
Electric Circuit Analysis, KTH EI1120
N. Taylor,

Topic 10: Frequency-response & filters

Starting from Topic 09, we have been finding and
interpreting equations that are functions of frequency.
Impedances and admittances contain jωL or jωC
parts. Voltages and currents are sometimes written
as e.g. u(ω), at least to remind us that we intend the
variables as phasors rather than as time-functions or
dc values.

We have looked at changing a component or input,
like a capacitance or voltage, but not at the effect of
frequency on how the circuit behaves. The frequency
has mainly been assumed to be a given constant for
the circuit we are studying. This is often reasonable,
such as when calculating or designing powers and
power-factor correction in an ac power circuit known
to be running at 50 Hz or 60 Hz. In some other cases,
we care about a circuit’s behaviour over a range of
frequencies, and might even want to design a circuit
so that some voltage or current, or relation between
voltages and currents, has a particular dependence on
frequency.

The term frequency response describes how relations
within an ac circuit can depend on frequency. Even
for a simple case such as the relation of voltage
to current on an inductor, we see from u(ω) =
jωLi(ω) that the ratio of the voltage magnitude
to current magnitude is proportional to frequency,
and the voltage is always leading the current by
π/2. Circuits with several impedances can produce
much more complicated frequency-response, and non-
monotonic changes in amplitude and phase.

Sometimes the frequency response of an existing
system or design is to be found; at other times, a
particular frequency response is desired, and a circuit
must be designed to achieve this.

In classic radio circuits, the tuner (the knob that
you turn to choose a radio station) is a variable
capacitor, which changes the resonance frequency of a
type of filter circuit, so that it rejects frequencies other
than the one narrow range that you want. Another
non-power example is the circuits that split audio-
frequency signals in a loudspeaker unit that contains
a smaller loudspeaker (tweeter) optimised for higher
audio frequencies, and a larger one (woofer) for lower
frequencies. There are many other examples in general
signals and communications subjects: a generic one
is a “low-pass filter” to remove high frequency noise
that can come into circuits from electric sparks, radio
signals etc.

In power applications, non-sinusoidal currents are
drawn by many modern electronic devices that use
power-electronic components such as transistors and
diodes. These currents can, by fourier analysis, be seen
to contain many frequencies. A common requirement

is to limit the size of the currents that are not at the
intended frequency of the supply, such as 50 Hz; this
can be done by filter circuits that either make it easy
for the currents at unwanted frequencies to pass back
to their source, or difficult for them to pass into the
rest of the network.

In this Topic we consider network functions, amplitude
response and phase response, and asymptotic plots of
these responses (Bode diagrams). The strong relevance
to the laboratory task is emphasised by analysing
exactly that circuit!

1 Network function

For our purposes here, a network function
(sv:nätverksfunktion) describes how one circuit
variable (current or voltage) that we control affects
another circuit variable that we measure.1 The
following circuit is a simple example. Its principle
is behind many important practical situations, such
as filtering of high-frequency noise, or undesired
limitation of speeds in electronic equipment.
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If the circuit is driven by an input voltage ui(ω)
applied to the terminals at the left, then the current
i(ω) is

i(ω) =
ui(ω)

R+ 1
jωC

The network function relating this current to the
voltage ui(ω) that drives the circuit is defined as the
ratio of their phasors,

H(ω) =
i(ω)

ui(ω)
,

which, from the preceding equation, is seen to be

H(ω) =
i(ω)

ui(ω)
=

1

R+ 1
jωC

=
jωC

1 + jωCR

This has dimension of admittance [Ω−1], as is expected
when the network function relates a current to a
voltage.

We will see later that it can be helpful to rearrange
these functions in a special form, like the final one
shown above.

Good advice when handling network functions is to
look for a simple way to solve the circuit, and not to

1One definition of network function is that it’s a purely
steady state ac concept, relating phasors expressed in the
variable jω; this distinguishes it from a transfer function, which
relates Laplace transforms that are expressed in the variable
s = σ + jω.



do any simplifications like expanding parentheses or
forcing all complex parts to the top of the expression.
These changes can make it harder to manipulate and
interpret the network function.

