direct connection to every
other node (a polygon round the outside, then lots of
other connections between, as N becomes large!).

4.3.5 Star-Delta transform

The star-delta (Y-∆) transformation is the simplest
case of the node-mesh transformation. It has just three
nodes that are ‘seen’, and a hidden middle node in
the star version of the circuit. It converts between two
different ways of connecting three resistors between
three terminals.

6This is assuming that the lines can intersect, so they are
not parallel. It also assumes current and voltage directions have
been suitably defined for both lines. In a nonlinear circuit there
could be more than one solution. . . but we don’t consider that
case.

11



Ra

a

Rbb

R
c

c

R
3

a

R
1

b

R2

c

These two connections can be made equivalent, when
seen from the terminals a,b,c, as long as component
values fit the following conditions.

The required condition for the Y resistance connected
to a particular terminal is that the values of the two
∆ resistances joining to that terminal are multiplied
then divided by the sum of all the ∆ resistances.
For example, Ra = R1R3

R1+R2+R3
. Thus, if all the ∆

resistances are the same, then all the Y resistances
are 1/3 of this value.

For the ∆ resistance connected between two terminals,
the Y resistance that is not connected to either of these
terminals is divided into the sum of products of Y
pairs. For example, R1 = RaRb+RbRc+RcRa

Rc
. If all the

Y resistances are the same, then all the ∆ resistances
are 3 times their value.

4.3.6 Source-shift (Blakesley’s)

Given a black-box with N terminals, the effect of a
series voltage source in one of these terminals is the
same as of an oppositely directed source on every one
of the other terminals.

In its dual, with current sources, a current source
between two nodes can be replaced by a chain
of similar current sources in a path between the
same nodes but looping over other nodes: at each
intermediate node, one source takes out all that the
other put in, so there is no change to that intermediate
node.

4.3.7 Parallel Generator (Millman’s)

In the most general form, Millman’s theorem is about
calculating the potential at a node where several
impedance branches join, where the other end of each
branch is at a known potential.

A more specific case is parallel branches, i.e. finding
the voltage across the whole set, when some may be
sources with impedance, and some just impedances.
An example is three-phase sources and impedances,
such as for finding the potential of the star-point of a
non-grounded Y-connected load.

Probably the most famous context of Millman’s
theorem, largely synonymous in power engineering,
is the “parallel generator” case, where multiple
Thevenin-type sources are connected in parallel to a
‘bus’ (node), in parallel also with a load impedance.
This is clearly useful when multiple power sources (e.g.
generators or batteries), are connected in parallel to

feed a load. Millman’s theorem says that the voltage
between the terminals is the product of the sum of
short-circuit currents of the separate sources, and the
total parallel impedance (resistance, in the dc case) of
these sources and the load.

The relation can be seen easily from the Norton
equivalent of the whole circuit. Between the terminals,
the circuit’s short-circuit current is clearly the
sum of individual short-circuit currents, as all the
sources connect between these two nodes. The Norton
impedance ZN (RN in the dc case) is the sum of all
the resistances of the sources and the load. To see
this, consider the method of setting all independent
sources to zero, to find the equivalent impedance. The
Norton source’s open-circuit voltage is known to be
Uoc = INZN.
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