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Topic 09: AC analysis

There is a lot of new stuff here. You’re not expected
to follow it all easily. The essential part for now is
to be confident and well-practised about what to do to
solve a simple circuit with one or two ac sources of the
same frequency. Other parts will be built on later. But
try to get up to speed on as much as you can before
next time: it’s all a useful basis for later Topics.

After only a couple of weeks spent on Transients, here
we are at the start of our Part C: circuit analysis with
alternating current (sv: växelström). The material in
this Topic is mainly a foundation for the later ones.

We convert between sinusoidal time-functions (e.g.
voltage and current) and the complex numbers that
are used to represent these in ac analysis. We
convert resistors, capacitors and inductors to complex
numbers that describe the relation between magnitude
and angle of the complex voltage and current.

Some useful rules for using complex numbers are
described, and the complex-number method is used
to solve some simple ac circuits. This Topic certainly
has rather a lot of new concepts. The Exercises and
Homework provide good examples of using these.

Please bear in mind that ac circuits entail all the ideas
and methods of dc circuits, except that many of the
quantities are complex instead of real. This thought
can help to reassure us that all the principles of
superposition, nodal analysis, irrelevance, equivalents,
dependent sources, etc, can be applied to ac circuits.
The algebra is the main thing making ac circuits seem
more awkward; power calculations are also less simple,
although this is partly a consequence of the complex
numbers.

Main skills for this Topic:

Convert single or multiple R, L and C components to
impedances or admittances.

Convert given “time-domain” voltages and currents
to phasors.

E.g. A sin(ωt+ α) → A α, etc.

Perform solution of the resulting ac circuit.
(Just like dc analysis, but with complex numbers!)

Convert solutions back to the time-domain.
E.g. B β → B sin(ωt+ β)

Use superposition to handle sources of different
frequencies.

Essential in the above:
Handling complex numbers!
a+ jb, M φ, Mejφ,

1 Rambling pseudophilosophical stuff

This course is defined as having three parts: dc,
transient and ac. The transient part involved solving
differential equations (although we also learned a
way to cheat), and the ac part is going to require
handling complex numbers (computers are the best
way to cheat with this, but not in exams). Our
ac analyses will involve the capacitor and inductor
components that were introduced when we started
with transients. But we will not now be using any
methods from the transients subject: instead, all of
the dc methods (nodal analysis, equivalent sources,
superposition, opamps, etc) will again be important.

How do the dc, transient and ac situations differ, and
why was this sequence chosen for the course? In terms
of increasing generality, the sequence would be dc,
ac, transient: dc is a special case of ac (where the
frequency is zero), and both dc and ac are steady-
state cases of the general time-domain solution, with
excitation by constant or sinusoidal sources. Starting
with dc is good because it is quite familiar from school,
and does not require more maths than basic algebra
with real numbers. Then, in transients and ac, a lot
of solutions are based on the methods learned from dc
circuits.

In power and communications, ac analysis is very
widely useful, which is why we spend so much time
on it. Putting it after transients allows us to believe
more easily the fundamental claim that a sinusoidal
source causes all circuit-quantities to be sinusoidal in
a linear circuit when the steady state is reached: this
can be inferred from the differential equations, and
is ‘confirmed’ experimentally by the Lab 3 task. It is
also hoped that, having begun to see how difficult it
would be to solve a circuit with several capacitors and
inductors by using differential equations directly, the
ac approach will be seen as being actually a friendly
and helpful alternative, in spite of the somewhat
formidable complex-number equations that we will
sometimes be seeing!

Reality is more thoroughly modelled as a field-problem
in time: that implies partial differential equations in
space and time, for all the electromagnetic pheno-
mena. A circuit is a simplification by “discretising
in space” so that we no longer need to care about
the spatial coordinates, but only about connectivity
and component values: with only time remaining as
an independent variable, the circuit equations for a
transient solution are ordinary differential equations.
By making assumptions about particular types of
steady state having been reached, we come to the
other two cases: if all the [independent] sources driving
the circuit are of constant value, then calculation of
the equilibrium currents and voltages is a dc analysis;
if instead the sources have sinusoidal values at one
frequency, the equilibrium values of circuit quantities
are sinusoidal too, and we can calculate them by ac
analysis.



2 An ac solution example

A few years of experience with introducing ac circuits
have suggested that it’s best to start with an example,
even if no one has any idea what it’s all about.
Then it’s easier to explain and justify the later
explanations of ‘why’; you might also feel better to
know in advance that the necessary steps are actually
relatively simple. If you feel lost with the complex
numbers, try Section 8 first.

2.1 The rules, with one source

Consider a linear circuit in these conditions:

The circuit is driven by a single independent
source.

This source gives a sinusoidal function of time.
For example, it might be a current source with
a value I(t) = Î cos(2πft), where Î is the
peak value of the sinusoidal current, and f is a
frequency.

Other than this source, the circuit can have any
number of resistors, inductors, capacitors and
dependent sources.

The circuit is stable, so that after a large enough
number of periods the transients from earlier
changes have died away; this is the sinusoidal
steady state, where all the circuit quantities
(voltages and currents) are just the sinusoidal
forced response caused by the independent
source.

We want to find one (or more) of the circuit
quantities, and are only interested in the
sinusoidal steady state value.

The limitation to a single independent source is only
for simplifying this introduction. A few pages later
in this Topic we will see how the ac method can be
used for multiple independent sources. It is very easy
if these sources all have the same frequency.

The limitation to sinusoidal steady state solutions is
fundamental to ac analysis. Superposition can be used
to combine the transient and steady response. Fourier
methods and superposition can be used to handle
periodic but non-sinusoidal sources. However, it is
often true in practical power-related circuits that the
steady state is closely reached within a few periods,
and that the sources are “approximately sinusoidal”.

• Replace inductors L and capacitors C by
impedances, respectively jωL and 1/(jωC). The
other symbols are the imaginary unit1 j =

√
−1,

and the angular (radian) frequency ω = 2πf .

