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N. Taylor,

Topic 11: AC Power

In the last two Topics we have rather hastily
gone through some complex numbers, calculation
of sinusoidal time-functions by the ac method (jω-
method), and a little about filters and frequency
response. All of that is quite general, or even a little
biased towards the subjects of radio, audio, etc.

At this point, we move strongly towards an electric
power bias, which is how we will stay for the rest of
the course. First, we spend all of this Topic on just
the concept of power in ac circuits (active, reactive,
etc). The subsequent Topics will use a lot of the
power concepts, applied in ways that are even more
practically relevant to power systems.

Perhaps it sounds a little crazy to waste a whole Topic
on power in ac systems — especially when the entire
introduction to the ac analysis concept and complex
numbers was only one Topic! We’ve already looked
at how to find functions u(t) and i(t) describing the
voltage across and current through any two-terminal
device in a linear circuit in sinusoidal steady state,
even where there are different frequencies driving the
circuit. After calculating u and i for a component, the
product is power,

p(t) = u(t)i(t), (1)

where the direction of power-flow indicated by positive
p(t) is dependent on the directions in which voltage
and current are defined. This equation is true at each
instant in time.

In an ac circuit, the values of u and i are varying
in time, so the power varies too. But over some
time-span we can integrate the instantaneous power
and find the energy transferred: we could do this
for any time-functions. With the assumption of a
periodic waveform, we can even calculate the mean
(i.e. average) power in one period, and know that this
result should be true for any period. The sinusoidal
steady state is a nice easy case of a periodic waveform.
So is that not enough?

Could we need to know more than this? Perhaps
surprisingly, the answer is “yes!”. There is no doubt
about the meaning of instantaneous power, nor of
mean (average) power over a given interval for a given
time-signal. But there are lots of other definitions
that are useful in different ways in different contexts.
We shall look at some. Our soon-coming guest
lecture is likely to include such words as reaktiveffekt,
effektfaktor, induktivlast, etc., and to mention the
importance of these concepts in power systems.

As long as we restrict ourselves to power in two-
terminal devices in linear circuits in sinusoidal steady
state conditions at a single frequency, then the subject
is quite simple and well defined. We have that

restriction in this course, although in the Extra section
we look a little at exceptions.

1 AC power in time

This section analyses ac power by looking at time
functions. It is intended to help the understanding of
why the ac definitions are made the way they are,
and what the subtle differences are between effective
value and rms. It is not strictly needed for solving
the normal exam tasks: the phasor-based methods in
Section 4 are the main basis of ac power calculation.

We start by considering power in resistors. Loads
(consumers of power) are often modelled as resistors.
Back a few decades or a century ago, many loads —
such as heaters and lamps — were well approximated
as resistors: they were long thin pieces of metal that
were heated by electric current passing through them.1

Nowadays, it’s not so simple. Lamps are “low energy”
lamps with power electronic converters on the input.
Large heating systems may be heat-pumps, which are
basically a power-electronic converter driving a motor.

Many other modern devices, such as computers, are
also not very similar to resistors. If you halve the
voltage to an ideal resistor, the power into it is
quartered: remember P = u2/R. In contrast, a
modern computer power supply can do interesting
things like demanding the same power even when the
voltage is halved. That’s because its power-electronic
input is designed to work happily from 265 V down
to 90 V, in order to work over the permitted ranges
of voltage in the two main voltage-standards of the
world, where many countries have around 230 V but
North America and a few other regions have around
110 V. When the voltage is reduced, the device’s
controller causes more current to be used, in order
to maintain the power input. These modern types of
loads can also draw currents that are very far from
being sinusoidal; see Section 8.4 for more detail.

1It is often assumed, in books on electric circuits, that
a “lamp” (glödlampa) [link] is a linear resistor. But the
filament’s temperature when white-hot is about 3000 °C, and
the metal (tungsten) used for the filament has a “temperature
coefficient of resistance” of about 0.4% per kelvin (at room
temperature). This coefficient means that at temperature θ the
resistance will be Rθ = (1+4× 10−3(θ−20 °C))·R20 °C. Clearly,
if the temperature changes from about 20 °C to 3000 °C between
zero current and normal rated current, then the resistance
also changes by several times (although we should be careful
about believing the equation very accurately: the temperature
coefficient could change at the extreme temperatures). So a
lamp is not well modelled as a resistor unless we know that
we are only considering a narrow range of currents or voltages.
When a lamp is turned on, it draws a significantly higher
current in the first fraction of a second, until the filament has
warmed up: failures (blowing) tend to happen at this time.
But over shorter timescales such as 10 ms (the period of power-
pulsation with 50 Hz ac current, as we will soon see) a filament’s
temperature does not change so much, so one can say that it is
approximately a linear resistor within the ac cycle: the current
will be approximately proportional to the voltage at each point
during a period of 50 Hz steady-state sinusoidal excitation.

http://en.wikipedia.org/wiki/Incandescent_light_bulb


But these sorts of devices are not linear components.
This course is about linear circuits. Also, practical
approximate calculations about power systems are
often based on linear circuits. So we continue with
resistors!

1.1 DC power

Suppose we have a 3 V dc source, and want a resistance
to consume a power P = 6 W. Then it needs to draw
a current of

I =
P

U
=

6 W

3 V
= 2 A,

and so the resistance is

R =
U

I
=

3 V

2 A
= 1.5 Ω.

We could instead have used the direct relation, that

P =
U2

R
, ∴ R =

U2

P
=

(3 V)2

6 W
= 1.5 Ω.

With dc, the voltages and currents are constant in
time, so the power by equation (1) is constant. This
leads to the above simple relation between a resistor’s
voltage or current and the power dissipated in that
resistor. It all seems very simple.

