
Electric Circuit Analysis, KTH EI1120
N. Taylor

Topic 08: Time-functions

In the previous two Topics we introduced:

reactive components — capacitor and inductor,

the unit-step function and time-dependent
switch, as ways of making abrupt changes in a
circuit,

equilibrium calculation in a circuit where all
components have constant values,

the continuity principle for calculation of
circuit quantities immediately after a change of
components or connections disturbs a known
state.

Here in Topic 08 the main skill to develop is how to
find a circuit quantity as a function of time, during
some period instead of just at one point. This is a
more difficult task, so we limit ourselves in this course
to the following situation:

During the time-period that we are studying,
the circuit connections and component values are
constant.

There is only one independent capacitor or
inductor affecting the part of the circuit where
we are making this calculation, so we only have
to deal with a first-order differential equation.

We know the “initial conditions” of the circuit:
that means that we know the currents in all
inductors, and voltages on all capacitors, at the
start of the time-period that we are studying.

In this type of problem, the time-period is often t > 0,
meaning all time after the point that we define as the
initial time t = 0.

The last of the three conditions above is often fulfilled
not by our being told the initial values, but by
our having to calculate them using equilibrium and
continuity, given the following information:

A sudden change happens in the circuit: for
example, a switch changes the connections of the
components, or a component’s value is changed.

Before the change, equilibrium is assumed, and
therefore the required states of capacitors and
inductors can be calculated.

The time-period we are studying starts immedia-
tely after the change, so we can use the principle
of continuity to find the initial conditions for our
differential equation solution.

In the following sections, several methods are shown
for finding time functions for circuits that have one
reactive component.1

Please note the following!
The “circuit quantity” for which a time function is
found could be any of the voltages or currents in the
circuit. It is quite common, in exam questions and real
applications with a single reactive component, that
one wants to find the time-function for the voltage or
current in the reactive component.
But if a voltage or current somewhere else in the
circuit is sought, then a convenient method of solution
is to find the time-function of the reactive component’s
continuous variable, and then to use this known
value on the reactive component to calculate other
quantities in the circuit.
This can be done by the same approach as was used
in continuity calculations: the capacitor or inductor
can be treated as a voltage or current source, whose
value is the time-function that has already been found.
If all the other components are sources and resistors,
then an algebraic (not differential) equation can be
found, to calculate other quantities in terms of this
time-function for any moment in time.

1 Differential equation for the circuit

1.1 Practice without C or L

Suppose that we have the following circuit: notice that
is does not contain reactive components.

+
−U

t = 0

R1

Rc

+

−

uc(t)

ic(t)

R2

Without any reactive components, this is a static
circuit, where the solution at any time depends only
on the components’ values at that time. So let’s find
what is the marked voltage uc at any time after zero.

1In fact, this ability is a bit more general: we could
have said “finding time functions for circuits that have one
relevant, independent reactive component”. Irrelevant reactive
components would be those that are isolated from the sought
quantity by for example being in a series branch with a current
source, or hidden behind a voltage source or short or open
circuit. Non-independent reactive components would be for
example two inductors, or two capacitors, that are in series or
parallel connection and can therefore be reduced to a single
component.



(Clearly, uc(t) = 0 for t < 0, since the set of resistors
has no source connected to it before the switch closes,
and resistors do not store energy.)

One way we could think of solving for uc is to consider
KCL in the node that joins the resistors. This node has
potential uc, so we see that

U − uc
R1

− uc
R2

= ic.

That doesn’t look good, because now there are two
unknowns, uc and ic, in the one equation. But the
resistor is described by Ohm’s law, which gives us a
further equation, ic = uc

Rc
. Substituting this, we get an

equation with only one unknown, uc,

U − uc
R1

− uc
R2

=
uc
Rc

which can be solved,

uc =
UR2R3

R1R2 +R1Rc +R2Rc
.

1.2 Try again with a capacitor

The point of the above rather strange way of solving
a simple resistor circuit was to show how similar
the procedure can be when one of the components
is a reactive component. You really only need your
old knowledge of dc circuits, and knowledge of the
equations for i and u in a capacitor or inductor,
to be able to write the differential equations for a
circuit with one of these reactive components; then
you can use your differential-equation skills to handle
the equation!

The resistor Rc is now replaced with a capacitor C.