1In electrical applications it is common to use j instead of i
as the imaginary unit, as we use i so much already for current
(although we also like using j for current-density in fields
calculations). Some people combine this unit with numbers
after, and some before: e.g. j5 or 5j. In the former case the
symbol might be called the imaginary operator.

• Replace the independent source’s sinusoidal time-
function with a phasor, which is a complex
number indicating the amplitude and phase of
a sinusoid at a particular frequency. There are
several different common choices for defining
the angle and scaling when converting between
phasors and time-functions.

• Solve for the circuit quantity that you want.
That’s it . . . it’s just the same as you’ve done in
dc circuits, except that some of the numbers are
likely to be complex instead of real. That makes it
a little more work. Your solution will be a phasor.

• If you wanted to find a time-function for the
quantity you calculated, then you need to convert
back from the phasor to a time-function, using the
inverse procedure of the second step.

The circuit represented with time-functions and
normal component values of capacitance, inductance
and resistance, is said to be in the time-domain. The
circuit when represented with complex numbers is said
to be in the frequency-domain.

2.2 A simple application of the rules

“Find i(t) in the following circuit!”
When there is such a question in the ac part of a
course, we should just assume we want a steady-state
ac solution.

+
−U(t) = Û sin (ωt)

L

+ −
u

L
(t)

R

+

−

u
R

(t)

i(t)

That might look a little worrying. What about the
following dc circuit. That’s not hard, is it?

+
−U

R2
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The solution to that is clearly

i =
U

R1 +R2
.
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The rules, listed above, said we solve the ac circuit
like a dc circuit, after doing a few conversions of
component values into complex numbers (impedance
and phasors). Let’s do the conversions. We’ll define
our phasors as having a magnitude equal to the peak of
the sinusoidal time-signal, and a phase defined relative
to the function sin(ωt).

+
−U(ω) = Û 0°

Z2 = jωL

+ −
u

L
(ω)

Z1 = R

+

−

u
R

(ω)

i(ω)

The notation Û 0° means a complex number with
magnitude Û and angle of zero. We assume angles
written as pure numbers are in radians, and angles
in degrees are written with the ◦ symbol. Slightly
confusingly, the same symbol for angle can also mean
“find the angle of this complex number”: for example,
φ = a+ jb.

The letter Z is used for impedance, which is a ratio of
voltage
current with more generality than resistance.

Writing quantities as functions of frequency2 such as
i(ω) is a useful reminder of whether we are thinking
about time-functions or phasors. Otherwise it can
sometimes be unclear: for example, a voltage of U =
5 V could be a constant (dc) voltage in time, or
a phasor representing a sinusoid at some assumed
frequency, with size of U and angle of zero. Practical
users of ac analysis seldom need to think about the
time functions, and always work with phasors; then
it’s common to stop writing everything as a function
of frequency, as we will do later in the course.

Now we can do that same calculation as in the dc
circuit – compare this with the earlier expression:

i(ω) =
U(ω)

Z1 + Z2
=

Û 0

R+ jωL
.

(It’s not really necessary to say Û 0; it’s purely real,
so it’s the same number as Û .)

Now we have found the sought function i(ω). If we
want it as a time-function we must convert back from
a phasor to a time-function.

We know that every phasor in this circuit describes a
sinusoidal time-function with frequency ω, in terms
of peak magnitude and of phase relative to a sine
function. That’s what we chose when we converted
the source to a phasor at the start. Suppose that some

2We’ll sometimes sloppily say ‘frequency’ when we really
mean angular frequency: it’s shorter.

quantity x(ω) in the circuit has magnitude and phase
of A and α, which can be written as A = |x(ω)| and
α = x(ω). This will translate to a time-function

x(t) = A sin (ωt+ α) .

We only need to find the magnitude and phase of
the complex number i(ω), and put these into an
equation like the above. The trouble is that i(ω) is
a symbolic function, and the complex part is down in
the denominator. We have to rearrange it to express
the magnitude and angle separately.

You might already be able to show that

Û 0

R+ jωL
=
Û (R− jωL)

R2 + ω2L2
=

Û√
R2 + ω2L2

− tan−1 ωLR .

Try Section 8 if you’re lost with this.

From this expression, we see that

|i(ω)| = Û√
R2 + ω2L2

, i(ω) = − tan−1
ωL

R

By putting these into the general expression for a
time-function in our circuit, we get i(t),

i(t) =
Û√

R2 + ω2L2
sin

(
ωt− tan−1

ωL

R

)
That’s the solution! As you gain familiarity, such
solutions will come “pouring out of your pen”.

3 Background to the rules

[Not complete yet. This section isn’t part of what you
need, but just what a few people might like to study
in order to understand the background better.]

3.1 Intuitively

An example has already been shown in which
sinusoidal time-functions are represented by complex
numbers. All the quantities in the circuit are assumed
to be sinusoidal, at some particular frequency ω.

It is sufficient to think of the complex numbers as
representing the amplitude and phase of a sinusoidal
time-function. However, there are various other ways
to think of phasors.

Some people like to think of the phasor as a line in
the complex plane, then to think of these lines (or
the whole plane?) whizzing around (anticlockwise) at
the angular frequency ω as the paper moves along
horizontally and the vertical height of each phasor
traces out a sinusoid as a time-graph. Does that sound
a nicer way to think of it? Presumably not. But it
might help intuitively in some cases, particularly with
rotating machines. If you don’t understand a word of
the above description, see Wikipedia on [Phasors] for
two helpful moving pictures of rotating lines tracing
out sinusoids. Just to annoy me, they’ve made the

3

http://en.wikipedia.org/wiki/Phasor


sinusoid vertical and thus the horizontal displacement
is what determines the value of the sinusoid at each
time: the other way is more common in other sources
that I’ve seen.

3.2 Mathematically

[Incomplete.]