The same circuit, above, could have other network
functions defined. For example, the voltage across the
capacitor is related to the input voltage by a different
network function, which can be found easily by voltage
division,

H(ω) =
uc(ω)

ui(ω)
=

1
jωc

R+ 1
jωC

=
1

1 + jωCR
.

This is dimensionless, as it ought to be for a ratio of
voltages.

Replacing the capacitor with an inductor, something
rather “opposite” could intuitively be expected. After
all, at high frequencies a capacitor is a low impedance,
and an inductor is a high impedance.
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The ratio of voltages now gives a different network
function,

H(ω) =
ul(ω)

ui(ω)
=

jωL

R+ jωL
=

jωL/R

1 + jωL/R
.

This looks more complicated than the function with a
resistor and capacitor, but actually it produces plots
with the same basic features, just shifted or reflected:
compare the “low pass” and “high pass” graphs in the
next section. We could avoid the ω appearing twice by
rewriting the function as

jωL/R

1 + jωL/R
=

1

1− j(R/L)/ω
,

but we generally prefer to stick to a few simple
“building blocks”, in which case we prefer to keep the
denominators in the same form for both circuits.

“Duality” of course applies, so a similar set of
functions could be found when swapping conductance
with resistance, series with parallel, inductor with
capacitor, and voltage with current.

2 Filters

To filter is to separate into different parts. An electric
filter circuit is designed to have a network function
that is frequency-dependent in a particular way. The
result can be that it allows different frequencies in the
input to come out of the filter with different gains
(amplitude changes) or phase-shifts. One extreme
case is when one wants to prevent all frequencies

in a particular range from getting into the output.
Some practical applications of filter circuits have been
mentioned in the introduction.

There are several common types of filter, with names
based on parts of the spectrum (frequency range) that
they “pass” or “stop”. Four common ones are shown
in the following figure. The word “band” refers to a
range of frequencies not extending down to zero or
up to very high values; “low” and “high” refer to the
extremes of the frequency range.
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In each case the red lines show an “ideal” response,
which cannot be attained in reality. The smooth blue
curve shows a very simple implementation with a
network function that could be made from one or a
few simple circuit-elements.

A low-pass filter, for example (top left) has a
flat response at low frequencies, so it allows these
frequencies all to pass with a similar size. Above some
frequency (which is 1 kHz in the example above) the
network function reduces the relative strength of the
signals.

3 Frequency response

A network function by itself is a complex function of
frequency. For the sort of circuit we’re looking at in
this Topic, where we don’t have resonances between
inductors and capacitors2, the network function can
be written in a special form consisting of just a few
basic terms. An example is this,

H(ω) = k
(jω/ω0) (1 + jω/ω3)

(1 + jω/ω2) (1 + jω/ω1)
. (1)

The main terms in the numerator and denominator are
each in the form (1+jω/ωx), where ω is the variable of
angular frequency, and ωx is a constant. These types
of terms cannot be cancelled unless the ωx happens to

2Or similar forms of resonance caused by combining reactive
and active components such as multiple capacitors and an
opamp.
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have the same value for a term on the numerator and
the denominator.

The only other terms that might be needed are
an overall gain that we can call k, and a term
jω/ωx (possibly squared or cubed etc) multiplying or
dividing the whole function. Notice that there would
not need to be terms like this in the numerator and
denominator at the same time: they would then be
able to be simplified into a constant that could be
included in k. Notice also that the numerical values
of ω0 and k could be redistributed: in the above
example, one could multiply both k and ω0 by some
constant without changing the function. In this way,
k could be combined with ω0 to make the equation
look simpler. In actual network functions a term jω/ωx
is often found together3 with a term 1 + jω/ωx; in
that case it is probably neater to keep both parts
instead of combining k with one part. These are
mainly matters of taste that you can decide about
after some experience!