+
−U

t = 0

R1

C

+

−

uc(t)

ic(t)

R2

Here, it is still true that

U − uc(t)
R1

− uc(t)

R2
= ic(t),

but in order to get the equation to have only one
unknown variable, we have to use the capacitor’s

circuit equation, ic(t) = C duc(t)
dt , which can be

substituted to give

U − uc(t)
R1

− uc(t)

R2
= C

duc(t)

dt
.

Rearranged to a more standard form,

d

dt
uc(t) +

1
R1R2

R1+R2
C
uc(t) =

U

R1C
,

which corresponds to dy(t)
dt +ay(t) = b, whose solution

is y(t) = b
a + ke−at, with k an arbitrary constant.

The general solution for the capacitor’s voltage is
therefore

uc(t) =
UR2

R1 +R2
+ ke−t/τ

where τ = R1R2

R1+R2
C. But we need to know the initial

condition (sv:begynnelsevärde)2 in order to find k.

In this circuit, we can assume the circuit was in
equilibrium at time t = 0−, as it has been the same
“for all time” and doesn’t have any problems such as
capacitors in series with ideal current sources.

In this case, the capacitor must have had zero voltage
at t = 0−. That can be seen as it is in parallel
with a resistor that would carry no current: the only
paths through R2 would be through the capacitor,
which behaves as an open circuit in equilibrium, or
through the switch which is open. The voltage on a
capacitor is continuous, so we can assume the same
state immediately after the switch closes: uc(0

+) = 0.
Putting in this condition, and noting that e0 = 1,

uc(0
+) = 0 =

UR2

R1 +R2
+ k

from which we see k = − UR2

R1+R2
. The simplified

solution for all t > 0 is then

uc(t) =
UR2

R1 +R2

(
1− e−t/

R1R2
R1+R2

C
)
.

which could even be extended to be valid into negative
times, by multiplying it with a unit step at t = 0!
A neater way of writing the above is

uc(t) = Uf

(
1− e−t/τ

)
,

where the values of Uf and τ can be seen
by comparison with the earlier expression. The
significance of these two values is that Uf is the “final”
value of uc(t) as t→∞, and τ is a time-constant (see
later section) showing how fast the change happens.

See how the final value in this case looks like the
voltage-divider equation: this is understandable from
the circuit diagram if we replace the capacitor with an
open circuit to calculate the final equilibrium state.

2Or, at least, the state of energy on the capacitor at some
point in time, even if not necessarily the earliest point.
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We see that this is a final value by considering that(
1− e−t/τ

)
becomes 1 when t→∞.

In other transients solutions there could be instead an
initial value that is relevant. For example, try solving
this same circuit for the current ic(t) instead of the
voltage uc(t). Or find this current by differentiating
the voltage that we already found: ic(t) = C d

dtuc(t).
The current has an initial non-zero value at t = 0,
then falls to zero towards long times.

In still other cases, the initial and final values could
both be non-zero: this would have happened in the
above case if the initial condition had been non-zero,
which could have been achieved by having a further
resistor in parallel with the switch.

1.3 Another example

Here is another example, with two ways of solving it.
It’s interesting to note how in one case the I term
comes in from the arbitrary constant, and in the other
it remains present in the equation.

I · 1(t) R

i
R

L

+

−

u

i
L

1.3.1 One method

At t > 0,

i
L

= I − i
R

(KCL)

i
R

= u/R (Ohm)

∴ i
L

= I − u
R (the above two)

u(t) = L d
dt iL(t) (relation of i and u in an

inductor)

∴ u(t) = L d
dt

(
I − u(t)

R

)
= −L d

dt
u(t)
R

simplify: d
dtu(t) = −R

L u(t).

This is a “homogeneous” ODE, i.e. there is no constant

term: so b=0 in the standard form dy(t)
dt + ay(t) = b.

The solution is u(t) = ke−tR/L, where k needs to be
found.

The initial voltage, u(0+), is IR.
Why? There is no current in the inductor at this time,
iL(0+) = 0 (explained in the next method); therefore,
all the current I must pass through R at the start,
until the resulting voltage has had time to increase
the inductor’s current. By Ohm’s law, u(0+) = (I −
i
L
(0+))R = IR.

Now write the solution of u(t), putting in the known
values for when t = 0+:
u(0+) = IR = ke0 = k, so k = IR.

The complete solution is then u(t) = IR e−tR/L.