1.2 AC power in a resistor

Let us now consider the power into a resistor when
a sinusoidal (ac) voltage or current is applied. In
Section 8.2 there are some practical examples of when
these fixed-voltage or fixed-current approximations
are reasonable.

Consider taking the same resistor R as in the dc case
above, but connected to a sinusoidal voltage source
with peak value Û ,

u(t) = Û cos(ωt).

The current is then

i(t) =
Û

R
cos(ωt).

Multiplying these two quantities, we get a time-
function for the instantaneous power (the power in
to the resistor if the passive convention was used),

p(t) = u(t)i(t) =
u(t)2

R
=
Û2

R
cos2(ωt). (2)

The voltage, current and power are shown in the
following figure, for the case where Û = 3 V, Î = 2 A,
and ω = 2π · 50 Hz. Their colours are blue, red and
green, respectively.
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There is nothing strange about the blue and red curves
of u(t) or i(t), but the curve of p(t) (green) may look
surprising. It’s always positive . . . which is reasonable,
as a resistor cannot ever produce power. It alternates,
but at twice the frequency of the voltage or current:
after a little thought, that sounds reasonable, as there
is still a positive power when the voltage and current
are both negative. The shape looks like a sinusoid but
added to a constant “dc offset”.

The same thing can be handled in a symbolic, instead
of pictorial, way. The time-dependence of the power
was given by a cos2(ωt) term. A very useful relation for
handling this cos2 and more general cases of multiplied
cosines, which we come to later, is

cosα · cosβ =
1

2

[
cos (α+ β) + cos (α− β)

]
. (3)

Note that, as cosine is an even function, the second
term is independent of the order of α and β.

Applying (3) to (2),

p(t) =
Û2

R
cos2(ωt) =

Û2

2R

(
cos(2ωt) + cos(0)

)
, (4)

and because cos(0) = 1, this is

p(t) =
Û2

2R
(1 + cos(2ωt)) , (5)

which neatly describes exactly what we saw in the
earlier graph: the instantaneous power is a double-
frequency sinusoid, added to a constant value that is
the same as the sinusoid’s peak value; the sinusoid just
touches zero at its lowest point.

1.3 Mean (average) AC power

Voltages and currents in an ac circuit are periodic. The
mean power in any cycle is therefore the same. The
power can be integrated over a single cycle, to find
the energy per cycle; this energy can then be divided
by the period to give the mean power. Suppose that
the period of the voltage is T , i.e. T = 1

f = 2π
ω . Then

Pmean =
1

T

∫ t0+T

t0

u(t)2

R
dt. (6)
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Applying this to the above case of (5), the result is
that

Pmean =
Û2

2R
=

1

2
· Û

2

R
(7)

This can be seen from the fact that cos(2ωt) integrates
to zero over any whole number of periods T .

The factor “1/2” has practical significance! Resistive
types of load can generally be used with dc or ac
voltage.2 People doing calculations with ac circuits
would appreciate not having to keep putting a 1

2 into
the power equations. It would be convenient to know
that a 200 V ac or dc source will give the right power
to a resistive load designed for “200 V”.

There is a way to make the simple calculations such
as i2R and ui give the mean power, without having
to write a factor of 1

2 . This is done by defining
the magnitudes of voltage and current phasors by
a number that is less than their peak value. Up to
now, we have described sinusoidal time-functions by
their peak value and phase, as well as an angular
frequency that is the same for all phasors that we
are solving in the ac analysis. The phasors represent
steady-state sinusoidal quantities, and we chose to
set the phasor magnitude equal to this peak value
of the sinusoid. That just seemed an obvious choice.
We’ve typically chosen a cosine reference for phase,
and peak value for magnitude, and therefore have
represented Û cos(ωt+φ) as a phasor Û φ. But there is
no requirement to use this choice of magnitude scaling
and phase reference. We can choose something that is
more useful in some way, for example by simplifying
the power calculation.

2 Effective and RMS values

The normal way — within electric power engineering
— of describing the magnitude of an ac voltage or
current is not the peak value! Sinusoidal voltages and
currents are instead specified by their “rms value”,
defined as Û/

√
2 or Î/

√
2; i.e. we define the phasor’s

magnitude to be 1/
√
2 of the peak value of the sinusoid.

What happens when using this definition to calculate
mean power into a resistor R? If we used the same
equation as for dc power we would calculate

P =
voltage2

R
=

(
Û/
√

2
)2

R
=
Û2

2R
= Pmean (8)

By using this “rms” definition of magnitude, the
simple dc equation gives us the correct mean power in

2A bit more than a century ago, there were some dc and
some ac supply systems. Then the advantages of ac, such as
transformers, made ac the dominant choice. If a 100 W resistive
load had been designed for a supply that was 200 V dc, it would
have a resistance of 400 Ω. If it were then to be connected to
a 200 V ac (peak) supply, it would only give 50 W (ignoring
the temperature coefficient). An incandescent lamp running at
half-power would be almost useless; it would give much less
than 50% of its intended visible light. Users of equipment would
probably like a “200 V supply” to run their 200 V equipment,
without having to think about correction factors for dc and ac.

a resistor in an ac circuit. Power calculations involve
products ui or u2 or i2: there are always two circuit
quantities multiplied. In a linear circuit, if we scale
all the sources by some factor, then all the circuit
quantities will be scaled by this factor. So if all
currents and voltages have a scaling of 1/

√
2 of their

peak value, the factor 1/2 will always appear in power
calculations, without having to be written.

2.1 Effective value

[Not a core concept in the course.]

The term effective value (sv: effektivvärde) suggests
choosing a number that describes “what can this
really do” compared to some base case. Generally we
compare to dc, as was done in the example above.
Consider a non-dc voltage source, connected to supply
power to something (not necessarily a resistor). If the
source supplies, in a given time, the same energy as a
dc source of U volts would have done, then we could
say that the non-dc source has (over that time) an
“effective value” of U . If the source is periodic, then
the effective value over one cycle will of course be the
same as for any other cycle or whole number of cycles.
The same applies to the effective value of a current.