Each term in the numerator containing ω is called a
zero of the function, and each term in the denominator
containing ω is called a pole. This is from general
terminology for complex functions; we don’t need to
consider why (although you could start looking [here!])
but just to recognise the names as alternatives for
“things in the top” and “things at the bottom”!

For practical purposes, the most interesting features of
H(ω), when a signal travels through different cables,
amplifiers, filters etc., are usually the amplitude and
then possibly the phase. The amplitude is particularly
meaningful: it relates to the power available from the
signal, and it can be measured by a voltmeter or
ammeter at any point in a circuit. Phase is a relative
measurement, for which we would have to compare to
another measurement (such as the input to a circuit)
or to a specific time-source (such as UTC seconds).
It is therefore less common to be able to measure
phase, or to care about it, although in some cases it
is very important. The rectangular form, of real and
imaginary parts, suffers the same problem as phase,
of needing a reference for “what is the zero angle”;
it has further problems of breaking up the interesting
magnitude into different parts. Rectangular form is
not a common way to think about any H(ω) function.

4 Plotting

Nowadays it is easy – and sensible – to plot a network
function by writing it as an equation on a computer,
then plotting the amplitude and phase of the solution
at many frequencies.

3Terms that arise together: as an example, consider the
relation between the inductor voltage and total voltage in a
series connection of resistor R and inductor L. By voltage
division, this ratio is jωL

R+jωL
, which can be written in the

standard form as
jωL/R

1+jωL/R
, where L/R could be written as

1/ωx.

But as usual, there are still some advantages to
being able to visualise (in the imagination) the
function, just from seeing the equation. This also helps
when one has to work backwards, finding a suitable
equation to describe a desired type of frequency
response. Earlier generations of engineers had to
use approximate methods, but we can try to take
advantage of quick pen-and-paper methods and more
detailed computer solutions. Plotting is useful for
giving an immediate insight into the behaviour of
the network function. Many products are specified by
plots of their frequency-response in amplitude and/or
phase, or by terminology that comes from such plots,
e.g. “corner frequency”.

Given a function such as (1), we can consider each
of the separate multiplied terms, and how it behaves
alone. Later we will see that combining their separate
effects is surprisingly easy.

It is normal to plot in log-log scale for network
function amplitude plots. One reason is simply
that one typically studies amplitude responses and
frequencies that vary over several “decades” (decade is
used to mean “power of ten”, sv: tiopotens). Another
reason is that network functions typically contain
powers4 of frequency. A power function, such as y =
xn becomes a straight line with gradient n when
plotted in log y/log x scale; We will see this soon
— in fact, the graphs in Section 2 show that even
the actual filter functions were mainly straight lines,
but with curves joining them. Yet another reason
for logarithmic scale is that we can then add the
amplitudes found from the different terms in the
network function, because log ab = log a+ log b.

Consider a term jω/ω0. Its amplitude is ω/ω0. Its
phase is always +π/2 (+90°), as +j multiplies a real
value. What does this term’s magnitude look like
in log-log scale? The magnitude is |H(ω)| = ω/ω0,
which can be written as 1

ω0
ω1. It therefore appears

as a straight line with gradient of 1 decade (y) per
decade (x). At the point where ω = ω0, the line passes
through |H(ω)| = 1, which in log-scale has the value
log |H(ω)| = log 1 = 0.

For the same type of term in the denominator, we have

1
jω
ω0

= −jω0ω
−1

which has a constant phase of −π/2, and would have a
gradient of −1, also passing through |H(ω)| = 1 when
ω = ω0.

Now the other type of term is considered, where there
is an additional real part: (1 + jω/ω0).
When ω � ω0, the 1 is negligible, so this term behaves
like jω/ω0 which we studied before.
When ω � ω0, this term becomes a constant of 1.
In between the two extremes, where ω = ω0, the term
is (1 + j), which is

√
2 π

4 .

4Here, “powers” is in the sense “potens”, not “effekt”!
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When the term is in the denominator, so that we
have 1/(1 + jω/ω0), then:
When ω � ω0, it is like −jω0ω

−1 which we studied
before.
When ω � ω0, it becomes a constant of 1.
When ω = ω0, it is 1/(1 + j), which is 1√

2
−π
4 .