We can check for reasonableness, for example by
considering t → ∞, in which case there should be
an equilibrium and the inductor is therefore a short-
circuit, i.e. zero voltage. This is true: e−tR/L → 0 as
t→∞. The dimensions are also consistent.

1.3.2 Another method

Another approach is to start by solving for the
inductor’s current i

L
(t), at t > 0, which is the

continuous variable in the circuit. This solution can
then be differentiated to find u(t) from Ldi

dt .

The difference in how we start is that we eliminate the
u(t) instead of the i

L
(t) in the KCL equation.

u(t) = L d
dt iL(t) (i and u in inductor)

u(t) = RiR(t) (Ohm’s law)

∴ RiR(t) = L d
dt iL(t)

I = iL(t) + iR(t) (KCL)

∴ I − iL(t) = L
R

d
dt iL(t)

and this can be written in the general form of

d
dt iL(t) + 1

L/R iL(t) = 1
L/RI,

which by the solution
{

d
dty(t) + ay(t) = b

}
→{

y(t) = b
a + ke−at

}
gives

i
L
(t) = I + ke−t/(L/R)

The ratio L/R is a time-constant, similarly to the
product CR that we saw in an earlier example. So
we can write the exponent as −tR/L or −t/(L/R), or
as −t/τ where τ = L/R.

The equilibrium state of the inductor current before
the current source switched from 0 to I must have
been i

L
(0−) = 0. That is because any current in the

inductor would have to pass through the resistor; it
would therefore generate a voltage across the resistor,
which would also be the voltage across the inductor
as they are in parallel; this voltage would cause a
changing current ( d

dt ) in the inductor, pushing it
towards zero.
Alternatively: any current in the resistor means power,
and over time this means energy; the inductor can
only start with a finite energy, so the current cannot
continue indefinitely.

Therefore, by continuity, i
L
(0+) = i

L
(0−) = 0.

Putting in this condition at time t = 0+,

i
L
(0+) = 0 = I + ke−0/(L/R)

∴ 0 = I + k, meaning that k = −I.

The full solution is then
iL(t) = I

(
1− e−t/(L/R)

)
.

That is one classic form of solution of a first-order
LR or CR circuit, going from zero to a final value.
It seems intuitively right for an inductor that started
with zero current: the initial current is zero, but in
the final equilibrium the inductor looks like a short
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circuit, so all the current I passes through it instead
of through the resistor.

However . . . the original task was to find the voltage
u(t).
This is u(t) = L d

dt iL(t).
Differentiating the above solution for i

L
(t),

u(t) = L d
dt

[
I
(
1− e−t/(L/R)

)]
= LI RL e−t/(L/R).

u(t) = IR e−t/τ .

That looks like what we got from the first method in
Section 1.3.1.

2 Equivalent Source method

This is another way of coming to the solution above.
The two-terminal equivalent concept (Topic 04) is that
any piece of circuit that connects to other things with
just two terminals (nodes) can be represented by a
voltage or current source and a resistor. This applied
to the components we knew about then. It does
not generalise to reducing a circuit with capacitors
and inductors into a simple equivalent for transient
solutions. On the other hand, we will see in Part C
of the course that it does apply to the situation of
steady-state sinusoidal analysis.

However, when we only have one or a few reactive
components, in one part of a circuit, it may be helpful
to reduce the rest of the circuit (independent and
dependent sources, and resistors) to its Thevenin
or Norton equivalent. That is a valid move: the
components in the equivalent are all static ones. The
advantage of doing this is that the total circuit then
becomes just a single source and resistor, with one or
a few reactive components connected to them.

In our case, we’ve said that our exams extend only to
circuits with a single relevant capacitor or inductor.
Then we only need to learn how to solve the case of
each of these components connected to a Thevenin
or Norton source, with some initial condition that we
find from equilibrium. We already know how to find
this equivalent source for the circuit other than the
reactive component (Topic 04).

Applying the above method to the example used in
the earlier section, we see that the capacitor and the
Thevenin equivalent of all the other components can
be written as in the following diagram. This diagram
is only valid for t ≥ 0; before that time, the switch
is open so the equivalent seen by the capacitor is just
R2.