As was seen earlier, the effective value of a sinusoidal
voltage applied to a resistor is 1/

√
2 of the peak value.

The same scaling would not necessarily be true for
other waveforms and components. A sinusoidal voltage
applied to a dc current source would have an effective
value of zero for any whole number of cycles (show
this, if you want). A square-wave current switching
between ±Î, applied to a resistor, would have an
effective value of Î.

2.2 RMS value

The root-mean-square or rms value is a mathematical
definition. But is can also be seen as a particular type
of effective value, specific to resistors, which have a
quadratic relation of instantaneous power to voltage
or current.

The name means that one would square the time-
function of voltage or current, then integrate to find
the mean (average) of this squared value, then take the
square root! For a periodic function u(t) with period
T , the rms value is thus

Urms =

√
1

T

∫ t0+T

t0

u(t)2dt. (9)

This is basically what we did in (6) to find the mean
power in a resistor, except that we didn’t take the
square root. The square root allows us to find a single
(dc) voltage that would give the same mean power.
You might see this more easily by squaring both sides:
then you see that the calculation equates the time-
means of the squares of the dc (left) and periodic
(right) quantities. If a component has a quadratic
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dependence on voltage or current, then we see that
the rms would be the effective value.

Other effective values, not the rms, would be
appropriate to a device in which the power is not
quadratically dependent on voltage or current. An
extreme example is a “surge arrestor”, which is a
very nonlinear resistor. These are designed to permit
large currents to flow when the voltage is higher than
normal, which is good for passing lightning currents
to ground without breaking down the insulation, but
they should pass only a very small current when at
the normal working voltages. In this case, something
like i ∝ (u/u0)12 may be the relation, where u0 is
a reference value. Then the “effective value” of a
sinusoid would be closer to the peak value than the
rms value is: my numerical calculation makes it about
0.89 instead of 0.71 (i.e. 1/

√
2) of the peak.

2.3 RMS in sinusoidal conditions

The factor 1/
√
2, seen earlier, is the ratio of the rms

value to the peak value, specifically for sinusoidal
signals. Try applying (9) to a sinusoid, to show this.

It is so conventional to quote ac voltages as rms values
that we hardly think about it. The 230 V standard
supply voltage that we have several times mentioned
is an rms voltage: the peak is around 325 V. The
same is true of the 400 kV between conductors of a
HV transmission line: it is rms. Multimeters on an ac
setting will usually show an rms value, or at any rate
not a peak value.

2.4 Summary of RMS etc.

These three concepts of effective, rms and 1/
√
2 are

not exactly the same. Effective values are the most
general: they need definition of a waveform and
component. RMS values depend only on the waveform:
the rms is the effective value for a resistor. The 1/

√
2

factor is the rms for the particular case of a sinusoidal
waveform.

I’m not aware of a different word in Swedish
for rms: effektivvärde appears widely used in
the sense of “rms”. Few people care about the
more general meaning of effective value: it is
very commonly assumed that power dissipation is
adequately modelled with linear resistors. It is also
common to regard rms as synonymous with the
number 1/

√
2, as sinusoidal waveforms are commonly

assumed. The terminology depends on the subjects
that people mainly work with: for a lot of technical
terms it seems one can’t find any firm general
definitions!

The above is for background knowledge, and to put
the concept of the rms value into context. As far as
you are concerned, for tasks about linear ac circuits
in this course, the “rms” or “effective” or “peak/

√
2”

are basically the same thing.

You need to be careful about when to use a factor 1
2

for power calculations and when not to. You also need
to be careful about whether phasors’ magnitudes are
defined by peak or rms value: this is important when
calculating power and when converting phasors back
into time-functions.

In summary of this section:

When a sinusoidal voltage with peak value Û or a
current with peak value Î is applied to a resistor,
the mean power into the resistor is 1

2 Û
2/R or

1
2 Î

2R respectively.

When instead the sinusoidal voltage or current
is described with its rms value of Urms = Û/

√
2

or Irms = Î/
√

2, the factor 1
2 is not needed; the

calculation is the same as for dc, U2
rms/R or I2rmsR

respectively.

3 Reactive components

All of the above was about resistors, which were easy
to compare between the dc and ac situations. Two
other components are important in ac circuits: the
inductor and capacitor. They appear “parasitically”
all over the place, as all power lines, cables and
other equipment have magnetic fields and electric
fields surrounding the currents and voltages. Many
intentional capacitors and inductors are also used, to
store energy in converters, or to cancel the effect of
undesired capacitors and inductors.

3.1 Capacitor power, in time

So, let’s do the same thinking as in (5), but with
a capacitor instead of a resistor. Remember that a
capacitor’s current is

i(t) = C
du(t)

dt
,

so if
u(t) = Û cos(ωt)

then

i(t) = −ωCÛ sin(ωt) = ωCÛ cos
(
ωt+ π

2

)
,

and so

p(t) = ωCÛ2 · cos(ωt) · cos
(
ωt+ π

2

)
,

which can be simplified to

p(t) = ωCÛ2 1

2

(
cos
(
2ωt+ π

2

)
+ cos

(
π
2

))
, (10)

where the last term is constant zero, as cos(π/2) = 0,

p(t) = ωCÛ2 1

2
cos
(
2ωt+ π

2

)
. (11)

The instantaneous power into a capacitor or resistor
have the similarity that both have an oscillating
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component at 2ω. But there is also a big difference:
the capacitor has no constant component in the power,
and its oscillation has a different phase-angle from the
resistive case.

The pure sinusoidal function cos(2ωt+π/2) shows that
the mean power is zero. Energy moves in and out, but
over a period (or even half a period) of the angular
frequency ω there is no total energy transferred. There
is a non-zero current and voltage, but these phasors
are perpendicular (phase difference of π/2).

