
Electric Circuit Analysis, KTH EI1120
N. Taylor

Topic 07: Equilibrium and Continuity

In this topic we look at equilibrium (sv: jämviktsläge)
solutions of circuits that include capacitors and
inductors as well as the resistors and sources that we
already know. Then the concept of continuity is used
to find solutions of these circuits immediately after
the equilibrium is disturbed by a switch or a change
of component-value.

These analyses are useful in their own right, since
equilibria and sudden changes are frequently of
interest. They are also a necessary step in finding
initial conditions (sv: begynnelsevärde) for differential
equations in the next topic.

* * * *

Let’s have a reminder of the fundamental equations of
the capacitor and inductor, in derivative form, with a
comparison to resistance. The reference directions of i
and u have been chosen so that negative signs are not
needed in the equations.

u(t) = R i(t) (1)

i(t) = C
du(t)

dt
(2)

u(t) = L
di(t)

dt
(3)

Now, consider the integral form of the same equations:

i(t) =
1

R
u(t) (4)

u(t) = u(t0) +
1

C

∫ t

t0

i(x) dx (5)

i(t) = i(t0) +
1

L

∫ t

t0

u(x) dx. (6)

What is special about the capacitor and inductor,
compared to components we saw previously, is that
as well as their component value of (capacitance or
inductance), they have at any time a particular state
of stored energy, related to a value of the capacitor’s
voltage or the inductor’s current.

In this way the reactive components have two
important properties to consider when doing circuit
calculations: the component value, and the state.
It turns out that for solving a circuit’s voltages
and currents at a particular instant in time the
capacitors’ and inductors’ states are important but
their component values are irrelevant. However, the
component values are important for calculating how
quickly the state is changing with time, or in other
words, for finding what the state will be at a later
time.

1 Equilibrium

Consider a circuit with sources, resistors, capacitors
and inductors, where all sources and other components
have constant values, and the circuit has been in this
situation for “a very long time”. We then assume
that all the currents and voltages will have reached
equilibrium values that are constant.1

1.1 Does an equilibrium exist?

The above assumption is clearly not a certainty in the
world of idealised circuits. For example, an inductor
connected in parallel with a constant voltage source
will have a current that just keeps changing forever,
di(t)
dt = U/L = constant! Even worse, an inductor

or capacitor might be connected to a circuit that
behaves as a Thevenin or Norton source with negative
resistance: this could result in a change, di

dt or du
dt , that

keeps getting bigger with time, instead of letting the
circuit settle to a steady value.

But such cases are really just amusements found
in idealised circuits. In practical cases there will be
some resistance between and within the components.
This will limit how large the capacitor voltages
and inductor currents can become. If an inductor is
connected to a voltage source through a resistor, the
current will not increase beyond the level where the
full voltage of the source is being used to keep pushing
this current through the series resistance; at this point,
KVL tells us there is no voltage across the inductor
to cause a further change of current. If a capacitor is
connected to a current source with a parallel resistor,
the voltage will not increase beyond the level at which
all the source current passes through the resistor and
therefore is not charging the capacitor.

Idealised circuits, particularly when including con-
trolled sources and negative resistance, are usually
only good approximations of real circuits within a
moderate range of the circuit quantities. If a voltage
or current keeps increasing, then resistances that
seemed negligible at low voltages and currents will
have to be included in the model, and opamps or
transistor outputs will reach supply-voltage limits. In
most power-oriented calculations we wouldn’t have
negative resistance in the model in the first place. The
only plausible way for a real circuit to fail to reach
an equilibrium is if some circuit quantities oscillate
instead of reaching a steady value; a permanent
oscillation in a linear circuit with constant sources and
non-zero resistance requires some sort of controlled
source.

We can therefore justifiably make the assumption of
steady final values of circuit quantities, if a circuit
contains resistances between other components and

1As we are interested in practical things rather than
mathematical curiosities, a value that is “approaching an
asymptotic value” can be regarded as having reached the
equilibrium when it’s closer than some limit that we can choose.



does not contain dependent sources. Many other
circuits even without so many resistors or including
controlled sources can also reach steady equilibrium
values of voltages and current.