5 Decibel scale

We have seen that a logarithmic scale on both axes
is useful for amplitude plots, since it makes typical
simple network functions be straight lines.

The decibel scale is a widely used logarithmic scale
for comparing powers. The result is distinguished by
the short name dB. For some ratio of power, P/P0 the
decibel value is

dB = 10 log10

(
P

P0

)
(2)

On the assumption that power is quadratically related
to voltage (resistor), i.e. that (P/P0) = (U/U0)2,

dB = 10 log10

(
U2

U2
0

)
, (3)

or equivalently

dB = 20 log10

(
U

U0

)
, (4)

which is the usual formula for converting voltage or
current to a decibel scale.

The “reference” U0 or P0 could be a chosen value. For
example, the choice P0 = 1 mW (milliwatt) is used for
a lot of specifications of communication equipment: in
that case, the calculated powers in decibels are then
expressed as dBm (decibels relative to a milliwatt),
and voltages are often chosen to be relative to the
voltage that is needed to give 1 mW in a 600 Ω resistor.

However, when we are expressing a network function,
instead of a single value, in decibel scale, there is no
need to consider a reference. The network function
is already a relative measure: it is a ratio of circuit
quantities.5 So the decibel value of a network function
can be found just by using the network function’s
magnitude as the “ratio” that we’re converting to the
dB scale,

dB = 20 log10 |H| . (5)

We must be careful to take the absolute value
when putting it in computer programs: see the later
example.

5It must be admitted here that network functions relating
the dissimilar quantities of voltage and current are not
dimensionless. Then the decibel result is dependent on the units.
A dimensional purist might like to divide the function by a unit,
to make the argument to log() dimensionless. For our purposes,
we’ll just accept that all our network functions can be used as
arguments to 20 log |H(ω)|.

6 Bode plots

A Bode amplitude plot is an “asymptotic approx-
imation” of |H(ω)|, using decibels plotted against
the logarithm of frequency. A Bode phase plot shows
phase against logarithm of frequency.

The functions we consider are split into factors that
multiply in the top and bottom of the equations. Phase
adds, logs add.

Sketching a Bode amplitude plot is a particularly
common task. The best way is probably to learn
what the plot of each commonly found term such as
(1 + jω/ωx) or 1/(1 + jω/ωx) looks like, then to draw
these separately for each term, and then add these
plots together.

For the amplitudes, in decibels, the four basic terms,
jω/ω0, 1

jω/ω0
, 1

1+jω/ω0
and (1 + jω/ω0), are shown

clockwise from top left in the following figure, where
the frequency 1× 103 Hz (corresponding to the chosen
ω0 in this example) is marked with ‘*’.
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The phase plots are shown for the same terms, in the
following figure, with a vertical line at the frequency
corresponding to ω0.
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Given a function such as (1), each term can be
identified and plotted separately, and then the
resulting plots can be combined to give the complete
network function, as shown in the following figure.
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Notice that the decibel amplitudes of the separate
terms have been added to find the decibel amplitude
of the total network function. This may sound
strange, as the separate terms are multiplied in the
network function: it works because the decibel scale
is logarithmic, and log ab = log a + log b. Hence, for
example, if dB(·) = 20 log10(·),

dB

(
1 + jω/ω1

1 + jω/ω2

)
= dB (1 + jω/ω1)+dB

(
1

1 + jω/ω2

)
.

For a phase-plot, the phases add because of the
behaviour of complex numbers when multiplied: in
polar form, A αB β = AB α+ β.

The conventional Bode plot uses just straight lines,
ignoring the curved part where a term such as 1 +
jω/ωx has the condition ω ' ωx. The straight line
plot is the ‘asymptotic approximation’ of the actual
network function: hand-drawn plots generally use
straight lines for simplicity. The frequency ωx is called
the corner frequency of such a term, since the slope
changes between above and below this frequency.