3.2 Inductor power, in time

For an inductor, a similar reasoning applies: from the
relation i(t) = 1

L

∫
u(t)dt, the current is

i(t) =
Û

ωL
sin(ωt) =

Û

ωL
cos
(
ωt− π

2

)
,

where the integration constant has been assumed to be
zero, because of the assumption of sinusoidal steady
state.

By the same calculation as was used for the capacitor,
but with negative “π/2” terms, the power is

p(t) =
Û2

ωL

1

2
cos
(
2ωt− π

2

)
. (12)

As with the capacitor, the current in the inductor is
simply moving energy in and out, with zero mean.

3.3 Resonance and compensation

The only difference between equations (11) and (12)
is that there is a phase-shift of π between the power
oscillations. This gives us the idea that if we choose ωL
= 1/(ωC), meaning that both components have the
same impedance magnitude at our angular frequency
ω, then at any instant in time the power going in to
the capacitor will equal the power coming out of the
inductor (and vice versa).

This is just what was seen in the brief discussion of
second-order filters in the earlier Topic on frequency-
response. In that case, the network functions were of
the main interest. In the case of power, we are usually
interested in a particular frequency, where we want
to cancel unnecessary currents. A little more about
useful cancellation between inductors and capacitors
is given in Section 8.3.

3.4 Combined resistive and reactive

When a resistor is combined with a reactive
component, in series or parallel, we have an “in
between” situation. The current and voltage do not
have exactly the same phase angle, as they would be
for a pure resistor. But they are not as far as +π/2
or −π/2 out of phase, as they would be for a pure
capacitor or inductor.

We can split a sinusoidal current or voltage into a sum
of sinusoids at different phase angles. When analysing

a circuit where there is an arbitrary phase between a
sinusoidal current and voltage, it is useful to use one
of these quantities as a reference, and split the other
into a part that is exactly in phase and a part that is
exactly in quadrature (±π/2).

For example, we could split a current into a sinusoid
that is in phase with the voltage, and another that is
at plus or minus π/2. This would be very appropriate
in a circuit with a resistor connected in parallel to an
inductor or capacitor. The voltage is the same for both
components so it is a good choice of reference. The
part of the current in phase with the voltage would
clearly be the current into the resistor, and the part
in quadrature would be the current in the reactive
component.

Instead, the voltage could have been split into parts
in phase and at ±π/2 from the current; this is well
suited to a series circuit, where the part of the voltage
in phase with the current is the voltage across the
resistor.

In these mixed circuits, the mean power will be
between 0 and Û Î/2, depending on the values of the
resistor and the reactive component. This subject is
studied with more calculations in Section 4, as phasors
make it easier to find the in-phase and out-of-phase
parts of current and voltage, compared to writing out
sine and cosine functions.

4 AC Power with Phasors

4.1 RMS phasor magnitudes

In a linear circuit, if we scale all the independent
sources by a constant factor, like 1/

√
2, then all voltages

and currents in the circuit will be scaled by that factor.
This is a consequence of linearity.

It is therefore valid to use any arbitrary scaling that
we feel like, between peak values of sinusoidal time-
functions, and the magnitudes of the phasors that
represent them for ac analysis.

It is necessary to use the same factors (backwards) if
we want to convert from phasors to time-functions. It
is also necessary to consider these factors if calculating
power. The factor 1/

√
2 is useful because it makes the

power calculation simple. From (7), the mean power
into a resistor due to an ac voltage U or current I, is
just like the dc equations,

Pmean =
U2

R
= I2R, (13)

as long as we define the phasor U to be Û/
√

2, and
I to be Î/

√
2, where Û and Î are peak values of the

sinusoids.

This ability to scale the magnitudes of phasors is just
the same as we do for the angles. We choose any angle
reference we like: often it is cos(ωt) for convenience,
but it could be e.g. sin(ωt + 18°). The choice affects
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the angles of all the phasors; but they still keep the
same relative angles, so the resulting equations give
the same solution when translated back into time
functions.

The choice of magnitude scaling and phase reference
is arbitrary, but the choice can make the algebra much
more or less simple!

Unless stated otherwise, we will assume that phasors
used for power calculations in the following text have
magnitudes that are the rms values of voltage and
current. This is absolutely the usual assumption in
power calculations.

4.2 Power: phasor-based S, P , Q, etc.

Let u and i be phasors with magnitudes that are rms
values (sinusoid’s peak/

√
2), defined on a two-terminal

component. If the reference direction of i is into the
reference positive side of u,

+ −
u(ω)

i(ω)

then the complex power (sv: komplexeffekt) into the
component is defined as

S = ui∗, (14)

where i∗ is the complex conjugate of i.

The rectangular components of complex power are
defined as S = P + jQ.

The real part P is active power (sv: aktiveffekt),
sometimes called real power. It describes the mean
power delivered in each cycle of the periodic waveform.

The imaginary part Q is reactive power
(sv: reaktiveffekt) or imaginary power. It describes,
in the same scale as P , the components of current
or voltage that are not in phase with each other and
that therefore are only transferring energy in and out
(no mean value). If S is defined into a component,
then Q > 0 suggests an inductive impedance that
can be modelled as inductance and resistance, Q < 0
suggests a capacitive impedance, and Q = 0 suggests
pure resistance.

The reason for using the conjugate i∗ when calculating
S is that the power depends on the relative angles
of voltage and current. The absolute angles mean
nothing: they depend on our choice of angle reference.
By choosing ui∗, we get S = u− i, so S is purely real
when u and i are in phase, regardless of what actual
angle they have. The choice u∗i would also work, but
the choice of ui∗ makes Q be positive for an inductive
load, which means that for the most common type
of load (combined inductive and resistive) we can say
that it “consumes active and reactive power”. In our
definition, we would say that a capacitor generates
reactive power. This generated/consume distinction

for reactive power is arbitrary, as both are just a zero-
mean movement of energy.