+
−U

T
= U R2

R1+R2

R
T

= R1R2

R1+R2

C

+

−
uc(t)

ic(t)

valid t ≥ 0

From this, the time-constant and initial and final
value that were found in the previous section can be
identified easily,

The initial value uc(0
+) is the same as uc(0

−), by
continuity. We could just as well call this uc(0),
since continuity means there is no significant
difference in the value between these very close
time-points. The equivalent circuit was only
drawn for t ≥ 0, since the different position of
the switch results in a different circuit for times
t < 0. It is therefore necessary to look back to
the original circuit to find the initial equilibrium,
uc(0

−) = 0, from which continuity tells us that
uc(0

+) = 0.

The final value, when t → ∞, can be easily
treated by equilibrium in the equivalent circuit:
it is equal to the Thevening source value,
uc(∞) = UT = U R2

R1+R2
.

The circuit’s time-constant is τ = RTC, therefore
τ = R1R2C

R1+R2
.

We simply have to find a function that starts at the
initial value, and moves asymptotically towards the
final value, with its rate of change determined by the
time-constant. In general, if the initial and final values
are ui and uf , this function will be

u(t) = uf + (ui − uf)e−t/τ ,

which follows from e−0 = 1, and from e−t → 0 when
t→∞.

In our specific example, above, we have ui = 0, so the
solution is just uf

(
1− e−t/τ

)
. In many cases, uf = 0,

which gives a simple decay, uie
−t/τ .

Depending on your taste, you may prefer to use this
method for every time-function solution in this course
(with a single capacitor or inductor in a circuit), by
converting the rest of the circuit to your favourite
choice of a Thevenin or Norton equivalent. Or, you
might prefer just to develop the differential equation
from the circuit equations, and solve it directly, as in
the previous section. There will not be a requirement
to use a specific method for this transients section of
the course, so you are free to choose.

The equivalent-circuit method has some advantage by
encouraging the “intuitive” understanding that all of
these first-order circuits have a particular shape of
the response: one can quickly see the result without
even thinking about the differential equations and
formal solutions. But as soon as the circuit has more
than one reactive component (that is relevant and
can’t be simplified to a single component), we have
to go back to writing the equations based on normal
circuit analysis, and solving the resulting differential
equations.
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3 Time-constants

Linear first-order differential equations, like the ones
we can get with a single reactive component in a
linear circuit of resistors and sources, come up in many
situations: radioactive decay, heat transfer, electricity,
. . . .

The reason is generally that the change in
“something” depends on how much of that something
there still is! For example, a capacitor discharging
through a resistor has a discharge current proportional
to its voltage (Ohm’s law), and this voltage is
proportional to the charge remaining on the capacitor.
Hence, the rate of change of charge (the current) is
proportional to the amount of charge, at any time.

In these situations, the value that we called a in
the function e−at has dimensions of [s−1], and is
sometimes replaced with a time τ = 1

a called the time-

constant, so that the function is written e−t/τ .

When t = τ the result is e−1 which is about 0.37.
Sometimes people define a time-constant in just that
way: the time for the function to have only 37%
remaining of the difference between its initial and final
values.

Another way to see it is: the time it would take to reach
the final value if the inital rate of change were to stay
constant”.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

t/τ

ex
p

(−
t/
τ
)

The figure (above) shows an exponential function
e−t/τ at t = 0, together with its tangent (dashed) at
t = 0. The tangent has a gradient of − 1

τ , which can be

calculated from d
dte

−t/τ at t = 0. It therefore reaches
zero at time t = τ . In contrast, the exponential slows
down more and more as it approaches its final value.

4 Stability

In earlier Topics we discussed the assumption that
a constant equilibrium value of every variable is
reached in a circuit that has constant sources. Some
of the necessary conditions were that ideal sources
should not be connected in a way that keeps changing
the continuous variable, e.g. a capacitor connected
directly across a current source, or an inductor across
a voltage source.

This can be seen more clearly, for the case of a single
reactive component, by using the Equivalent Source
method to replace all the rest of the circuit with a
Thevenin or Norton source. If the equivalent source
has a positive resistance, the circuit will be stable3

As we have seen from earlier examples of calculating
time-functions that have terms e−t/CR, a positive
resistance leads to a decaying exponential term that
tends to zero. If instead the source has zero or negative
resistance, you should not assume stability. As already
mentioned, realistic power-oriented circuits without
special control systems would naturally have some
positive resistance.

5 Examples of first-order circuits

This Section considers all the possibilities of capacitors
and inductors connected to Thevenin or Norton
sources.