A sinusoidal time-function can be represented by the
real or imaginary part of exp(j(ωt + α)); remember
that exp(jφ) = cos(φ) + j sin(φ).

This has the convenience that changes of magnitude
and phase can be made by simple multiplication by
a complex number. For example, we can double the
function and shift it to be 45° later in phase, by
multiplying with the complex number 2 exp(−jπ/4)
which could otherwise be called 2 −π/4.

Then, as all the quantities have the same ωt part,
we can do a transformation by dividing out common
factor of exp(jωt).

More: Fourier-series, convolution versus frequency-
domain multiplication . . .

3.3 Steady-state solution of ODEs

[Incomplete.]

Consider writing ODEs for a systems of lots of
capacitors and inductors, expressed in terms of some
sought variable, and with a sinusoidal forcing function
due to a source. The differential equation will be in
terms of the sought variable and its time-derivatives:
these will be equated with the forcing function. If you
have to satisfy an equation like y′′′+k2y

′′+k1y
′+k0y =

cos(ωt), a good choice to start with for y(t) could
be a cosine or sine . . . these have derivatives that
are also cosines or sines, so they have a chance that
parameters can be found that will satisfy the ODE
(more conveniently, use exponentials).

This perhaps helps to show why it’s reasonable to
expect that the forced response of a linear system to
a sinusoid is also a sinusoid.

3.4 Why complex numbers

If we accept the need of representing magnitude and
phase of the sinusoidal quantities in a circuit, then
why are complex numbers useful?

Think of KCL and KVL. Here we have to add the
sinusoidal quantities. Consider the case of adding
add A cos(ωt + α) + B sin(ωt + β). We could do
this by splitting each function into a sum of pure
cosine and sine, then adding these. Complex numbers
represent this very neatly: the rectangular (kartesisk)
form is directly suited to adding and subtracting.
The same is true of vector addition. However, vector
multiplications do not have the useful properties that
complex number multiplications have, for impedance
and power.

Think of the relation of voltage and current, for
a capacitor or inductor, perhaps in combination
with some resistors. A resistor’s voltage and current
phasors have the same angle, and the ratio of
their magnitudes is described by the resistance. The
capacitor and inductor likewise determine a ratio of
voltage and current magnitudes, but they also cause
a phase-shift (change) between current and voltage. A
combination of resistors, capacitors and inductors can
cause the voltage and current phasors to have phase-
shifts anywhere between ±−90°.

Impedances are not phasors. They do not represent
sinusoidal time-functions. They are complex numbers
that multiply or divide phasors to give other phasors.
Like a resistance, an impedance changes the dimension
and gives a scaling: a 5 Ω resistor converts e.g. 2 A to
10 V. Unlike a resistor, an impedance can also change
the phase, by the convenient properties of complex
numbers. A resistor and inductor together could make
an impedance of (4 + 3j) Ω which can alternatively be
written as 5 37°Ω. It therefore converts a current of
2 −15°A to a voltage of 10 22°V.

The convenient properties for power will be seen in
Topic 11. Complex numbers “could have been made
for ac circuits”.

4 Phasors

4.1 The ‘phase-vector’

It is very common to draw phasors as lines like vectors.
One way would be like an Argand diagram in the
complex plane, with every phasor starting at the origin
(0,0). A more common choice is to show additions like
vectors, by joining phasors end to end. For example,
KCL and KVL can be expressed by expecting that all
the phasors in the law should be able to be put head
to tail to form a closed loop (zero sum), if all defined
in the same direction in the circuit.

These phasor diagrams can start looking quite
complicated. Sometimes the equations can seem
simpler to look at! But sometimes the diagram is very
helpful at giving a feeling for the sensitivity of a circuit
to changes in a parameter.

4.2 Phase reference

An ac analysis with phasors inherently assumes a
particular frequency, e.g. ω, for all quantities. Time-
functions have only two other degrees of freedom:
the amplitude and phase angle. The choice of phase
reference means the choice of which time-function
would be seen as a phasor of zero phase (purely real).

It is an arbitrary choice. You could choose that your
reference is sin(ωt) as we did earlier. Then a time-
function I sin (ωt+ 5°) could become a phasor I 5°. (I
say ‘could’ instead of ‘would’ because of the further
arbitrary choice of how to scale the magnitude: see
below!)
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Or you could choose that the reference is cos(ωt),
which is quite conventional, particularly in signals
and communication subjects. (It is liked because
cos(φ) = <{exp(jφ)}.) In that case, the time-function
I sin (ωt+ 5°) would become I −π

2 + 5° = I −85°,
due to the 90° phase difference between sine and
cosine.

These are not the only possible references: one could
choose an arbitrary angle such as cos(ωt+−134°). A
good choice can help to simplify the arithmetic, just
like a good choice of earth node in a nodal analysis.
The important thing is that the same reference must
be used for all independent sources, and must be used
if converting solutions back to time-functions.

4.3 Scaling: magnitude

We have used the terms amplitude and magnitude.
Amplitude suggests ‘bigness’, but more specifically it’s
typical when describing the height of a wave, such
as a sinusoid: it seems well suited to talking about
sinusoidal time-functions. Magnitude is common when
talking of complex numbers. We will use this to
describe the absolute value of a phasor or impedance.

The magnitude of a phasor does not have to be
equal to the amplitude of the time-function that it
represents. We will see, in the Topic on ac power,
that it is often convenient to use phasor magnitudes
that are 1√

2
of the amplitude of the time-functions! It

simplifies power calculation. That is what we’re used
to in ac: your electrical goods at home may say they
use electricity at 230 V, but this means the amplitude
(peak value) is about 325 V. A further definition,
sometimes used by people in communications subjects,
is peak-to-peak amplitude, meaning the distance from
negative to positive peaks, instead of from a peak to
zero.