The magnitude |S| =
√
P 2 +Q2 is apparent power

(sv: skenbar effekt)3. It’s called that because it’s what
you might believe if you took a voltmeter and ammeter
and measured the rms current and rms voltage then
multiplied these real numbers: if you think in terms
of dc circuits, this product would appear to give
the power. Indeed, if the phase-angle between the ac
current and voltage is zero, then this does give the
mean power: |S| = P = S. But when the phase-angle
is not zero (and not π either!), there is at least some
component of the current that is in quadrature (±π/2)
with the voltage. This represents an energy moving
in and out: it increases the rms value, but does not
contribute to the mean power.

The unit normally used for apparent power or complex
power is the “volt-ampère” or “voltamp”, with the
symbol VA. The unit of P is the watt, W. The unit
commonly used for reactive power is the reactive
voltamp, which can be written as VAr or var. The
different units help to distinguish between S, P and
Q.4

The power factor (sv: effekt faktor), sometimes
written as pf, is defined as pf = P/|S|. In view
of the definition of apparent power (above), we see
that power factor means “how much active power we
actually got, compared to what we could have had
with the same rms voltage and current if they were
perfectly in phase with each other”.
When P = |S|, then Q = 0 and pf= 1.
When Q 6= 0, pf< 1.

The pf does not numerically tell us whether Q > 0 or
Q < 0; the Q2 term in the calculation of |S| ignores
the negative sign. It is often of practical importance
to know if Q is positive or negative. Two loads with
apparent power 5 kVA and pf of 0.8 will become a
combined load of 10 kVA and pf 0.8 if they have the
same sign of Q. But if they have opposite signs of Q,
they will form a combined load of 8 kVA at pf 1.0, i.e.

3Sometimes the apparent power is denoted just S, in
which case complex power might be distinguished as S. We’re
being sloppy about not using special symbols for the complex
numbers. Some people make them capital, while time-functions
are lower-case. Some make them bold, or have overlines. That’s
quite useful if you want to use lots of absolute values: then the
boldness can show if it’s complex or real, instead of needing to
write |z| for each absolute part.

4If we look at the dimensions, in a simple way, all of S, P
and Q are products of voltage and current, and could have the
same unit of VA, which can be called a watt. But we prefer
to use watts to describe only the active power; only the active
power can be said to transfer “P joules per second” from one
place to another. It doesn’t make much sense to add S, P and
Q directly, due to this difference in actual energy transfer. They
are kept distinct by being real, imaginary and total parts of a
complex number. An analogy in mechanics is the relation of
torque (vridmoment), and energy exerted by a force: both can
be seen as a force multiplied by a distance, but there is only
really energy when the force and the distance are in the same
direction. A more detailed dimensional analysis would consider
the relative directions of the quantities.
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S = P = 8 kW, because their reactive currents cancel.
So we add further information to the pf: we define
it according to whether the current lags the voltage
(inductive) or leads the voltage (capacitive). To lag
or lead means, respectively, to come later (negative
angle) or earlier (positive angle) in time. One talks of
“a motor with pf= 0.9 lagging”.

The phase-angle between current and voltage is the
power-factor angle, θ. The power factor is then pf =
cos θ. (You’ll sometimes see power-factor marked on
motors as the “cos θ” value.)

The neat relation S = P + jQ = ui∗ gives everything
we need about the relation of P and Q to S and
to u and i. Lots of other relations can be expressed
from the above, by algebra and trigonometry, such as

S = Û Î
2 (cos θ + j sin θ), but there’s no point trying to

remember them unless you find them useful. I can’t
see why you would find them useful: the calculation in
rectangular form usually seems nicer. Just remember
the ui∗ definition, and practise handling some cases
like u2/(R + jωL) so that you become good at
separating the real and imaginary parts.

4.3 Reactive compensation (PFC)

Power-factor correction is a common textbook-
question. The classic task is a set of impedances that
models a load connected through two terminals to a
source, such as ∓jXs and Rs here:

±jX

∓jXs

Rs

+

−

u(ω)

A reactive component then needs to be connected at
the two terminals, as for the component ±jX above, in
order that the load and reactive component together
will look like a pure resistor.

Why? The practical purpoer is to minimise the current
needed from the supply source, by allowing the load’s
reactive power to oscillate back and forward with the
reactive power of the component that has been added.
That way, only the current corresponding to active
power has to flow in the wires from the supply source.
See further applications of reactive compensation in
Section 8.3.

Most loads, whether single motors or whole groups of
houses, tend to be a bit “inductive”: the current lags
the voltage. So it is most common to need to connect a
capacitor in order to supply the load’s reactive power
locally. But there are exceptions.

The main calculation difficulty is that you usually
are not just told that an inductor and capacitor
are in parallel and need to be made to have equal

values. Instead — as with the circuit shown above
— the load might be a series combination, but with
the compensation connected in parallel. The correct
value of the compensation must then be found from
the reactance in the parallel equivalent of the load,
which means a bit of fun with complex numbers. It
might also be that you are asked to compensate only
partially, e.g. so that the power factor becomes 0.9
instead of 0.7. It is often easiest to think in terms
of comparing reactive power between the load and
compensation, instead of comparing impedances or
admittances.

5 Maximum power: AC case

In dc circuits, maximum power transfer involved
choosing a load resistor, for a given (fixed) Thevenin
or Norton source, so as to get the maximum possible
power dissipated in the load. The result (in Topic
04) was that this happens when the source and load
resistance are equal. It was pointed out that it only
makes sense to choose the load; the power transfer
would always be increased by increasing the source
voltage or reducing the source resistance.