Remember that this has a broad relevance, since all
circuits that are just sources and resistors and one
reactive component can be replaced with a Thevenin
or Norton source connected to that reactive C or L
component.

(Please do not think of this as something you should
memorise! It’s probably better to learn the method
of solving, by trying to solve these examples before
checking the answers.)

There are several possibilities:

Thevenin or Norton source,

Capacitor or Inductor component,

solve for Voltage or Current in the component.

That’s eight possibilites already. It could be more if we
considered solving for another variable like the voltage
across a Thevenin-source resistance, or the current
through a Norton-source resistance.

We could add another eight by including as separate
cases the ideal voltage and current sources, where
there is no resistor. These are really just limiting cases
of the above, where the Thevenin resistance or Norton
conductance tends to zero. They give one of:
* Trivial results, like finding the current in series with
a constant current source.
* Delta-function results (big pulse), like current into
a capacitor when a parallel voltage-source has a step.
* Constantly changing, like voltage on a capacitor
connected to just a current source.

Therefore, we focus on the cases of a Thevenin or
Norton source connected to a C or L component.

We should be able to halve the number of different
forms of equation by seeing that the result should be

3Or at least, it will be stable if the capacitance or inductance
is positive – and yes, you could emulate negative ones using
dependent sources or opamps!
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the same for a Thevenin or Norton equivalent (even if
the steps we do in order to find the result are not the
same).

Then we should further be able to halve the number
of different cases by thinking of duality: for example,
“the current in an inductor when connected to a
Norton source with a step at t = 0”
should have the same equation as
“the voltage on a capacitor when connected to a
Thevenin source with a step at t = 0”.
In order to make the dual equations have exactly the
same form, one would also need to swap resistance
and conductance.

The solutions for voltage and current are shown in the
diagram below, for each case.

Note that in the shown situations, the initial condition
at t = 0− is known to be zero. That is because we can
see that the reactive component has been connected
directly across a resistor for all the previous time,
due to the source being zero at t < 0. Any energy
in the capacitor or inductor that might have been in
the reactive component a long time ago would have
been consumed in the resistor.

You can reason this by saying e.g. that any charge
on the capacitor means a voltage, and voltage means
a current through the resistor, and the current
means charge moving out of the capacitor (check the
direction); or current in the inductor means current
through the connected resistor, which means voltage
across the resistor, which means rate of change of
inductor current.

Start with a Thevenin source.

+
−U · 1(t)

R

C

+

−

uc(t)

ic(t)

t > 0

{ uc(t) = U
(

1− e−
t

CR

)
ic(t) =

U

R
e−

t
CR

+
−U · 1(t)

R

L

+

−

ul(t)

il(t)

t > 0

{ ul(t) = U e−
t

L/R

il(t) =
U

R

(
1− e−

t
L/R

)
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Now the Norton equivalents. These give the same basic
equations, but with substitutions based on IR = U ,
as would be expected from the principle of source-
transposition.

I · 1(t) R C

+

−

uc(t)

ic(t)

t > 0

{ uc(t) = IR
(

1− e−
t

CR

)
ic(t) = I e−

t
CR

I · 1(t) R L

+

−

ul(t)

il(t)

t > 0

{ ul(t) = IR e−
t

L/R

il(t) = I
(

1− e−
t

L/R

)

These Norton equivalents can be rewritten to use
G = 1/R instead of R, giving the full “dual” where the
equations have exactly the same form as the dual cases
with Thevenin sources. A dual reasoning could be
followed all the way through the solution. This should,
I hope, appeal to those people who like patterns.

I · 1(t) G C

+

−

uc(t)

ic(t)

t > 0

{
uc(t) =

I

G

(
1− e−

t
C/G

)ic(t) = I e−
t

C/G

I · 1(t) G L

+

−

ul(t)

il(t)

t > 0

{
ul(t) =

I

G
e−

t
LG

il(t) = I
(

1− e−
t

LG

)

It could be educational to make a full derivation by
the direct ODE method, of each of the preceding
cases. One hint is to find the continuous variable, then
simply differentiate that expression (and multiply by
the component value C or L) to find the other variable.

Please note that the above equations for the simple
three-component circuits are just special cases with
zero initial condition of the continuous variable. In
the general cases y(t) = y(∞) + (y(0)− y(∞)) e−t/τ ,
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6 — Extra —

6.1 Time-stepping solution

A shorter version of this was also in the Topic 07
‘Extra’. At any instant, the only thing we need to know
about the capacitor or inductor, in order to be able to
solve for the voltages and currents in the circuit, is the
energy-related (continuous) variable.