1.2 Principle of equilibrium solution

Can we, with our existing knowledge, calculate all the
currents and voltages in an equilibrium state, even
when there are capacitors and inductors in the circuit?
Will this require complicated new methods beyond dc
analysis? (Answers: Yes and No, respectively!)

We are considering a long time with constant values
of sources, where all circuit quantities have reached an
equilibrium of steady values: this means that du

dt = 0

and di
dt = 0 for all the voltages and currents in

the circuit. (Remember the warning in the previous
section about whether such an equilibrium exists: in
idealised circuits it might not.)

From the equations defining a capacitor and inductor
(2) (3), we see that if du

dt = 0 for a capacitor, then the
current in that capacitor must be zero, and similarly
that if di

dt = 0 for an inductor then that inductor’s
voltage must be zero.

This shows how to handle equilibrium calculations.
For a capacitor, no current flows in it in equilibrium:
this means we can consider it a current source of zero,
or more simply an open circuit. For an inductor, there
is no voltage across it in equilibrium: we can consider
it as a voltage-source of zero, or more simply a short
circuit.

In this way, calculation of equilibrium just requires
us to replace capacitors and inductors with open- and
short-circuits respectively, and to calculate currents
and voltages in the circuit. The solution will let us find
the capacitors’ voltages and inductors’ currents, which
were the unknowns for the open and short circuits.

This is very easy! It uses just our existing knowledge
of dc circuit solutions. Replacement of components
with open or short circuits results in a much simplified
circuit-diagram. If you are given a pure equilibrium
problem to solve, then seeing lots and lots of capacitors
and inductors probably means it will be easier than
if lots of these were resistors and sources instead: the
capacitors and inductors will all turn into simple open-
and short-circuits for the analysis. (But in Topic 08
about time-functions you should be very scared if you
see lots of capacitors or inductors; we will probably not
even handle more than one at a time for that topic!)

1.3 Example of equilibrium solution

The following circuit provides a simple example
of equilibrium calculation in a circuit with several
reactive components. Only one change happens, by
the voltage source having a step at t = 0; at times
before and after this, the circuit has constant source-
values and no switches.

Only one variable is being sought: i(t) down resistor
R2. If you want to make it more interesting, then
define some other unknowns to solve for, such as the
voltage across C1 or current in L1.

C1

R1

I

L1

R2

i(t)

+
−U · 1(t)

C2

There are two equilibria we could look at. The time
t = 0− is just before the voltage step. It is assumed
by default that the circuit has been standing with the
same source values “ever since t = −∞”, as nothing
else was said. We can therefore assume that there is
an equilibrium condition at time t = 0−.2 Just after
t = 0, the earlier equilibrium has been disturbed by
the voltage step, so the equilibrium assumption is not
true. But after a very long time, t → ∞, another
equilibrium is reached.

In order to solve for the marked current at the initial
equilibrium, i(0−), we can redraw this circuit for time
t = 0− in the simplest possible way. All reactive
components can be replaced by open or short circuits,
on the assumption of a constant equilibrium state. The
voltage source is set to zero (short-circuit) because
1(0−) = 0.

(C1)

R1

I

(L1)

R2

i(0−)

(U · 0)

(C2)

After this redrawing it is very clear what the sought
current must be! There is only one possible path for
the current from the current source: i(0−) = −I.

Any other variables could also have been found. For
example, one variable of each reactive component was
already known to be zero due to the equilibrium, but
the other variables can now be found too. The current
in L1 is also I (plus or minus, depending on which way
you choose to define it). The voltages across C2 and
across C1 are the same as across R2, which is IR2.3

2We don’t assume equilibrium to have been finally reached at
t = 0−; if the circuit has stood there ‘always’ then it’s assumed
to have reached equilibrium ‘ages ago’. Note again that there’s
nothing special about t = 0; this is often used as the definition
of the time when a single change happens, but one could instead
call it t = tx or t1 and write U · 1(t− tx) for the source.

3That warning again: be careful about the current source:
remember that its voltage is not known until we calculate it
based on what voltage is needed in order to force its current
through the rest of the circuit . . . it should not be assumed to
be zero.
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A similar process is, of course, used to study the
other equilibrium for this circuit, when t → ∞. The
difference is only the voltage source, which is now
active, with a value of U .