In the ac case, maximum active power to a load
is still a question of great practical interest . . .
perhaps greater! But there is the extra detail that the
source and load can both be impedances that aren’t
necessarily purely resistive. There are therefore more
“degrees of freedom” to consider, as we can adjust
the load’s resistance and its reactance. (It also can
make some sense to talk about adjusting a source’s
reactance for maximum power for a given load.)

When active power in the load is to be maximised, we
must maximise Pl = |i|2Rl; it is only the resistive part
in the load that can consume active power. Therefore,
we must maximise

Pl = |i|2Rl =
|U |2Rl

|Rs+Rl + j (Xs+Xl)|2

+
−U

Rs jXs

Rl

jXl

i

Apart from the extra imaginary term in the
denominator, and the need of taking absolute values
(| · · · |) this looks similar to a popular way of deriving
the condition for dc maximum power.

Notice that Xl only comes into the denominator.
Anything we can do that definitely reduces the
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magnitude of the denominator, while not changing
the numerator, must help to increase the power.
The imaginary part, Xs + Xl, should therefore be
minimised in size: it always adds (at an angle π/2) to
the real part, so it always increases the magnitude of
the denominator regardless of whether it has a positive
or negative imaginary value. A reactance contributes
to the imaginary part of impedance in a positive
way (inductor) or negative way (capacitor). So we
can choose the load to have a reactance that exactly
cancels the source reactance: Xl = −Xs. This is the
best thing we can do with Xl to maximise power
transfer, regardless of the value of Rl. After making
this choice, the two reactances in the circuit above will
cancel: they’re a series resonance. If we used a Norton
source and parallel load, this condition would still
be true: the maximum power would come at parallel
resonance between the source and load reactances,
since this is when all the source current is available
to go through the resistors.

+
−U

Rs

Rl

+

−

ul

i

Xl = −Xs

The circuit looks then just like the dc maximum power
situation, with a source and load resistor. We know
that the maximum power in this case is with Rl = Rs.

The maximum active power transfer to a load
Zl in the ac case is thus achieved when

Rl = Rs and Xl = −Xs, i.e. Zl = Z∗s . (15)

Notice that the above paragraphs imply that the
values of X are signed (e.g. so that it can be true
that Xl = −Xs), which was convenient but is not the
common definition we agreed on in Topic 09!

6 Power superposition

(This is not a very important part, exam-wise. It’s
just a possible method for simplifying a solution. It
has some interesting practical implications. Put focus
on the other parts.)

The Extra section of the previous Topic included
some concepts about nonsinusoidal conditions, such
as when there are nonlinear components in a system.
It was pointed out that when a periodic voltage
and current (on a two-terminal connection) contain
various frequencies, then only the fourier components
in voltage and current that have the same frequency
and same phase can work together to produce power
transfer: other combinations result in power simply
moving in and out.

As a general case, consider time functions made up of

a sum of cosines and sines at different frequencies,5

u(t) = A1 cos(ω1t) +B1 sin(ω1t)

+ A2 cos(ω2t) +B2 sin(ω2t) . . . ,

i(t) = a1 cos(ω1t) + b1 sin(ω1t)

+ a2 cos(ω2t) + b2 sin(ω2t) . . . ,

(In the special case where the voltage and current are
periodic in time, with period T , their fourier series
representations can be written in the above form: in
that case, one ωx value would be 2π/T , and others
would be integer multiples of it; a frequency of zero
could be included to represent a nonzero mean value
of the waveform.)

When the instantaneous power is calculated, the
product of these time-functions leads to a set of
products of cosines and sines,

p(t) = u(t)i(t) =

A1a1 cos2(ω1t) +B1b1 sin2(ω1t)

+ (A1b1 + a1B1) cos(ω1t) sin(ω1t)

+ A1b2 cos(ω1t) sin(ω2t)

+ A2b1 sin(ω1t) cos(ω2t)

+ A2a2 cos2(ω2t) +B2b2 sin2(ω2t)

+ (A2b2 + a2B2) cos(ω2t) sin(ω2t)

+ . . . (16)

The only terms that will not have a zero integral
over a long time are the ones with two cosines
or two sines at the same frequency, i.e. A1a1,
B1b1, A2a2, B2b2, etc. This can be seen by using
the relations sin(α) = cos(α − π/2) and cos(α) ·
cos(β) = 1

2 [cos(α+ β) + cos(α− β)]; when the
multiplied frequencies are not equal, ωx 6= ωy, the
result is made of sinusoids (at frequencies ωx+ωy and
ωx−ωy), and therefore has zero mean over a long time.

This feature of different frequencies leads us to a
simplified solution method if we want to calculate
the active power (mean power over “long enough”
time6) in a circuit with multiple sources at different
frequencies.

The long way to calculate power would be to do an ac
analysis for each distinct frequency of the independent
sources, and add these solutions by superposition to
find the total current and voltage in the time domain:
the product of these is then the instantaneous power,

5Note that a sinusoid of arbitrary magnitude and phase,
y(t) = C cos(ωt + φ), can be described as a weighted sum of
a pure cosine and sine function, y(t) = A cos(ωt) +B sin(ωt).

6“Long enough” to be a whole number of cycles of each
frequency. When the frequencies are harmonics, i.e. integer
multiples, then this is just one cycle of the fundamental
(sv: grundton). In other cases it could take many cycles; a
combination of frequencies 100 Hz and 101 Hz would need a time
of 1 s. For practical purposes, just see it as being a long enough
time to give a good approximation of the mean power.
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which can be averaged over time to give the active
power. That is very general, but takes some effort.

The short way, by observing that components of
voltage and current at different frequencies will not
lead to any mean power over a long time, is to
calculate mean power from the ac analysis at each
frequency separately, then sum them. In this way, we
get all the cos2 and sin2 terms from (16), and these are
the only ones contributing to mean power. The mean
power (total active power) is then simply the active
powers from the separate ac analyses; note that dc is
just a special case of ac, where ω = 0.