7 A more detailed example

Our final laboratory task is Lab3, Kabelsökare. Its
result is a circuit that will turn on little warning-lights
when it detects that there’s an energised conductor
(with AC mains) close by. The circuit includes an
opamp-based amplifier with a band-pass filter. It
amplifies the signal picked up by a capacitive sensor
that is held near the wire.

−

+vi

C2

R2

R1

C1

vo

The input signal vi is the potential of a small metal
plate on the circuit board. If an energized wire is
nearby, this function will contain a power frequency
(50 Hz) part, picked up by capacitive coupling. It also
will contain higher frequencies, due to noise in the
supply, radio signals, etc. These signals may all be in
the region of small parts of a volt, but there is also
a dc voltage of around 4.5 V due to the design of the
circuit (the input is in fact connected to the middle of
a resistive divider).

At the output, shown by potential vo, we want the
50 Hz signal: this is what is expected from the “hidden
cables” that this cable finder is looking for. It needs to
be made stronger (amplified) so that it can easily be
compared to the level that we choose for making the
lamps (LEDs) come on. But we certainly don’t want to
amplify the dc part of the input by lots of times: that
would make a very high voltage, and our amplifier’s
output is anyway limited to the range 0 < vo < 9 V by
the 9 V battery that drives the circuit. We also would
prefer not to detect the frequencies much more than
50 Hz, which probably have come from other sources
that we are not interested in detecting. For this reason
we want an amplifier that gives the strongest gain at
frequencies around 50 Hz, and low gain at frequencies
far away from that: we want a band-pass filter, with
its pass-band including 50 Hz.

For convenience, define an impedance to represent
each R-C pair:

Z1 =
R1

1
jωC1

R1 + 1
jωC1

=
R1

1 + jωC1R1

Z2 = R2 +
1

jωC2

Voltage-division of vo gives the potential v− at the
inverting input. Note that this voltage division is only
valid because we know that the opamp input takes no
current. The assumptions of negative feedback and an
ideal opamp let us equate the potentials of inverting
and non-inverting inputs.

vi = v+ = v− =
Z2

Z1 + Z2
vo

5



This gives the network function for the whole amplifier
circuit,

vo
vi

=
Z1 + Z2

Z2
= 1 +

Z1

Z2

Now, unfortunately, we need to substitute the neat ‘Z’
symbols with the known quantities; it is also helpful
to rearrange the result into the neat form with jω/ωx
terms.

H(ω) =
vo
vi

· · ·

= 1 +

R1

1+jωC1R1

R2 + 1
jωC2

= 1 +
jωC2R1

(1 + jωC1R1)(1 + jωC2R2)

= 1 +
jω/ω0

(1 + jω/ω2)(1 + jω/ω1)

(6)

where ω0 = 1
R1C2

, ω1 = 1
R2C2

, and ω2 = 1
R1C1

.

In our case (the lab task), we have

R1 = 560 kΩ, C1 = 2.2 nF,
R2 = 12 kΩ, C2 = 1.0 µF,

whence

ω0/2π ' 0.3 Hz, ω1/2π ' 13 Hz, ω2/2π ' 130 Hz.

The following Octave/Matlab code can be used to
plot the actual magnitude and phase response for this
function, and the asymptotic approximation of the
amplitude response.

% input

R1=560e3, R2=12e3, C1=2.2e-9, C2=1e-6,

% calculation

w0 = 1/(C2*R1), w1 = 1/(C2*R2), w2 = 1/(C1*R1),

f = logspace(-3,6,3000); % vector of frequencies

w = 2*pi*f; % corresponding angular frequencies

Z1 = (R1./(1j*w*C1))./(R1+1./(1j*w*C1));

Z2 = R2+1./(1j*w*C2);

% simple way to write H(w) [can check H_==H!]

%H_ = Z1./Z2 + 1;

% standard form of network function

% written with ".*" "./" to work on vectors:

H = 1 + (1j*w/w0)./((1+1j*w/w1).*(1+1j*w/w2));

% H is now a vector of complex numbers giving

% the ratio vo / vi at different frequencies

% amplitude response

dB = 20*log10( abs(H) );

figure

semilogx( f, dB, ’b’ );

xlabel(’frequency [Hz]’);

ylabel(’amplitude response [dB]’);

% phase response

figure;

semilogx( f, angle(H)*180/pi, ’b’ );

xlabel(’frequency [Hz]’);

ylabel(’phase response [degrees]’);

The resulting amplitude-response plot (after adding a
little text to it) is the following:
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The “+1” term ensures that the amplitude response
cannot go below ×1, i.e. 0 dB (unless the real part
of Z1/Z2 could be negative). This effect is seen by
comparing the blue curve, for the entire function
H(ω), with the red curve that shows this function
without the +1 term. The aymptotic approximation
(Bode-type plot) is shown too, by the dashed black
lines; it makes clear the moderate deviation just
at the special pole or zero frequencies, but good
approximation over the rest of the curves.

The phase-response plot shows how the phase of
Z1/Z2 (the “neglecting +1”) changes from being
dominated by the numerator’s imaginary term at
low frequencies, to being dominated by the one
uncancelled pole at high frequencies. The full function
H(ω) tends to zero phase at the extremes, as the 1 is
then much bigger than the ratio Z1/Z2 so H is almost
exactly real at very high or low frequency.
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The following code is a more complicated alternative
for the plotting, and was used to make the actual
shown figures.

% (the variables used before are

% assumed still to exist)
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figure

% the first parts here make the asymptotic lines

semilogx( ...

w0*[0.1,10]/2/pi, [0,0], ’k--’, ...

sqrt(w1*w2)*[0.1,10]/2/pi, ...

[1,1]*20*log10(abs(w1/w0)), ’k--’, ...

(w1*w2/w0)*[0.1,10]/2/pi, [0,0], ’k--’, ...

f, 20*log10(abs(w/w0)), ’k--’, ...

f, 20*log10(abs(w1.*w2./(w0*w))), ’k--’, ...

f, dB, ’b’, ... % plot the full function dB

f, 20*log10(abs(H-1)), ’r’ ...

);

set(gca,’ylim’,[-15,45], ’xlim’,10.^[-3,6]);

xlabel(’frequency [Hz]’);

ylabel(’amplitude response [dB]’);

% phase response

figure; semilogx( ...

f, angle(H)*180/pi, ’b’, ... % full function

f, angle(H-1)*180/pi, ’r’ ... % without "+1"

);

set(gca, ...

’ylim’,[-95,95], ’xlim’,10.^[-3,6], ...

’ytick’,[-90:15:90] );

xlabel(’frequency [Hz]’);

ylabel(’phase response [degrees]’);

8 Second-order circuits: resonance

This subject has been touched upon in the exercises
in the previous Topic, where the total equivalent
impedance of series and parallel combinations are
found. If a capacitor and inductor are connected
together as a two-terminal combination, there is a
frequency when they “cancel”.

For example, for components L and C in series,

Z
L

= jωL
Z

C
=

1

jωC

the equivalent impedance at angular frequency ω is

Zeq = j
(
ωL− 1

ωC

)

which is positive imaginary (like an inductor) when ω
is large, negative imaginary (like a capacitor) when ω
is small, and zero when ωL = 1

ωC . The condition of
Zeq = 0 in the above circuit is series resonance. The
frequency needed for series resonance can be found by
rearranging the expression for Zeq = 0, to

ω =
1√
LC

=⇒ Zeq = 0.

What is actually happening during series resonance
is that a current passes through the components
and causes a voltage in each, but the voltages are
phase-shifted by 180°: in other words, they have
opposite sign. The sum of the voltages is therefore

zero, meaning that the two components together
appear to have no impedance (to impede is to
hinder/resist/restrict). One special feature of this
state is that there may be a large voltage across
the capacitor and inductor separately, in spite of the
voltage driving the circuit (at the terminals) being
small. In this way a high voltage can be obtained from
a low one: this is sometimes a useful thing to design
for, but it is sometimes a problem when resonance is
unintended.