Like the wise circuit-analysts that we are, we re-draw
the original diagram carefully, for this specific case.

(C1)

R1

I

(L1)

R2

i(∞)

+
−U

(C2)

The open circuit that has replaced C2 isolates the
voltage source from the rest of the circuit. It is clear
that the marked current i is still −I at this new
equilibrium: i(∞) = −I. The same argument holds for
L1, R1 and C1 having the same voltages and currents
as at t = 0−, in this circuit.

However, the voltage across C2 is not the same as
before. If we mark it with its positive side on the left,
then KVL around the loop of R2, C2 and U , gives
uC2(∞) = −IR2 − U .

2 Continuity

The current and voltage of an ideal resistor can change
in no time at all: they can suddenly switch from a large
positive to a large negative value, for instance. Seen
as a function of time, such a step is a discontinuity.

The energy stored in a capacitor is related to its
voltage, and the energy stored in an inductor is related
to its current, as shown by the expressions u2C/2 and
i2L/2 in Topic 06. To change these variables requires a
change in stored energy, which in turn means a power
flow during an interval of time. Significant time is
needed in order to get significant energy in or out of
a component.

This means that in a very short time-interval a
capacitor cannot change its voltage significantly, and
an inductor cannot change its current significantly,
because these are the variables that are related to
the components’ energies. This principle is called
continuity, indicating that these continuous variables
can only change smoothly. They cannot step.

In an ideal circuit one could consider defining
‘impulses’ of energy, where finite energy arrives in
vanishingly small time. When we consider for example
a capacitor in parallel with a voltage source that has
a step function, then the energy on the capacitor
suddenly changes, and the current at that point is
‘very big’. But as long as voltages and currents are
required to be finite — or even quite strongly limited,
as they tend to be in any real circuit that we are
modelling — then the continuity principle is very

reasonable over times that are very short compared
to the times for new equilibria to be reached.

Note, however, that the opposite way round
is not true! The current through a capacitor,
and the voltage across an inductor, can change
instantaneously. They are linked to the rate
of change of the continuous variables. (The
continuous variables cannot have discontinuities
in themselves, but they can have discontinuities
in their time-derivatives.)

2.1 Principle of continuity calculation

The above description of continuity shows how
to handle calculations of all the circuit quantities
immediately after an equilibrium state has been
disturbed by a change such as a switch or a component
whose value has had a step-change. In other words,
continuity allows us to solve our circuit at t = 0+.

Let’s define the time when the change happens as
being t = 0. The equilibrium state that was present
before the change can be found as described in the
previous subsection. This gives the circuit quantities
at t = 0−; the only quantities that are needed from
this state are the continuous variables of the reactive
components, representing stored energy (memory).
Then, at t = 0+ we know that these continuous
variables are the same as before: they have not had
time to change.

We solve the circuit for t = 0+ by using any new values
of components or switches, and assuming that all the
continuous variables are the same as at t = 0−. In this
way, we can find all the voltages and currents in the
circuit, at this time t = 0+.

For equilibrium calculations we replaced capacitors
and inductors by open and short circuits, to make
the diagram more easy to understand. A similar
sort of simplification is possible for the calculation
using continuity. Instead of zeroed current and voltage
sources, the capacitors and inductors at t = 0+ can
be drawn as voltage and current sources with values
that match the continuous variables. Some people may
find it helps to redraw the circuit with these sources
marked.

The following reasoning is how we can justify doing
this. For a capacitor at t = 0+, we have claimed
that the voltage is definitely known, by continuity
from its equilibrium value. However, its current and
therefore its rate of change of voltage are not known;
the current depends on how the rest of the circuit
responds to the capacitor’s voltage. This description
matches exactly with a voltage source: its voltage is
known, but its current is entirely determined by how
the rest of the circuit responds to its voltage. For this
reason, a voltage source can replace the capacitor. A
dual description applies to replacing an inductor with
a current source.
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Beware that this identical behaviour is true only at
that instant t = 0+! The continuous variables may
start to move towards new equilibrium conditions in
the changed circuit, so we cannot assume they remain
at their old equilibrium value. If the circuit causes a
large values of the discontinous variables of current
through a capacitor or voltage across an inductor,
then the continuous variables with have a high rate
of change.