Superposition of powers due to sources acting
separately would not be a valid approach for
calculating powers in impedances due to sources at
the same frequency. In that case the current in a
component is still the sum of currents due to the
separate sources, but the power that each current gives
is determined by the voltages due to all the sources.
To put it a shorter way: power in an impedance has
a quadratic relation to voltage or current; it is not a
linear relation . . . so superposition is not applicable.

The following diagram is a powerful example!

I1 I2R

Let I1 = −I2 = I, where I is an rms phasor (or a
dc value). Calculate [active] power in R. The result
by superposition of power (erroneous method) will be
|I|2R from each source, therefore 2|I|2R. The result
from correct calculation, by finding the current or
voltage then finding the power from that, will be zero,
as I1 = −I2 means that no current flows in R.

If instead the sources have different frequencies, then
they cannot ‘cancel’ each other’s currents in the way
that happened above; they also cannot add to increase
the total the whole time. Sometimes they will be
cancelling and sometimes they will add. This is what
was shown earlier with the multiplications of cosines
and sines! In this case it is possible to add the powers
due to the sources acting separately. This is ‘power
superposition’.

Even in the early days of electric power, some
ingenious people understood this, and used one
conductor as a common one for ac and dc circuits: that
way, the power loss in the conductor only increased
as the sum of what the separate losses would have
been, instead of increasing as the square of the sum as
would happen if two currents of the same frequency
and phase were sharing the same conductor. [Hmm.
Can I find the reference for people doing this? Or was
it just a dream.]

7 Summary

[Normally I don’t bother with summaries: I think that
should be the reader’s work, so as not to give the false
impression of “this is all you really need to know, so
don’t read the other text”. The past exams indicate
which set of calculation skills is the main requirement
in the course. But here’s a reminder, with comments,
since I wrote it last year anyway, and this Topic was
a little heavy on definitions!]

All the following assume sinusoidal steady-state
conditions!! That’s the focus within ac power in this
course. It’s how almost all practical power calculations
in power systems are done.

Complex power definition: S = ui∗, where u and
i are phasors with magnitude of the rms values
(sinusoid’s peak/

√
2), Given passive convention, the

above complex power is in to the component.

Name the rectangular parts as S = P + jQ.
P is active (or real) power, describing the mean power
delivered over a cycle.
Q is reactive (or imaginary) power, describing
oscillatory flow that doesn’t deliver mean power over
a cycle.

Reactive power Q > 0 into an impedance means that
the impedance has an inductive part; Q < 0 suggests
a capacitive part; Q = 0 suggests purely resistive.

The magnitude |S| =
√
P 2 +Q2 is apparent power,

which is the product of rms voltage and current
without caring about the relative angles. The real
power might be smaller than or equal to the apparent
power.

The power factor (pf) is P/S. When Q = 0, pf= 1.
When Q 6= 0, pf< 1. When Q > 0 (defined into
the load), the power-factor is “lagging” (the load
consumes reactive power). When Q < 0 (defined
into the load), the power-factor is “leading” (the load
produces reactive power).

The phase-angle between current and voltage is the
power-factor angle, θ. Then pf= cos θ.

Other definitions such as S = Û Î
2 (cos θ + j sin θ)

are obvious consequences of complex algebra and
trigonometry. There is no need to try to remember
or use them; try getting familiar with handling
complex numbers instead. (Probably this comment
isn’t necessary now that we don’t use the old book;
that book seemed to encourage the above, which just
leads the user into a mess with angles.)
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8 — Extra —

8.1 Some relevance of ac power

Most of this Topic has been restricted to the case
of power in linear two-terminal components, with
voltages and currents being in sinusoidal steady state.
This, for example, gave us the phasor-based expression
S = ui∗, and quantities derived from this: P , Q, |S|
and cos θ (pf).

It is common to assume these restrictions when
considering ac power. This restricted situation
includes the practically important case of reactive
power in the inductances and capacitances of power
lines and cables, and in inductive loads. In this case
it is reasonable to see reactive power as a back
and forward exchange of energy between different
components: it causes voltage-drops and power losses
in the long lines and cables, and restricts the available
transfer of active (useful) power.

It is mainly in these sinusoidal contexts that network
operators and policy-makers (government) consider
things like “markets for reactive power services”.
These aspects of reactive power are highly significant
for voltage control, line loading and transfer capacity
in power systems from the lowest to the highest levels.
Although the real ac power-systems are “3-phase” the
analysis can be done similarly to the two-terminal case
as long as the three phases are “balanced”, which is
usually a good approximation in normal conditions.

8.2 Practical voltage and current sources

This is further explanation of where it can be useful
to consider resistors with a power u2/R or i2R.

In some practical cases, we know the voltage across a
resistor. A power supply system usually behaves like a
quite good approximation of a voltage source. In other
words, there is not much variation in the supply’s
voltage when the power supplied by the source varies
between the lowest and the highest intended values.
The source is said to be a “stiff” voltage source,
which could be modelled as a Thevenin source with
low impedance. We expect that the voltage available
from an outlet in a car will be close to 12 V (dc),
and the voltage from an outlet in a building will be
230 V (ac). The lights might become a little dimmer
when we connect a quite large load like a kettle or
toaster, but the change in voltage should only be
some percent. The electrical equipment we use is
therefore designed for a particular voltage or range
of voltage. At the correct voltage, these electric loads
draw their designed current, to give whatever power
is appropriate, e.g. < 0.1 A for a phone charger, but
perhaps 10 A for a room heater on a 230 V supply.
In these cases, calculations about power are naturally
based on a fixed voltage applied to an impedance. A
pure resistor can be used as a simple model of a load.