As with phase, the important thing about amplitude
scaling is to be consistent. If you choose to multiply
amplitudes of time-functions by some arbitrary factor
like 3π to give the phasor magnitudes, then you
should do this to all amplitudes that are used in your
calculation. Your phasors must then be interpreted in
that way: if you convert back to time-functions you
must divide the phasor magnitudes by the same factor,
in order to get results in the same units as the other
time-functions. The ability to use arbitrary scaling
factors is yet another thing based on the assumption
of linearity of the circuit.

5 Impedance and Admittance

Resistors, inductors and capacitors are all seen in a
very similar way in ac circuits. Each of them can
be represented as a single complex number called an
impedance (sv: impedans), denoted Z. The impedance
is used in just the same way as resistance in dc circuits:
it describes the ratio of voltage and current phasors
for the component. The reason it is complex is that

there may be a phase-difference between the voltage
and current: this is then shown by the angle of the
complex number for impedance.

In the following subsections it will be shown that
a resistor has a purely real impedance (still called
resistance), and a capacitor or inductor has a purely
imaginary impedance (which can be called reactance
(sv: reaktans), denoted X).

Just like resistors in dc circuits, the impedances can be
combined into a single “equivalent” when components
are connect in series or parallel. The equivalent
impedance of multiple components may have any
combination of real and imaginary parts, although
the real part will be positive if the resistors are true
resistors (that do not have negative resistance).

It is sometimes convenient to use the reciprocal
of impedance, called admittance (sv: admittans) and
denoted Y . Similarly to conductance in dc circuits,
admittance is convenient for addition of components
in parallel connection, as it describes how easily
current can flow.

5.1 Resistance stays resistance

It’s easy to start with a resistor. Nothing has changed
since the dc circuits: at any point in time, there is
proportionality of voltage and current. If a sinusoidal
current i(t) = Î sin(ωt) is put through a resistor R,

R

+ −
u

i

then the voltage is

u(t) = Ri(t) = RÎ sin(ωt).

The two sinusoids are clearly “in phase” with each
other: they have the same angle. The following plot is
an example where R = 2 Ω.
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If this sinusoidal current i(t) is represented in its
phasor form as i(ω) = Î 0, then we see that the voltage
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u(t) would be represented as

u(ω) = RÎ 0.

The ratio of these phasors is the impedance of the
resistor,

Zresistor =
u(ω)

i(ω)
= R,

. . . which is just its resistance. It’s nice and simple for
a resistor.

Notice that even if we had used a different reference for
making the phasor of current, the resulting impedance
would be the same. For example, if a cosine reference
had been used, then the current phasor would have
been i(ω) = Î − π/2, and the voltage phasor would
have been u(ω) = RÎ − π/2, so the ratio would still
be a real number.

5.2 Inductance becomes reactance

If now the sinusoidal current i(t) = Î sin(ωt) is put
through an inductor L,

L

+ −u

i

then the voltage

u(t) = L
di(t)

dt
= ωLÎ cos(ωt).

The two sinusoids are now a sine and cosine: there is
exactly a 90° phase-shift between them. The voltage
is ‘leading’ the current, which means that the 90°
is how much earlier in time the voltage reaches (for
example) its positive peak compared to the current.
The following plot is an example, where ωL = 2 Ω.
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With the sinusoidal current i(t) is represented as
the phasor i(ω) = Î 0, the voltage u(t) would be
represented as

u(ω) = ωLÎ π
2 .

The ratio of these phasors is the impedance of the
inductor,

Zinductor =
u(ω)

i(ω)
= jωL = jXL .

This is an impedance that is purely positive imaginary,
and is proportional to frequency. That means that
at higher frequency it becomes harder (requires more
voltage) to force a given amplitude of sinusoidal
current through an inductor. Think of the inductor
as an inertia (tröghet) to current: at higher frequency
the current has to change more quickly, so more push
(voltage) is needed.

5.3 Capacitance becomes reactance

Finally, let’s put the sinusoidal current i(t) = Î sin(ωt)
through a capacitor C,

C

+ −
u

i

in which case the voltage is

u(t) =
1

C

∫
i(t)dt =

−1

ωC
Î cos(ωt).

The two sinusoids are again a sine and cosine, but the
cosine is negated (from integrating the sine). There is
still an exact 90° phase-shift, but this time the voltage
is ‘lagging’ the current: it reaches (for example) its
positive peak 90° later than the current. The following
plot is an example, where 1

ωC = 2 Ω.
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With the sinusoidal current i(t) is represented as
the phasor i(ω) = Î 0, the voltage u(t) would be
represented as

u(ω) =
1

ωC
Î −π

2 .

The ratio of these phasors is the impedance of the
capacitor,

Zcapacitor =
u(ω)

i(ω)
=

1

jωC
=
−j

ωC
=
−j

X
C

.
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This is an impedance that is purely negative
imaginary, and is inversely proportional to frequency.
That means that at higher frequency it becomes
easier to force a given amplitude of sinusoidal current
through a capacitor. Think of the capacitor as a bucket
(of charge) that moves back and forward on each cycle
of the sinusoid: the rate of transfer (charge/time) is
greater if the movements happen in the shorter time
(higher frequency).

5.4 Reactance, Susceptance, and more

First, a little about reactance, which we have seen in
the preceding subsections. What seems conventional in
power-related subjects3 is that reactance is a positive
and real number: inductive reactance is X = ωL, and
capacitive reactance is X = 1/(ωC). Then we have
to put the imaginary unit and correct sign next to the
reactance when we calculate by adding resistances and
reactances together.

Sometimes it is convenient to work with conductance,
G = 1/R instead of resistance, such as when adding
parallel resistors or looking at current-to-voltage
ratios. Likewise, it may sometimes be convenient
to work with susceptance, B = 1/X, instead of
reactance.

5.5 Combining impedances

When a resistance and reactance are connected in
series, the ratio of voltage/current across the series
combination is some complex number called the
impedance. A component called an impedance can
be used for the general case, to represent a resistor,
capacitor, inductor or some two-terminal combination
of two or more of these components. Below is the
impedance that represents a resistor and inductor in
series, at angular frequency ω.