2.2 Example of continuity calculation

The same circuit is used here as in the equilibrium ex-
ample. The following diagram shows the replacement
of reactive components with sources that match their
continuous variables, known from the equilibrium
condition at t = 0−.

The other components are given whatever values are
appropriate for the time t = 0+: only the voltage
source is time-dependent in this circuit, and its value
is U at this time.

+
− uC1(0−)

R1

I

iL1
(0−)

R2

i(0+)

+
−U

+ −

uC2
(0−)

The names like iL1
(0−) are a little tedious to keep

writing while solving. In our case, we found that these
continuous variables in the equilibrium condition were
given by quite short expressions, so we can just write
these into the diagram. Be careful about the signs!
They depend on which way you drew the sources
that replaced the capacitors and inductors. Check this
diagram, comparing to the equilibrium calculation.

+
− −IR2

R1

I

−I

R2

i(0+)

+
−U

+ −

−IR2

If the expressions from the equilibrium condition had
instead been long, it would probably have been better
to have given them short names like Ux, Uy, Iz, then
substituted the actual values at the end.

The above diagram is a classic dc circuit to solve; every
component value is expressed in known quantities, and
all connections are shown. All the circuit variables at
t = 0+ can therefore be found by dc analysis. A few
examples are given in the following.

The marked current i(t) at t = 0+ can be found from
KVL in the rightmost loop; i(0+) = U−IR2

R2
= U

R2
− I.

This current depends on the actual voltage source U
and on the voltage that C2 was charged to at t = 0−.

By KCL above R2 it is then seen that a current of
U/R2 comes out of the + terminal of the source that
represents C2.

The voltage across the inductor can be found by KVL
around the outer loop, where IR2−U−IR2 +0 ·R1 =
uL1(0+). The inductor voltage is here defined with its
positive reference where the source current arrow goes
in. The current in R1 is seen to be zero from KCL at
the node above source I.

When these sorts of calculations become tough, and
solutions aren’t obvious by just one or two applications
of KCL, KVL or Ohm’s law, consider nodal analysis.
Be careful and systematic. Double-check working:
check dimensions at each step.

3 Summary/Advice

Existing dc methods can be used to find steady
equilibria for circuits where no changes are happening
to circuit quantities, and to find the circuit quantities
when a sudden change has happened immediately
after a time when the continuous variables are known.

The key is to remember rigidly which is the
continuous variable for the capacitor and for the
inductor. It is this and only this which cannot change
instantaneously for that component.

A common mistake is to assume that the discontinuous
variable will not change, or is zero. That’s a bit like the
mistake of assuming a current source has zero voltage,
or a voltage source has zero current. Remember that
each component can define just one of two ‘degrees of
freedom’.

Similarly, for equilibrium, think carefully about which
variable must be constant: for example, a capacitor in
equilibrium should not be charging, so we expect i = 0
and du

dt = 0. By duality, the inductor can be seen to

have u = 0 and di
dt = 0 in equilibrium. Make the right

choice of open- or short-circuit!

Plenty of clear, well marked diagrams are useful
when handling these equilibrium and continuity
calculations.
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4 — Extra —

There’s not an awful lot I can think of just now, that
is relevant to this Topic but is not core material. If
questions come up during the week (lecture, email,
tutorial, hw) I will consider including answers in this
section.

4.1 Time-stepping Equilibrium & Continuity

In the next Topic we will look at using differential
equations to find solutions for circuit quantities as
time-functions over all time, not just the special cases
of equilibrium values and immediately after sudden
changes, that we studied this time.

However, we could make an approximation of the
time-functions using what we already have covered in
this topic. Starting from a known state of the capacitor
voltages and inductor currents, the currents in the
capacitors and the voltages across the inductors can
be found by dc analysis. Then, using the component
values C and L, the time rate of change of the
continuous variables can be found. The continuous
variables a short time ∆t later can be approximately
found by adjusting their initial values by an amount
∆t d·dt . For a capacitor C, for example, this could mean
that its voltage ux is

ux(t + ∆t) ' ux(t) + ∆t
1

C
ix(t),

where ix is the capacitor’s current. This is only
approximate: it assumes the rate of change throughout
the interval ∆t is constant, equal to its value at the
start. Too large a choice of ∆t would make this a very
bad assumption. The equations (5) and (6) show the
exact alternative to the above, using integrals

∫
dt

instead a simple multiplication ∆t.