On the other hand, there is some relevance in

resistors connected to current sources. The cables and
transformers supplying power to loads carry a current
that is almost independent of the cable’s impedance.
That’s because the biggest impedance in the circuit
is the loads. We’ve said that the voltage at a socket
outlet should not change much when a new load
is connected, and that this implies a low source-
impedance seen at the socket. The source impedance
is determined mainly by all those wires leading from
the source of the supply. In order to get this small
change in voltage with load, the cable impedance
must be small compared to the load impedance. In
that case, doubling the cable impedance does not
make must difference to the current in the circuit,
as the load impedance is the dominant part of the
impedance in the series circuit of source, cable and
load. Thus, “what the cable sees” is approximately a
constant current source: a quite similar current flows
in the cable, even for changes of tens of percent of
the cable resistance. The power loss in the cable is of
interest mainly in deciding whether the cable is thick
enough that it will not overheat when at full load. For
calculating this power loss, we can think of a resistor
and a current source, where the power is p(t) = i(t)2R
in the cable’s resistance R.

8.3 Reactive compensation

It is the complementarity of inductors and capacitors,
where their currents (in parallel) or voltages (in series)
subtract from each other, that allows us to include one
type of component in a circuit in order to “cancel” the
effect of the other type.

If the capacitor and inductor have the same impedance
and are in parallel, driven by a sinusoidal voltage
source, a current will circulate between them, moving
energy between the electric and magnetic fields. This
is parallel resonance. The source will not have to
supply any power or current. The two components will
look like a zero admittance (infinite impedance). The
energy oscillating between L and C was of course put
there by something earlier, e.g. by the voltage source
before steady state sinusoidal conditions were reached.
Real components will have some resistance, so a small
power is still needed in order for the oscillations not
to die away.

If a capacitor and inductor with the same impedance
are instead in series, driven by a sinusoidal current
source, then the voltages across the two components
will always cancel. The voltage on each component
may be very large, but the sum is zero: the circuit
then looks like a zero impedance.

Parallel connection is common with inductive loads,
such as motors. These are often fitted with a parallel
capacitor, in order to locally cancel the current that
pointlessly moves energy in and out of the inductance;
in this way the total current in the supply wires is
reduced, so the power loss is reduced.

Capacitors or inductors can be connected in parallel
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with the power system in order to control the voltage.
These are called “shunts”, as shunt is an old word
for a parallel connection. They are controlled by
switches or more finely by power-electronic switching.
There are tens of places in Sweden where shunts
can be connected to the power transmission system.
Inductors cancel the effect of capacitance around the
lines, when there isn’t much power flowing. Capacitors
cancel the voltage-change caused by large currents
flowing through the lines’ inductances.

Series connection has one application when the
inductance of long transmission lines in the north
and middle of Sweden is partially compensated by
series capacitors at a few sites. This allows larger
power transfers, which would otherwise be inhibited
by problems with generators not being held together
tightly enough by the network: the cancellation helps
the Thevenin equivalent be a lower impedance.

Some electronic converters, such as for HVDC (the
important dc connections common for sea-cables)
generate harmonic currents that are too big to be
accepted in the power system. These currents can be
filtered by connecting a series LC combination that
resonates at the harmonic’s frequency. The harmonic
current is “short-circuited” through the filter, while
the current at the fundamental frequency (grundton)
is limited by the capacitive reactance.

8.4 Nonlinear loads

The situation becomes more complicated when the
restrictions are removed. For example, a nonlinear
load can take a non-sinusoidal current, even if the
voltage is sinusoidal. The apparent power based
on rms values of voltage and current will then be
higher than the actual mean delivered power (active
power). However, in this case there is not necessarily
any storage of energy: we cannot just say that
the difference between active and apparent power is
explained by energy being stored in different places.

An explanation can be found by taking a fourier series
of the voltage and the current: this assumes both are
periodic, but not necessarily sinusoidal.

In power systems the voltage will usually be
quite close to sinusoidal, as the network operator
has to “provide” the voltage to customers (see
Energimarknadsinspektionen on this!).

Small loads, however, do not have strong legal
requirements on the waveform of their current, and
the cheapest designs may draw highly non-sinusoidal
currents. An example of strongly non-sinusoidal
current (red) and approximately sinusoidal voltage
(blue) is shown below.

This is from measurements made on cheap low-energy
lamps, which have a simple diode-rectifier on their
input. There are strong 3rd and 5th harmonics in
the current. More current-waveforms, with calculated
harmonic spectra, can be seen for some low-energy

Lamps and some ITequipment such as computers and
monitors.

Let’s start by assuming that the voltage u(t) is a pure
sinusoid at the normal frequency f of the system,
and that it is represented by a cosine in the fourier
series: then all the other fourier series components (the
sine term, and all the harmonics) will be zero. If a
linear resistor were used as the load, its current would
be directly proportional to the voltage, so it would
also have a fourier series with just a single non-zero
term: the cosine term at frequency f . If a linear load
also contained some capacitance or inductance, then
the current waveform would be sinusoidal but would
have a phase-shift compared to the voltage: its fourier
series would in general have a nonzero cosine and sine-
term at f , but still no harmonics. The current into
a nonlinear load will be non-sinusoidal (often called
“distorted”); this means its fourier series will have
some non-zero harmonics.

We know that the active power to a component is
proportional to the time-integral of the instantaneous
power over a period,∫

u(t)i(t)dt.

The periodic waveforms can be written as sums of
fourier-series components, e.g. i(t) = A0+A1 cos(ωt)+
B1 sin(ωt) +A2 cos(2ωt) +B2 sin(2ωt) + . . ..

If the voltage is simply Û cos(ωt), then the

active power will be 1
T

∫ t+T
t

( Û cos(ωt)A0 +

Û cos(ωt)A1 cos(ωt) + