
Electric Circuit Analysis, KTH EI1120
N. Taylor

Topic 06: More components

This is the start of Section B of the course, where we
study circuits whose quantities change with time. The
name Transients includes the most general cases of
linear circuits, where sources may vary with arbitrary
time-functions. In this course, however, we restrict the
examinable part of Transients to situations where only
first-order differential equations with constant forcing
are needed.

Topic 06 introduces several new components and
concepts, including time (!), the “unit step” function,
switches, diodes, and capacitors and inductors.

The most important new components are the
capacitors and inductors. These will also be seen
throughout the subject of ac circuits, in Section C
of the course. They are the way in which circuit
models can include the effects of electric and magnetic
fields in physical circuits. When quick changes happen
to voltages or currents in a circuit, then even small
capacitances and inductances may have significant
effect on how the circuit behaves.

In a capacitor or inductor, the relation between vol-
tage and current depends on time. Both components
store energy: the voltage on a capacitor, and the
current in an inductor, depend on how much energy
is stored. The amount of energy stored depends on
what values the other circuit variable has had during
all the earlier time. This leads to circuits where the
variables can depend not only on the components and
connections now but also on what happened in the
past. Such a circuit is a dynamic system. Differential
equations are then used to describe how the circuit
behaves in time; this will be considered as the final
topic in ‘Transients’.

The step function and time-dependent switches are
only introduced as a way to produce changes in a
circuit, so that the dynamic behaviour of capacitors
and inductors can be studied.

The diode is presented just as a light introduction,
using ideal and more detailed models. It belongs really
in nonlinear circuit analysis, outside the scope of this
course; it is a subset of the scope of analog electronics.
The reasons for including it at all here are that it
is related to switches, and the course’s final lab can
be better understood with some slight knowledge of
diodes.

In this topic we also start with the concept of
equilibrium (sv: jämviktsläge) in circuits that contain
sources, resistors, capacitors and inductors. This
is studied more thoroughly next time, along with
continuity (sv: kontinuitet). The principles of equili-
brium and continuity are useful in their own right,
since equilibria and sudden changes are frequently of
practical interest. They are also a common way to find

initial conditions (sv:begynnelsevärde) for differential
equations in a dynamic system, which is what we will
need for Topic 08 at the end of the Transients Section
of the course.

1 Time-dependence

The topics up to now have not mentioned time. We
have had components — U , I, R — connected in a
circuit, and found solutions that satisfy the constraints
imposed by the components (Ohm’s law, or fixed
voltage or current) and their connections (KCL,
KVL). At any point in time, all these constraints must
be satisfied.

One can imagine a case where the circuit is time-
dependent, so that a voltage source has a value that is
a function of time U(t), a resistor is R(t), a dependent
source has gain k(t), and switches keep reconfiguring
the circuit’s connections. But we can still use our
existing methods to find the voltages and currents
at any given time such as ‘t = t1’, by using the
values that all the components have at that time,
such as U(t1), and then performing our familiar dc
calculations with those values. This type of circuit is
static, not dynamic. It does not have memory of the
past; its solution now depends only on the values of
its components now.

Before changing this by including capacitors and
inductors in the circuits, we will look at the two ways
in which (in this course) we can introduce changes
to a circuit. The “unit step” allows us to change a
component’s value at a particular time. Switches allow
a circuit’s connectivity to be changed, by joining or
separating nodes.

1.1 Unit step

The unit step (sv: enhetssteg) is a function of one
variable. It is defined as being 0 if this variable is < 0,
and 1 if the variable is ≥ 0; if we’re practical people
we probably don’t care what it is when the variable is
exactly zero.

We will find this function useful with time as its
input, to let us make components change their value
suddenly. Here I will call the unit step function 1(t).1
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1We could write the unit step as u(t), but that would look
like voltage. Or u(t) to distinguish the u as not being a variable
. . . still perhaps too much like voltage. Or H(t) (“Heaviside
step”) . . . but we will be using H for something else later!
Choosing 1(t) (the number one!) is quite distinctive, as we
seldom use numeric values in this course; we will use a bold
symbol 1(t) for extra clarity.



To cause a voltage source to double its value at time
t1, we could write its value in the following way.

+−

Uo · (1 + 1(t−t1))

Multiple steps can be added. Let us try to produce
a square pulse that goes from zero to U at time −T ,
then back to zero at time +T . The following figure
shows this with U = 4 and T = 2.
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That function can be made from two unit steps, U ·
(1(t+T )−1(t−T )). The positive step happens at time
t = −T , then a negative step happens at t = T , which
will cancel the first step for times t > T . The two parts
are shown in the following figures, with U ·1(t+T ) on
the left and −U · 1(t−T ) on the right.
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1.2 Switches

A switch can be a short-circuit or an open-circuit,
depending on the time. The symbols that we use are
shown below. On the left is a “closing switch”, which
changes from an open circuit to a short-circuit at time
tx. On the right is an “opening switch” which changes
from short to open circuit at time 0.

t = tx t = 0

The switch allows us to make the structure of a circuit
change with time. Consider the following circuit,
where both switches change at t = 0. Note how we
often choose to define as “zero” the time when a
particular change happens.

+
−U

t = 0

I

R1

t = 0 R2

+

−

u(t)

At times t < 0, this circuit is the following,

+
−U I

R1

R2

+

−

u{t<0}

so we see that when t < 0 the marked voltage is
u{t<0} = 0, and a current of I flows in resistor R1,
and no current flows in the voltage source.

At times t > 0 the switches change the circuit to the
following,

+
−U I

R1

R2

+

−

u{t>0}

so we see that the marked voltage is u{t>0} = U R2

R1+R2
,

and a current of U
R1+R2

flows in resistor R1, and a

current U
R1+R2

− I flows in the voltage source.

This may not seem a very difficult or meaningful thing
to do with circuits: its main relevance is when the
circuits also contain capacitors and inductors, which
take time to adjust to changed conditions in the
circuit.

1.3 Times before and after a change

A step function or switching event happens instanta-
neously, in our idealised circuits. When we consider
calculations with equilibria and continuity, it will be
useful to consider the times just very very slightly
before and after the event.

If a change happens at time t = 0, we define the
concept of t = 0− as the time just before the change,
and t = 0+ as the time just after. These correspond
to the old and the new conditions in the circuit.

(The change could instead happen at a time with a
name like t1, in which case we could use t−1 and t+1 ;
but we often choose to define the time-point of the
change as the convenient t = 0, when studying a single
change.)

The difference in time between 0− and 0+ is very
small, so no significant change can happen to the
energies stored in capacitors and inductors, unless
there are very unrealistically large powers.
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2 Diode

Diodes are NOT included after VT2015.
This Section is for interest only.

An ideal diode is like an ideal one-way valve for
fluid flow: it allows the current to pass easily in one
direction, but does not allow it in the other.

The following symbols are commonly used for diodes:
current can flow in the direction suggested by the
triangle arrow, i.e. left to right in these cases. The
filled symbol on the left is common to denote an ideal
diode, and the unfilled symbol an nonideal diode.

The ideal diode can be modelled as being either a short
circuit or open circuit. The same is true for an ideal
switch: but what is special about the diode is that its
state — open-circuit or short-circuit – is determined
by the current or voltage at its terminals.

+ −
u

i

If a current passes in the positive direction (following
the diode-symbol’s arrow), then the diode behaves as
a short-circuit,

i > 0 −→ u = 0,

but if a negative voltage is applied, the diode behaves
as an open circuit,

u < 0 −→ i = 0.

In other words, if we make the current ‘try’ to go in the
forward direction (forward bias), the diode becomes a
short-circuit; but in the other direction (reverse bias)
the diode will become an open circuit and let us apply
a negative voltage u without any current flowing.

2.1 Inideal diode

A real semiconductor diode is much better approxi-
mated by the diode equation (which you don’t need
to try to memorise!),

i = Is

(
eu/VT − 1

)
,

where Is and VT are quantities that depend on the
diode and temperature.

This equation shows approximately the key features
of an ideal diode. The saturation current Is is many
orders of magnitude smaller than the current that a
practical diode is capable of carrying in the forward
direction; therefore, the reverse current, when negative
voltage is applied, is ‘nearly zero’. The exponential
term makes the forward current able to reach even

very large values for small changes in the voltage, so
it approximates a short circuit.