R L Z = R+ jωL

R
C

Z = R− j
ωC

A proof of the equivalent resistor for series and parallel
connection of resistors was provided in Topic 02. The
exact same argument can be used for impedances,
using ac analysis. Impedances in series add: Z =
R + jX for an inductor and resistor, or Z = R − jX

3I have a distant memory that people in some subjects
treat reactance as being a signed, imaginary quantity: they
would write that the inductive reactance of an inductor L is
X = jωL, and of a capacitor is X = −j/(ωC). But perhaps
that’s just a false memory: I can’t find evidence of it now.
Wikipedia agrees with the real and ‘conventionally’ positive
definition. Often there are various, contradictory, conventions
that one has to be careful about, between different branches of
engineering/physics/etc. You can define anything you like, but
it’s helpful to follow the fashion within the subject you work in.

for a capacitor and resistor. Admittances in parallel
add: Y = G − jB for in inductor and resistor, or
Y = G+jB for a capacitor and resistor. Combinations
of an inductor and capacitor have a purely imaginary
impedance, of a sign that depends on which one
“wins”, i.e. which series impedance is bigger, or
which parallel impedance is smaller. This is considered
further in the Topics concerning filters and power-
factor correction.

Any group of resistors, inductors and capacitors
that has just two terminals connecting to it can be
represented in an ac circuit as a single impedance,
and needs at most two components to make an
equivalent model. This can be found by calculating
the impedance, then finding one or two components
that provide the same impedance. It is good to
become familiar with the signs: if you need a positive
imaginary part in an impedance, then you need an
inductor; a negative imaginary part needs a capacitor.

Conversion between a parallel and series combination
of two components is often useful. It is a special
(simple) case of the above conversion. Take, for
example, a parallel resistor and capacitor, Rp and
Cp. Their combined impedance Zp is related to the
component values by 1

Zp
= 1

Rp
+ jωCp, so

Zp =
1

1
Rp

+ jωCp

If we want to find a series pair of components that
is equivalent to the parallel pair (at a particular
frequency), then we see that a series resistance and
reactance will sum to Zs = Rs ± jXs. By comparing
separately the real parts and imaginary parts, between
the expressions for the series and parallel components,
Rs and Xs can be found.

The above expression has the complex part in
the denominator, which is not convenient for
separating real and imaginary parts. Rewrite this after
multiplying top and bottom by the complex conjugate,
and equate it to Zs:

1
Rp
− jωCp

1
R2

p
+ ω2C2

p

= Zp = Zs = Rs − jXs.

The impedance has a negative value of reactance, so
we need a capacitor in the series circuit: this is a
general rule, that the parallel and series pairs need the
same types of component, but just different values.

The real and imaginary terms can now be separated
and equated. The real parts directly show the resistor,

Rs =

1
Rp

1
R2

p
+ ω2C2

p

=
R

1 + ω2C2
pR

2
p

.

The imaginary parts of the series and parallel
combination must also be equal in order to achieve
equivalence,

−jXs =
−j

ωCs
=
−jω2CpR

2
p

1 + ω2C2
pR

2
p

,
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from which we see that the series reactance needs to
be a capacitor,

Cs =
1 + ω2C2

pR
2
p

ω2CpR2
p

.

The above is in fact a particular case of finding an
equivalent impedance of a two-terminal circuit. This
particular case is often useful. Conversion between
series and parallel equivalent impedances will be
relevant during the Topic on ac power.

6 Multiple sources and Superposition

6.1 A note on dependent sources

Recall, from dc superposition, that only the
independent sources are treated as driving the circuit.
The dependent sources only have any value if
something is stimulating their controlling variable.4

A dependent source is in this way a generalised
resistor. Like a resistor, the component value is a
ratio between two circuit quantities, and there is no
particular voltage or current determined by the source
itself without some stimulation from outside. Unlike a
resistor, the two quantities are not limited to be a
voltage and current pair, and they can be in different
parts of the circuit.

In ac circuits, this fundamental point is of course still
true: a dependent source only responds to the stimulus
imposed by independent sources. A dependent source
has no ‘frequency’ of its own. If the controlling
variable is stimulated by an independent source at
50 Hz, the dependent source will have a 50 Hz output.
If the controlling variable is stimulated by various
independent sources of different frequencies, then it
will respond to all of these. The dependent source’s
value (the quantity that multiplies the controlling
variable) could be a frequency dependent complex
number. This would mean that there is a a phase-
shift as well as a scaling factor (gain) between the
controlling variable and the source’s output, and that
this relation is a function of frequency. That is highly
plausible behaviour for practical implementation of a
dependent source! It is not difficult to include in the
analysis: as usual, the same steps are followed as with
dc analysis, but the numbers are complex. However,
we normally don’t bother going this far in our courses!
As far as I’m aware, no exam has had a dependent
source with a value that isn’t just a real constant.

4A note about the claim that dependent sources only have
a value if stimulated. One can make circuit diagrams where a
dependent source would drive its own controlling variable. In
our idealised circuits, the solution of zero (for all voltages and
currents) should still be found when there are no independent
sources. With dependent sources in combination with reactive
components it would be possible to make circuits where an
initial non-zero value causes an oscillation or unstable growth,
that continues even in the absence of independent sources. But
we will assume the circuits are stable and have no steady-state
values except what the independent sources have caused. That is
a basic assumption of ac analysis, where we assume the natural
response has died away and only the forced response remains.

In the following subsections, “source” will be used
to mean independent sources. When superposition
is used, any dependent sources would be kept
in the circuit for while solving each of the
different superposition states caused by the different
independent sources. This is just the same as in dc
analysis.

6.2 Sources with the same frequency

When sources have the same frequency, they can be
described as phasors within a single calculation. The
same phase reference must be used for both, so that
the phasors have the right relative phase.