If the components L and C are connected in parallel,
the same condition exists for the resonant frequency,
but the result of resonance is the opposite, as could
be expected from duality:

ω =
1√
LC

=⇒ Zeq →∞, i.e. Yeq = 0.

With the parallel connection it is convenient to write
the admittances, since these can be directly summed
to find the total admittance,

YL =
1

jωL

Y
C

= jωC

the equivalent admittance at angular frequency ω is

Yeq = j
(
ωC − 1

ωL

)

In parallel resonance the currents in the components
may be large, but they are of equal size and 180°
shifted. Therefore, no current moves through the
terminals: the combination looks as if no current can
flow.

[For this year we will not study second-order circuits as
part of filters, except in the form of power-factor types
of questions in later Topics. But this ought later to be
extended to some basic 2nd-order circuit terminology
about damping and Q-factors, etc.
Fill me in for next year!!]

9 — Extra —

9.1 Inideal R, L, C

In this course we’ve considered the basic components
of resistors, capacitors and inductors to be ideal. That
is a good choice, because the main intention is to learn
how to solve ideal circuits. Then, the real circuits have
to be translated into “ideal circuits that represent the
real circuit with sufficient accuaracy”! This may often
mean using several ideal components to model a single
real component, or introducing limits.
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One example we’ve already seen is how a typical
voltage supply is better modelled by a Thevenin or
Norton source with finite impedance, than by an ideal
voltage source. We have also seen how real opamps
have output limits, finite gain, and non-ideal input
and output resistance. Some things that are commonly
modelled as resistors, such as a light bulb (glödlampa)
may be in fact a significantly non-linear resistor, as
will be noted in the Topic on ac power.

But we haven’t thought of the simple components of
resistors, capacitors and inductors being nonideal. In
the lab we had little cylinders with coloured stripes,
which we modelled as ideal 10 kΩ resistors, etc. How
much, and how, do these deviate from ideal resistors.

Nonlinearity is fairly clear: we can reach some voltage
or current where components melt or have flashover
in the air around them, as well as more subtle
nonlinearity such as the effect of heating. Another
subtle nonideality, which exists for all components, is
not of linearity but of frequency response.6

The frequency dependence of simple components
comes from quite obvious causes, like the way that
any set of conductors in the air have some finit
capacitance, inductance and resistance.

The thing we call a resistor may be intended to be a
pure resistance. But it involves a current going along
a path, and therefore a magnetic field around the
current: so there is necessarily some inductance in
series with the resistance. It also involves a voltage
drop between two the terminals of the resistor,
resulting in an electric field between these points: so
there is a capacitance in parallel with that part of the
resistor. We could write a model made of three ideal
components of L, C and R . . . but that’s still only
approximate — for example, isn’t there more than one
plausible way to choose to connect these components
into a two-terminal model of a real resistor?

Similar troubles happen for capacitors and inductors:
they have resistance in their wires, inductors have
capacitance between turns of their coils, capacitors
have inductance in the internal electrodes, and some
capacitors have significant conduction through the
insulating (dielectric) material inside them. The word
‘significant’ is significant here, for in fact the amount
that we would care about the nonideality depends on
the frequency range we are interested in, as well as
the accuracy that we need. If a capacitor is to be used
at 400 MHz then a parallel resistance with a time-
constant of 1 s can surely be ignored; but if used at
0.1 Hz, or even 100 Hz if high accuracy is needed, it
may be necessary to model the resistance as well. On
the other hand, any series resistance will have a higher
effect at the higher frequencies.

6It is a common mistake to describe a bendy line in a Bode
plot as a nonlinear behaviour. That is a frequency-dependent
behaviour, but not necessarily nonlinear. Linearity is about
what happens if we make the entire stimulus (input) change
in size by some factor, or add the effect of different inputs: it’s
about the scaling of voltage and current, not the frequency.

Lab components usually behave quite close to the
ideal in the frequency range where we normally use
them. At very high frequencies, the series inductance
and parallel capacitance become important. (Think:
e.g. inductive reactance increases with frequency, and
series impedance is dominated by the biggest of the
series impedances.)
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