However, the above equation also shows some of the
ways in which an ideal and nonideal diode differ.
Although small, some current Is can flow even in the
reverse direction. The current in the forward direction
is small if u � VT, but rapidly becomes large when
u � VT. Thus, some significant voltage is needed to
get any significant current. When designing circuits
with diodes, it is normal to assume that there will be
about 0.6 V in the forward direction on a silicon-based
diode if that diode is carrying any significant fraction
of its rated current.

By adding three normal linear components to an ideal
diode, as shown in the following diagram, one can get
a relation of u and i that is much closer to the diode
equation than an ideal diode is.

R

+ −

UD

Rl

The series voltage source models the forward voltage
drop, such as the 0.6 V to 0.7 V that is normal for
a silicon diode. The series resistance models actual
resistance in the construction of the diode, as well
as some of the the slight slope of the u-i curve
during forward conduction. (Note that a real diode
doesn’t exactly follow the diode equation: amongst
other things, it contains some resistance.) The parallel
resistance allows some reverse current to flow; this is
proportional to the reverse voltage, which does not fit
well with the diode equation . . . but at least there is
some reverse current!

As with opamp models, you will see that there are
several distinct differences between the ideal and
nonideal models. There are therefore many ways of
modelling an nonideal diode. None of the models is
a perfect description of the real component. Some
go even further than the diode equation, considering
that the real diode doesn’t behave like just an ideal
semiconductor junction. Some are just an ideal diode
with one other component. The best choice of model
for a real-world problem depends on the diode and on
how it will be used.

2.2 Circuit solution with a diode

To solve a circuit of linear components and an ideal
diode, one only needs to decide whether the diode is
a short-circuit or open circuit. Then replace the diode
with that component, and solve.

If there are multiple sources, it might not be obvious
which direction the current is ‘trying’ to go. One
approach is to guess: replace the diode with a short
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or open circuit, then solve the circuit and see if
the guess fits with the solution. For example, if you
guess open-circuit, but then find a voltage in the
forward direction, you know the diode would actually
be forward biased and therefore a short-circuit. On
the other hand, if you guess open-circuit then find a
reverse voltage, you know you were right, and your
solution is the correct one for the circuit.

What condition is there on the component values R1,
U and I in the following circuit, in order for the diode
to be forward biased (behaving as a short-circuit)?

+
−U

R1

−

+

u

i

I

Another method, in a circuit with just one diode, is to
model the rest of a circuit as a two-terminal equivalent
such as a Thevenin source. Then, if numeric values
are known, it is immediately clear which direction the
current would ‘try’ to go in the diode, and therefore
whether the diode is conducting or not.

3 Reactive components

3.1 Circuit definitions

The capacitor (sv: kondensator) that we consider is an
idealised circuit model — as usual! It is a component
with two terminals, drawn with the following symbol,
where C denotes the capacitance (sv: kapacitans).

C

+ −
u(t)

i(t)

The relation between its current and voltage is

i(t) = C
du(t)

dt
. (1)

In this symbol and equation, the current and voltage
are explicitly shown as time-functions. Later we might
get more sloppy (slarvig) and not bother always
writing this “(t)”.

The ideal inductor (sv: spole) is also a component with
two terminals, drawn with the following symbol, where
L denotes the inductance (sv: induktans).

L

+ −
u(t)

i(t)

The relation between its current and voltage is

u(t) = L
di(t)

dt
. (2)

These components have a similarity to a resistor, in
that the component value does not specify a particular
voltage or current, but specifies a relation between
these variables,

u(t) = R i(t).

The important difference compared to the resistor is
that these relations now include a time-derivative.

Notice an important detail about the above diagrams
and equations for u(t) and i(t) in a capacitor and
inductor: the current’s reference direction was defined
into the positive side of the voltage’s reference
direction. For a resistor, this definition results in
a positive resistance, R = u/i. For a capacitor or
inductor this also gives positive equations such as (1)
and (2). If one of the definition directions had been
swapped, then a negative sign would be needed in the
equations. You should be able to check the sign by
thinking physically, without just having to remember
a rule about arrows. The potential of one terminal of
a capacitor will rise, du

dt > 0, if more positive charge is
put on it. The voltage induced in an inductor will be
in the direction to “oppose the change of current that
causes it” (Lenz’s law), so an increasing magnitude of
current will result in a higher potential on the terminal
where that current goes in to the inductor.

Swapping which circuit quantity is expressed in terms
of the other, we could write

u(t) = u(t0) +
1

C

∫ t

t0

i(x) dx (3)

i(t) = i(t0) +
1

L

∫ t

t0

u(x) dx (4)

i(t) =
1

R
u(t),

where t0 is some chosen time at which we know the
value of the sought quantity, and x is a help-variable
for integrating.

The time-derivatives describing the capacitor and
inductor have been integrated out. The maths tells
us to add an integration constant, such as u(t0) for
the capacitor. Physical reasoning explains that (1) and
(2) only tell us how much the quantities have been
changing over some period; the actual value at a point
in that period is also needed in order for (3) and (4)
to define exactly what values the capacitor’s voltage
or inductor’s current have.

The equations (3) and (4) clearly show that the
capacitor voltage and inductor current depend on the
past values of capacitor current and inductor voltage.
In contrast, the equations (1) and (2) show that
capacitor current and inductor voltage are determined
only by the present rates of change of capacitor voltage
and inductor current.
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Sometimes capacitors and inductors are called reactive
components. They cannot just continue supplying
power for ever, in the way that sources can. But they
are not just passive: they can supply energy, if that
energy was earlier supplied to them. In this way, these
components “react” by being able to accept and return
energy.

3.2 Physical details

The capacitor and inductor symbols in a circuit
diagram represent electric and magnetic fields in a
physical circuit. Electric fields in a physical circuit
correspond to a build-up of charge “at the ends”
of the field; a change in this charge is a current
in the capacitor model. Magnetic fields exist around
currents, and a change in the magnetic field causes
a voltage in the loop that the current flows in; this
relation is described by the inductor model. Please
see the ‘Extra’ section in this Chapter for more about
the physical nature of capacitors and inductors.

These effects that we can represent with capacitors
and inductors in a circuit diagram may be
intentional: some physical components are designed
to have capacitance and inductance . . . those
are the capacitor and inductor. The effects may
instead be unintentional, and perhaps undesirable,
as consequences of the construction of a physical
circuit: voltages between different points in space,
and currents around loops, have some extent of
electric and magnetic field associated with them. It is
particularly when voltages and currents are changing
quickly that the effects of capacitance and inductance
become more significant; this is implied by the time-
derivative terms in the equations (1) and (2).

Reasons for wanting capacitance and inductance in
a circuit include energy storage, and ‘smoothing’
of circuit quantities so that they don’t change
very rapidly. In Section C of the course we see
more general cases of filters that achieve special
frequency-dependent properties. Reasons for not
wanting capacitance and inductance in a circuit are
generally that they reduce the speed at which changes
can happen, and that circuits with both types of
component can result in oscillation of energy between
the two. The speeds at which digital circuits switch
have increased a lot in the recent decades: a significant
limitation has been the capacitances and inductances
between the signal conductors and to ground.

3.3 Energy

The stored energy W in a capacitor depends on its
voltage,

W =
1

2
Cu2 (5)

For the inductor, the same principle applies, with dual
variables (swap voltage with current, and capacitance

with inductance):

W =
1

2
Li2 (6)

These equations have an appearance that could
remind us of kinetic energy. The underlying principle
is similar: the more of “something” (charge, or
momentum) we put in, the more energy it takes to
put in any more.

Consider charging a capacitor. When we start to put
in charge, there is no voltage, so we do not need to give
energy to the charge to put it there. As the charge on
the capacitor increases, the voltage on the capacitor
increases, so each new bit of charge needs more energy
to force it into the capacitor. In this way, doubling
the voltage means doubling the charge (q = Cu) and
doubling the average voltage that the charge had to
be given to go into the capacitor: hence four times the
energy, as can be seen from the u2 term.

The expression for energy (5) can be found by
integrating the energy involved in charging the
capacitor from zero to u. When the charge on the
capacitor C is q, the capacitor’s voltage is q/C. The
energy needed in order to put a small extra charge dq
on the capacitor is then q

C dq. Integrating this from
zero up to the voltage u, we get

W =

∫ uC

0

q

C
dq,

which is

W =
1

2

q2

C

∣∣∣∣uC
q=0

and therefore

W =
1

2
Cu2.

A similar reasoning applies to the inductor.
Have a go!
Invoking the principle of duality is sort-of cheating,
although it’s actually a very sensible choice of method.

3.4 Combining similar components

It is useful to be able to combine series or parallel
resistors to simplify a circuit. The same idea can be
used for inductors for capacitors.

Resistance is R = u/i, and inductance is L = u/di
dt .

The only difference is the time derivative. In order
to find an equivalent for series or parallel inductors,
the same reasoning can be used as for series or parallel
resistors. The only difference is to have “di

dt” instead of
“i” throughout the proof. The result is therefore that
series inductors have their inductances added to give
an equivalent inductor, and parallel inductors have to
be added in reciprocal.

L1 L2

←→
L1 + L2
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L1

L2

←→

L1L2

L1 + L2

Capacitance, however, is the other way up: current
is on the top in C = i/du

dt , which is similar
to conductance G = i/u. Equivalent capacitance
therefore follows the same rules as conductance, where
the parallel case is simple addition, and the series case
requires reciprocals.

C1 C2

←→

C1C2

C1 + C2

C1

C2

←→

C1 + C2

This is still quite conceptually easy, if one thinks of
capacitance as “coulombs per volt”: parallel capacitors
will all see the same voltage, and will all store their
charge Cu, so the total charge is larger than for just
one of the capacitors.

3.5 Inidealities of Capacitors and Inductors

Differences between our ideal components and real
things are not a major part of this course, even though
they can be of great importance in practice.

But it can be pointed out here that devices designed
to be capacitors and inductors often include a material
that increases the capacitance or inductance for a
given size of the component by having permittivity
(ε) or permeability (µ) considerably greater than the
values for air or vacuum. The presence of materials
introduces such features as time-delays, temperature-
dependence and energy losses.

Apart from this, any physical construction of capacitor
or inductor will have some capacitance (there are
points that can have different potentials), some
inductance (currents produce magnetic fields), and
some resistance (charges are moving through a
material such as a metal). It is well known by people
working in high frequency electronics that one has
to be careful about the design of components. For
example, a device that appears to be “just” a capacitor
at low frequencies like 50 Hz or 1 kHz may look like
basically an inductor and resistor at 10 GHz. This is
true even for a component designed to be a resistor.
Special care is needed when designing a component
that will behave, for example, quite similarly to an
ideal capacitor even over a wide range of frequencies.

4 Equilibrium and Continuity

This part is mainly for Topic 07. Here we just
introduce the idea of equilibrium.

What is special about the capacitor and inductor
is that as well as their value (which describes their
capacitance or inductance), they can have a stored
energy. This influences the circuit, as the energy
corresponds to voltage or current (respectively). In
this way the reactive components have two important
properties to consider when doing circuit calculations:
the value, and the amount of stored energy.

4.1 Equilibrium calculations

Consider a circuit with sources, resistors, capacitors
and inductors, where all sources and other components
have constant values, and the circuit has been in this
situation for “a very long time”. We then assume
that all the currents and voltages will have reached
constant, equilibrium (sv: jämvikt) values.

This assumption is clearly not a certainty in the
world of idealised circuits: for example, an inductor
connected in parallel with a constant voltage source
will have a current that just keeps changing forever,
di(t)
dt = U/L = constant! Even worse, an inductor

or capacitor might be connected to a circuit that
behaves as a Thevenin or Norton source with negative
resistance: this could result in a change, di

dt or du
dt , that

keeps getting bigger with time.

But such cases are really just amusements found
in idealised circuits. In practical cases there will be
some resistance between and within the components.
This will limit how large the capacitor voltages
and inductor currents can become. If an inductor
is connected to a voltage source through a resistor,
the current will not increase beyond the level where
the full voltage of the source is being used to keep
pushing this current through the series resistance; at
this point, KVL tells us there is no voltage across
the inductor to cause a further change of current. If
a capacitor is connected to a current source with a
parallel resistor, the voltage will not increase beyond
the level at which all the source current passes
through the resistor and therefore is not charging
the capacitor. Idealised circuits, particularly when
including controlled sources and negative resistance,
are usually only good approximations of real circuits
within a moderate range of the circuit quantities. If
a voltage or current keeps increasing, then resistances
that seemed negligible at low voltages and currents
will have to be included in the model, and opamps
or transistor outputs will reach supply-voltage limits.
In most power-oriented calculations we wouldn’t have
negative resistance in the model in the first place. The
only plausible way for a real circuit to fail to reach
an equilibrium is if some circuit quantities oscillate
instead of reaching a steady value; a permanent
oscillation in a linear circuit with constant sources and
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non-zero resistance requires some sort of controlled
source.

We can therefore justifiably make the assumption of
steady final values of circuit quantities, if a circuit
contains resistances between other components and
does not contain dependent sources. Many other
circuits even without so many resistors or including
controlled sources can also reach steady equilibrium
values of voltages and current.

Can we, with our existing knowledge, calculate all the
currents and voltages in an equilibrium state, even
when there are capacitors and inductors in the circuit?
Will this require complicated new methods? (Answers:
Yes and No, respectively.)

The method for calculating equilibrium values is to
notice that a constant value of a variable means a zero
rate of change. If all circuit quantities have reached
steady values, then du

dt = 0 and di
dt = 0 for all the

voltages and currents. From the equations defining a
capacitor and inductor (1) (2), we see that if du

dt and di
dt

are zero, then the corresponding i and u must be zero.
For a capacitor, equilibrium will mean that no current
flows in it: this means we can consider it an open
circuit, or a zeroed current source. For an inductor,
there will be no voltage across it: so we can consider
it as a short circuit, or a zeroed voltage-source.

In this way, calculation of equilibrium just requires
us to replace capacitors and inductors with open-
and short-circuits respectively, and to calculate to
find currents and voltages in the circuit. The solution
will let us find the capacitors’ voltages and inductors’
currents, which are the continuous variables.

This is very easy! It uses just our existing knowledge
of circuit solutions. Replacement of components with
open or short circuits results in a simplified circuit-
diagram.

The following circuit provides a simple example. Only
one change happens, by the voltage source having a
step at t = 0. Only one variable is being sought: i(t)
down resistor R2.

C1

R1

I

L1

R2

i(t)

+
−U · 1(t)

C2

There are two equilibria we could look at. The time
“t = 0−” is before the voltage step, and it is assumed
that the circuit has been standing “since t = −∞”.
Just after t = 0, the earlier equilibrium has been
disturbed by the voltage step, so the equilibrium
assumption is not true. But after a very long time,
t→∞, another equilibrium is reached.

In order to solve for the marked current at the initial
equilibrium, i(0−), we can redraw this circuit for time
t = 0− in the simplest possible way. All reactive
components can be replaced by open or short circuits,
on the assumption of a constant equilibrium state. The
voltage source is set to zero (short-circuit) because
1(0−) = 0.

(C1)

R1

I

(L1)

R2

i(t)

(U · 0)

(C2)

After this redrawing it is very clear what the sought
current must be: i(0−) = −I. We see how all
the continuous variables could have been found: the
current in L1 is also I (plus or minus, depending on the
chosen definition); the voltages across C2 and across
C1 are the same as across R2, which is IR2. Be careful
about the current source: remember that its voltage is
not known until we calculate it based on what the rest
of the circuit demands.

5 — Extra —

5.1 Links

Some Wikipedia links, as usual: [Diode] and
[DiodeModelling].

[DiodesChapter] from the Irwin & Nelms book is a
good overview of some nonideal properties and simple
ways of modelling them by adding linear components
to an ideal diode (similar to the description in
Petersson).

Classic uses of diodes, capacitors, inductors and
controlled switches (transistors or thyristors) are
found in many modern electric loads, including “low
energy” lamps of the compact fluorescent type. Some
examples of the physical construction and the circuit
diagram are shown here, [CompactFluorescent]. The
function of the electronics is to start the lamp and keep
it running. Starting is done by providing current to
heat the electrodes at both ends of the glass tube, and
generating a high enough voltage to start a discharge
in the low pressure gas therein. For continued running,
a lower voltage is sufficient. This is provided by rapidly
switching (e.g. 30 kHz) a supply to a transformer: the
transformer can be very small when used at this high
frequency, and any generated sound or light-flicker is
not noticed.

5.2 Physical Capacitors and Inductors

Based on equation (1), capacitance has the dimension
of charge

voltage , i.e. (q/u). In SI units this is coulumbs per
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volt ([A][s][V−1]) which has the special name of farad
[F].

Around a charge there is an electric field. In a
capacitor, the current that we see coming out of one
terminal and going in to the other is causing negative
charge to build up in one region inside the capacitor,
and positive charge to build up in another region.
The electric fields from these two regions can be
superposed on each other to find the total electric field
in the region between the charges inside the capacitor:
the result from this superposition is a stronger field.
If we consider a path between the two terminals of a
capacitor, it will pass through this region of electric
field. Integrating the electric field along this path, we
find the difference in potential between the two sides
of the capacitor, which is the capacitor’s voltage. By
another application of superposition, we see that this
voltage is proportional to the charge: if the charge
density on the electrodes is scaled by some factor,
then the voltage must scale by that same factor if
superposition holds.

This proportionality of voltage and charge was already
suggested by the dimensions of capacitance. It is also
seen in the equation q = Cu, which is commonly used
to define capacitance in school-books. Bearing in mind
that i = dq

dt , this clearly corresponds to our equation
(1).

The two-terminal capacitor symbol obeys KCL: the
current into one terminal equals the current out of
the other, at any point in time. But this does not
mean that charges are moving through the insulating
layer between a physical capacitor’s electrodes. In a
capacitor with metallic connections, electrons come
out of one side (leaving positive charge) and go into
the other (accumulating negative charge). So it looks
as if a current of charges goes through the capacitor.
(In fact, even the internal region, with the changing
electric field but no charge motion, behaves like a
current with regard to producing magnetic fields: this
is displacement current.)

In some cases a capacitor in a circuit model represents
a physical component that was deliberately made in
order to have capacitance. A design aim of these
capacitors is usually a small volume, subject to
the constraints of tolerating the required voltage.
Some possible reasons for designing circuits to have
capacitance may be that energy storage is needed,
or that a voltage needs to be prevented from
changing quickly (the two are related). In other
cases, a capacitor in a circuit model may represent
capacitances that exist only unintentionally. Examples
are the capacitance between metal tracks on a circuit
board, or between wires in power-lines. Another
example was shown in the introduction to the course,
where a bus parked under a high-voltage power line
forms a capacitor between the conductors in the air
and the metal body of the bus; another capacitor is
formed between the bus and the [quite] conducting

ground.

The dimension of inductance, from (2), can be seen to
correspond to SI units [V][s][A−1]. This combination
has a special name of henry [H]. There is not a widely
used word or obvious physical description for “[V][s]”
in the way that ‘charge’ can be used for “[A][s]”.

A current causes a magnetic field surrounding it,
proportional to the current; this is known as Ampères
law, one of Maxwell’s equations. The time-derivative
of the magnetic field passing through some arbitrary
surface in space causes a proportional voltage to be
generated in the complete path encircling the edge of
that surface; this is Faraday’s law, another one of the
Maxwell equations. Thus, a changing current in a loop
will cause a voltage to be ‘induced’ in that loop.

In this way, every circuit has inductance! A current
will produce a magnetic field; changes in the current
will cause changes in the magnetic field; these changes
will induce a voltage around the circuit.

In some cases an inductor in a circuit model is
modelling a component that was deliberately designed
to have high inductance. This is typically a coil
with many turns of wire around a magnetic material,
in order to get high inductance with small size.
In other cases, an inductor in a circuit model
may be modelling an inductance that is not there
by intention. An example is the inductance that
surrounds the conductors of a circuit. As with
unwanted capacitances, this is relevant in power lines
and cables, and in computer circuit boards and many
other places.

Undesired properties of capacitance, inductance and
resistance are sometimes called parasitic components
when included in a circuit model.

5.3 Reverse breakdown of diodes

Something that the simple exponential diode equation
doesn’t show is that a strong reverse voltage can
“break down” a diode and cause a high current to
flow. Normal diodes will never work again after this,
but special types of diodes called zener and avalanche
diodes are designed to start conducting in the reverse
direction at a quite precise voltage level [ZenerDiode].
These are commonly used as voltage references,
because their reverse voltage is quite similar over a
wide range of reverse currents.

An application example is a zener diode supplied
with reverse current through a resistor from a poorly
controlled voltage source; the quite accurately known
voltage across the zener diode can then be used as
the reference of an opamp, to force the output of a
voltage supply (as used at a laboratory workbench) to
this well known value. Protection of sensitive circuits
from ‘surges’ (brief overvoltage) is another common
function of diodes with intentional reverse breakdown.
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