For example, take two sources, of U1(t) = A cos(ωt+α)
and U2(t) = B sin(ωt + β). If we decide to convert
to phasors with a cosine reference and with peak
values, then certainly U1(ω) = A α. But then we
can’t just decide to use another reference, such as
sine, for U2; the function U2(t) has to be converted to
a phasor also using peak values and cosine reference,
U2(ω) = B β − π

2 . Check that! The − π/2 includes the
shift needed to make a cosine look like a sine.

Having more than one source generally makes the
arithmetic significantly more awkward. That’s no issue
if working with computers and numbers; and it’s still
often easier than using superposition.

6.3 Sources with different frequencies

When sources have different frequencies, they cannot
be represented by phasors that have a meaning
when used together.5 Instead, a separate calculation
is needed for each frequency. The time-functions of
circuit quantities due to sources at each frequency can
be calculated, and then these time-functions can be
summed together for the complete time-function. This
is an application of superposition. Superposition has
to be used in this case of different frequencies, and
results have to be converted back to time functions
before being summed. (Superposition is still possible
when all sources have the same frequency, but then it
is a choice as an alternative to nodal analysis or other
methods.)

6.4 A sources with multiple frequencies

A single source may be defined as having a time-
function that is a sum of sinusoids at different
frequencies. But this is equivalent to having one source
for each of these frequencies. The following diagram
shows equivalent ways of getting a two-frequency
current. (Puzzle: what equivalent connection would
be needed on the right if the sources were all voltage
sources?)

5Remember that a phasor represents the size and phase of a
sinusoidal function at a specific frequency. Sinusoidal functions
at different frequencies do not have any steady phase-relation,
as the relative positions of peaks or zeros between the functions
are constantly changing with time.
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A cos(ωt) +B cos(nωt+ φ)

A cos(ωt)

B cos(nωt+ φ)

Since a multi-frequency source can be represented as
separate sources, it can be handled in the same way
as above, using superposition for calculating the the
quantities caused by separate sources with different
frequencies.

6.5 DC is a frequency

It was mentioned much earlier that dc is a special case
of ac, where the frequency is zero. In a fourier series
the zero-frequency component is one of the parts.

We can get a dc solution in ac analysis by setting
ω = 0. It is fun to note that the method for
finding the equilibrium “with constant sources” of a
circuit with capacitors and/or inductors will come out
automatically from the ac analysis when ω → 0. We
replaced capacitors with open circuits: a capacitive
impedance becomes infinite as ω → 0, which indicates
an open circuit. Likewise inductors become short
circuits, as their impedance drops to zero.

Therefore, if a circuit is stimulated by ac and dc
sources, the steady-state solution can be found by
superposition of the time-functions of voltage and
current due to the different sources. This is just a
particular case of the superposition with sources of
different frequency.

6.6 Superposition for transients too

The assumption in ac analysis is that the circuit
is in sinusoidal steady state. Mathematically (in
differential-equation terminology), the transient re-
sponse of the dynamic system has died away, and
the only remaining activity is the forced response due
to the sinusoidal forcing functions of the independent
sources.

The complete response is the combination of the
transient and forced response. It is what would be
seen if one newly switched on a sinusoidal source to a
circuit.

A convenient way to find the complete response is to
find the forced response by ac analysis. Then find the
state of the continuous variables at the point when
the ac sources will start giving their output. At that
starting time, the difference between the continuous
variables from these two calculations is the amount
that should be applied to calculate just the unforced
transient response that should be added in time to
the ac forced response in order to find the complete
response.

6.7 Superposition, Linearity and Power

A warning or reminder: superposition assumes
linearity. In a linear circuit we expect voltages and
currents to vary in direct proportion to the sources
that drive them. The preceding subsections used
various forms of superposition with sources of different
frequency, zero frequency, etc. This assumes that
solutions are circuit quantities of current, voltage,
potential or charge in a linear circuit. Power generally
does not have a linear relation to these circuit
quantities: for example, we know the power in a
resistor is proportional to the square of the current (to
avoid thinking of ac power, let’s consider the power
at some instant). We therefore should not generally
try superposition with powers. There is a special
exception to this, which will be in Topic 11.

7 Two-terminal equivalent sources

The Thevenin or Norton equivalent reduces a linear
circuit that is “seen through two terminals” to be just
a very simple circuit of a source and resistor, with the
exact same behaviour.

This is not valid for transient calculations: the
transient response of a circuit that includes L and C
components, seen between two terminals, could be a
complicated mixture of oscillations, and is dependent
on the inital states. This cannot be simplified into two
basic components.

We did use equivalents within the transients
calculations, but we carefully made the equivalent of
only the part of the circuit that did not contain a
capacitor or inductor! That was valid.

In ac analysis the equivalent circuits are valid. For
one particular frequency, e.g. angular frequency ω,
a two-terminal circuit has a particular combination
of a source and impedance that is equivalent. The
calculation method is exactly as for dc circuits, except
that phasors and impedances are used instead of
purely real-valued voltages and resistances.

The only extra complexity compared to dc is if
we are asked to show the components that make
up the Thevenin or Norton impedance. If Z has
positive non-zero real and imaginary parts then a
resistor and inductor are needed in order to make
this impedance. If Z has positive real and negative
imaginary parts then a resistor and capacitor are
needed. Purely real or purely imaginary Z can be
made from a single component. A negative real part
of Z suggests negative resistance, which should not
be possible unless there are dependent sources in the
circuit. In such cases we can show a negative resistance
component in the equivalent circuit model.
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8 Complex Numbers

8.1 Notation

Consider a complex number z.6

In rectangular form (sv: kartesisk), let us say that

z = a+jb,

where a is the real part, b is the imaginary part, and
j =
√
−1.

The real and imaginary parts of a complex number z,
or of some larger expression, can be written as

<{z} and ={z}.

In polar form (sv:polärform),

z = mejφ,

where m is the magnitude (or absolute value) and φ
the angle (or argument).

The magnitude and angle can be written as

|z| and z.

In the canonical case, a and b are real, m is real and
positive, and φ is real and could be defined either as
positive 0 6 φ 6 2π or else within the range −π 6
φ 6 +π.7

The above definitions are conveniently plotted “in
the complex plane” as an Argand diagram, as shown
below. The position of the complex number is here
shown by a bullet.

<{z}
a

={z}

b

m

φ

•

6Here, the lower-case z is used to denote a complex number
in general, not a impedance (which usually is denoted by an
upper-case Z). This is conventional, similar to the use of x for
an unknown real number.

7Of course, we could still define a complex number z by using
complex values of a or b, or negative or complexm, or values of φ
redefined as φ+208π, etc! The restrictions are chosen to show a
“canonical form” about which we can more easily develop rules,
because of assuming these restrictions. For example, if we see
a− jb, and know that a and b are positive reals, we can assume
the number lies in the 4th quadrant of the complex plane.

The four parts between the axes are the quadrants: the
first quadrant is where both axes are real (top right),
then the others are numbered anticlockwise. As the
angle φ increases, the position of the complex number
moves anticlockwise in the complex plane.

Negation of a complex number can be shown in various
ways:

−z = −(a+jb) = −a−jb = −m φ = m φ+π.

Conjugation is shown as z∗. It means that just the
imaginary part is negated, so that the number appears
to be reflected in the real axis when seen in the
complex plane,

z∗ = (a+jb)∗ = a−jb = m −φ.

An exponential with an imaginary argument gives a
complex number with magnitude of 1 and angle of the
argument’s magnitude:

m φ = mejφ = eln(m)+jφ = m cosφ+ jm sinφ.

8.2 Rectangular and Polar conversion

Looking at the Argand diagram shown in Section 8.1,
we can think of converting between forms of the
complex number. The real and imaginary parts
are perpendicular, so trigonometry with right-angled
triangles is our tool.

8.2.1 Polar to real and imaginary

The real and imaingary parts, a and b, are sides
of a right-angle triangle with magnitude m as its
hypotenuse; the side a is the one adjacent to the angle
φ. Therefore, the rectangular parts can be obtained
from the polar form as

a = m cosφ, and b = m sinφ.

This works for a number anywhere in the complex
plane.

8.2.2 Rectangular to magnitude

Pythagoras’ theorem can be used to find the
magnitude:

m =
√
a2 + b2.

This also works for a number anywhere in the complex
plane.

8.2.3 Rectangular to angle

If the real part, a, of a complex number is positive,
then the angle must be in the “right half-plane”, i.e.
−π < φ < π. In that case, the angle can be found
from

φ = tan−1
(
b

a

)
(a ≥ 0).
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But be careful! The inverse tangent function should
not be used like this for a complex number with a
negative real part! Such a number is in the left half-
plane. The angle calculated by the above equation will
be wrong.

Consider a simple case of the number 1+1j, which has
an angle of tan−1 1 = 45°. Now consider its negation,
−1 − 1j, which will be diametrically opposite it in
the complex plane, at 225°, or equivalently at −135°.
Bearing in mind that −1−1 = 1

1 , the result of taking the
inverse tangent of the ratio of imaginary to real parts
is again 45°.

From this we see that if the real part is negative, we
should add or subtract 180° to the result from the
tangent:

φ = tan−1
(
b

a

)
+ π (a < 0).

8.3 Polar-form arithmetic

Consider two complex numbers in polar form, A α and
B β, where A and B are positive real numbers and α
and β are real numbers.

There is a very convenient relation, de Moivre’s
theorem, for the product or quotient of polar complex
numbers:

A α ·B β = AB α+ β,

and
A α

B β
=
A

B
α− β.

One usefulness of these is the case where a phasor is
multiplied or divided by an impedance or admittance,
e.g. u = Zi, where all three numbers can be complex.
Then we see that the magnitude of the voltage
across the impedance is the product of the current’s
magnitude and the impedance magnitude, and the
phase of the voltage is the phase of the current plus the
phase of the impedance: |u| = |Z||i| and u = i+ Z.

Another usefulness comes when dealing with powers
(in the mathematical sense: potenser). For example,

z2 = |z|2 2 z,

or going in the other direction,

√
z =
√
z z/2.

We will meet products such as uu∗, particularly when
studying ac power. This simplifies nicely:

uu∗ = |u|2 u− u = |u|2 0 = |u|2.

One more common case we will meet is a division
by a complex conjugate, such as |u|

2

Z∗ . The conjugate
negates the angle of Z, but the division also negates

the angle, so the angle of the resulting complex
number is the same as the angle of Z,

|u|2

Z∗
=
|u|2

|Z|
Z.

Addition and subtraction in polar form are not
nice. In the general case, where we have some
arbitrary angle, it is necessary to split the complex
number into rectangular parts using cosine and sine
functions. These rectangular parts can then be added
or subtracted separately. In a few special cases we are
lucky, when the angle is one where the cosine and sine
have convenient values like 1, 1/

√
2,
√
3/2, 1/2, or (best

of all) 0.

8.4 Rectangular-form arithmetic

Addition and subtraction in rectangular form are
trivial: the real and imaginary parts are just handled
separately as real numbers.

Multiplication of complex numbers in rectangular
form is usually done by expanding out the terms,

(a+jb)·(c+jd) = ac+jad+jbc+j2bd = (ac−bd)+j(ad+bc).

Division is a bit more awkward. The aim is usually
to avoid complex quantities being on the bottom
(denominator) of the expression. A complex number
in the form k

a+jb cannot be immediately split into real
and imaginary parts, whereas a number in the form
c+jd
k can easily be split. We often want to find the real

and imaginary parts of the number separately.

When a complex number is at the bottom of a
quotient, we can always force this bottom part to
become purely real by multiplying the top and bottom
by the complex conjugate. Then it looks messy, but it
can at least be easily split:

k

a+ jb
=

k

a+ jb
· a− jb

a− jb
=

k

a2 + b2
(a− jb) .

The bottom part was simplied by expanding and the
relation −j2 = 1: (a+ jb)(a− jb) = a2− j2b2 = a2 + b2.

8.5 Choices of form during a solution

Rectangular form is very nice for adding, and a bit
tedious for muliplying or dividing. Polar form is very
nice for multiplying or dividing. But it’s horrid for
adding, in the general case where numbers A α and
B β may both need to be split into rectangular parts
for adding, e.g. A cos(α) + B cos(β) and jA sin(α) +
jB cos(β) . . . consider that α or β may also be long
expressions, and that the cos() parts will remain in
the result unless you have lucky angles such as 60° or
90°, etc, that can be simplified to 1/2 or 1.

The main advice is that you should not usually convert
rectangular form to polar form. For some of the
calculations — like when we want to get a time-
function at the end — we will need to get the final
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answer in polar form. But if we convert expressions to
polar form too early, we might have to use sin() and
cos() to make them rectangular again for addition or
subtration, which risks giving unpleasant expressions.
So convert to polar form only when you see that no
more addition/subtraction is needed until the end!

8.6 Computers

A computer lets us avoid all the complex algebra,
at least when we have numeric values. If you had
written a program for dc analysis, in a language such
as Matlab that supports complex numbers, then you
could just use the program right away for ac analysis.
It would be necessary only to express the C and
L components as impedances, and the independent
sources (at one frequency) as phasors.

Some important functions are:
Magnitude: abs()
Phase: angle()
Phase in degrees: angle()*180/pi
Inverse tangent: atan()

The inverse tangent shouldn’t normally be needed.
The angle() function operates directly on a complex
number, and sorts out the little details such as whether
tan−1

(
b
a

)
needs a phase-shift because of having a

negative value of a.

If you have numbers, it’s easy to do your ac
calculations by computer, using short variables to
represent the components. For example, Z1, U etc.
It is good to work in small steps, defining new
variables, so that you can check the intermediate steps
for reasonableness. A few examples will be given in
homeworks or exercises (not as required work, but as
shown examples in the model solutions).

9 Summary of the AC introduction

This introduction to ac analysis has shown the
use of complex numbers to do calculations for
sinusoidal steady-state conditions on general circuits
with voltage and current sources (independent or
dependent) and resistors, inductors and capacitors.

As extensions of this method, we’ve considered
superposition to extend to cases beyond pure ac. The
solution with sources at different frequencies has to
be done by adding the resulting time signals, since
phasors at different frequencies can’t meaningfully be
directly added as complex numbers. Solutions from
ac analysis can also be superposed with the natural
response or with a dc solution, which also require
superposition in time.

Although the calculations have involved phasors and
impedances (which represent the circuit at a particular
frequency), we have still seen a lot of time functions.
In the later ac Topics there will not be much attention
to time: calculations will be based on starting and
finishing with phasors. When using these, we just

accept that each complex number for voltage or
current represents a sinusoidal quantity in time.

The typical type of exam question that comes up
with relevance to this Topic is in the form “Here
is a circuit with voltage source u(t) = cos(ωt + φ)
and current source i(t) = sin(ωt − φ/2); solve for
the marked voltage ux(t)”. You will need to decide
whether the circuit can be represented as a single
calculation by the phasor method, or whether the
circuit does not have only one frequency in steady
state, and therefore has to have separate analyses
combined by superposition. Then you will need to
convert sources and R, L, C components to the
appropritate phasors and impedances, and make the
phasor solution. Finally, you need to translate back
again into “the time-domain” to find the requested
sinusoidal time-function. This requires the magnitude
and phase of the phasor that represents the requested
quantity, and you have to use the same reference phase
(e.g. choosing that cos(ωt) corresponds to a phasor
with zero phase). Don’t forget to include the ωt term
too, in the final cosine or sine function.

10 — Extra —

Quite a lot of the earlier parts of this Topic’s notes
was not strictly needed for doing calculations on ac
circuits of the type that we see in the homework and
exercises. These parts could have been put in this
“Extra” section: the reason they weren’t is that they
might help with understanding the calculation part
and its limitations. There’s not much more to put here.

10.1 Pure phasors, ignoring time

We’ve been told that the rest of the course on ac
will mainly ignore time. This is how people who need
to analyse ac circuits actually work, in most cases.
They don’t care about some absolute time-point t = 0
and whether the signal is at a peak or a zero at
that time (cosine or sine), nor about the “absolute”
phase relative to some standard. They just care about
relative phases within a single circuit. So all voltages
and currents are treated as phasors from the start.

It is necessary to define what angle the phases are
defined relative to. Usually we choose to define one
of the voltages or currents as the zero phase; quite
often we choose a voltage source. Then at least one of
the phasors is a nice simple real number. The source
values appear in many expressions, since the sources
cause all the other currents and voltages, which is why
it is often desired to define a source as the reference.
The usual choice is whatever is most convenient for the
calculation — just like the choice of a ground node.

There is, as usual, an exception to the above claim that
only relative phase is important. In power systems
it is increasingly common to have synchronised
measurement of phasors relative to a common “zero
time”: in this case, the reference is a cosine (at the
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systems’s declared frequency, e.g. exactly 50 Hz or
60 Hz) with its zero phase being at the start of each
second (in UTC time). The timing is often taken from
a GPS receiver.

The PMUs[link] (phasor measurement units) that
do this are a current “hot topic” in power systems, to
make grid operators more aware of what is happening.
See also a more commercial PMUs[link] page.

The phasor measurement is arguably not really an
exception. I don’t think many users care directly
about how their voltage or current relates to UTC
seconds! The time reference is just a way to permit
the grid operator to collect results from measurements
over grids that cover distances of a thousand (and
more) kilometres, and still know the relative phases
of measured voltages and currents in different places
within fractions of a millisecond. So it’s still relative
phase that matters, but the time-reference is a
convenient way to measure relative phase even across
continental distances.
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