On the other hand, to solve for the rates of change
(time-derivatives) of these continuous variables, which
describe how the stored energy changes over time, the
other variables and the values C and L of the reactive
components are needed. That is clear from the circuit
equations of capacitors and inductors, respectively
du(t)
dt = i(t)

C , or di(t)
dt = u(t)

L .

If we were happy with numerical approximation – and
we generally are very happy with it, in practice! –
then the following principle could be followed to find
the time-development of all the variables in a circuit
with multiple L and C components.

0) Start with known “states” (continuous variables),
i.e. known voltages on capacitors and known currents
in inductors. This information could come from an
equilibrium calculation, or it could instead come from
a measurement or assumption.

1) Using these states, and knowledge of the state of
switches and time-dependent components at this first
time-point, solve the circuit by the usual methods
from dc analysis, to find whatever variables we are
interested in, and the non-continuous variables on
the reactive components: current in capacitors, and
voltage across inductors.

2) Then we select a small time-interval (“timestep”)
δt, chosen to be short enough that “not much change”
is expected in any state during this step. Clearly,
the choice depends on the circuit being solved, and
could be < 1 ns or > 100 s for different situations
such as connections on a computer board, or a
measurement system for insulation materials. From

the relationdu(t)
dt = i(t)

C or di(t)
dt = u(t)

L , the calculated
value of the non-continuous variable can be used to
estimate the continuous variable after the time-step,
i.e. i(t+δt) ' i(t) + 1

Lu(t)δt.

3) At that next time-point, where the continuous
variables have been estimated, keep going back to
part ‘1)’, to find the new rates of change.

The above list is sort of what a numerical solver
will do in the programs that are used to solve
transients in complicated (and possibly nonlinear)
circuits. One complexity is the way of reducing that
circuit equations to a nice form for the calculations.
Another is that the actual equations for time-stepping
integration will be more sophisticated than the above;
you might already know about “implicit integration
methods”?

Another option when there are several reactive compo-
nents is to develop higher-order differential equations,
then to solve these analytically or in a general-purpose
numerical solver such as Mathematica’s NDSolve[]

(numerical differential equation solver).

Something else we haven’t considered, but that has
very great practical relevance, is when components do
not all have constant values apart from a few discrete
steps. For example, a source might have a time-
function that is a triangle-wave (smoothly up, then
smoothly down, repeating) or a sinusoid. This would
fit with no extra effort into the numerical solution
method described above: at each time point t, one
would use the actual value of each source according
to the function that describes its value, e.g. sin(ωt).
In the analytical methods, this means solving for a
non-constant forcing function.

6.2 Reminder: Integrating Factor for 1st-
order inhomogeneous case

We’ve relied on the claim of how to solve

d

dt
y(t) + ay(t) = b.

In case you care about why, consider that it’s a
classic case for an integrating factor. The following
reminder might help you. (For EI1110 a ‘reminder’ of
the calculus course you took this month is probably
not needed; other programs take Circuits a year after
Calculus.)

If you happen to multiply all terms by eat, you get

dy(t)

dt
eat + ay(t)eat = beat.

What is nice about that is that the left-hand side
is equivalent to d

dt (y(t)eat), by the product rule:
d
dt (fg) = f dg

dt + df
dt g.

So the whole equation has the form d
dtX(t) = beat.

This has the solution X(t) = b
aeat+k, as can be found

by integrating.

But we also know from earlier that X(t) in our case is
eaty(t). Subtituting this into the above solution gives
eaty(t) = b

aeat + k.

Here, k is needed because any additive constant will
not affect the derivative, so the function is not fully
determined until k is known.

Dividing all terms by eat (multiplying by e−at) gives,
as earlier claimed,

y(t) =
b

a
+ ke−at.

Even in the first of the above circuit-solution methods,
we could have used this equation: in that case b = 0, so
the result would immediately have been y(t) = ke−at.

8


	Differential equation for the circuit
	Practice without C or L
	Try again with a capacitor
	Another example
	One method
	Another method


	Equivalent Source method
	Time-constants
	Stability
	Examples of first-order circuits
	 — Extra — 
	Time-stepping solution
	Reminder: Integrating Factor for 1st-order inhomogeneous case