By repeatedly making this calculation, setting new
values of continuous variables for the sources
representing the capacitors and inductors, then finding
the other variables and calculating the change in
the continuous variables, a complete time-solution
can be approximated, without looking at analytic
solutions of differential equations. This is what is
done in numerical programs for solving such circuits,
although with much more sophisticated algorithms for
the numerical integration.

4.2 A later use of Equilibrium & Continuity

Other than that, here is an example of a circuit where
one has a practical reason for wanting to find an
equilibrium state. It’s slightly amusing in that it’s
really a simple circuit compared to what we study
in this course, and yet it leaves a lot of students
at Masters level rather puzzled (because they’ve
forgotten all about these sort of calculations, or never
studied them properly, or don’t see the connection,
. . . ).

A lab task in the course High Voltage Engineering
involves “lightning impulses” being generated by a
construction that is poorly shown in this picture. I
will take a better picture some day.

The output, to some test object, rises in about 1 µs
from zero to a peak of somewhere between 30 kV and
300 kV, depending on the setting. Then the voltage
falls more slowly, so that it’s halved in about 40 µs.

Before a voltage impulse can be provided at the
output, the two capacitors labelled CS in the following
diagram have to charge up through resistors. Then
sparks are made to happen in the highly stressed air
between two pairs of copper spheres: the air gap thus
changes from a very good approximation of an open
circuit, into a quite good approximation of a short-
circuit.

A diagram of the entire circuit is the following, but it
is hard to follow as it contains even the details of how
the variable ac supply is converted to dc, and how the
dc and impulse voltages are measured.

RP

RP

RP

RP

RSL

RSL

RSL

CS

CS

CST

SSS

CD

1

2

2

RL

RD TEST

OBJECT

max.
100kV

divU

charging
voltmeter

U

voltmeter
peak

oscilloscope

D

voltage
divider

1/n

1/n

acU
dc

U
im

Edit layers 0 and 1 as needed

A simplification of just the relevant parts uses switches
to model the spark-gaps, and a dc Thevenin source
to model the transformer, capacitor and diodes on
the left of the circuit. It also combines some series-
connected capacitors or resistors.
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U

C2 R2

R3

C3

R1

Ra

t=0

t=0

C1

Rb

A common question to ask is what the potentials are
at various points in the circuit when the source has
value U , and the spark gaps have not broken down
(they are open circuit), and the circuit has reached
equilibrium. Then the next question is what happens
just after this if both switches close (i.e. if both spark-
gaps fire). For example, what will the potential of the
node on the top of R2 be just after the switches close?

Most of the MSc students can’t answer that. I suspect
they could if they just had it firmly fixed in their minds
that capacitors look like open circuits in equilibrium,
resistors with zero current have zero voltage, and
capacitors don’t instantaneously change their voltage.
You might be doing this lab in a few years.

If you want a really challenging thing to think of,
requiring that you at least understand what ‘ac’ is
(even if not needing to know ac analysis methods)
consider how the circuit on the left in the first diagram
produces a dc voltage marked Udc of twice the peak
value of the ac voltage supplied from the transformer
at the left (the heavy vertical lines). The circuit to
analyse is just the two diodes and the capacitor CD:
these form a simple [Voltage-Multiplier]. The later
parts of the circuit with the sphere gaps are a simple
[Marx-Generator] for generating an impulse (rising
and falling) from the dc. The impulse can reach nearly
twice the dc voltage, and therefore nearly four times
the peak ac input voltage.

Bigger generators — like the one we used to have in
what is now Operahögskolan (!) — can have dozens
of capacitors and gaps, and occupy a tall building . . .
like Operahögskolan. So let’s fill some remaining space
with a historic picture of the 2 MV Marx generator in
that building, back in the year 2001.
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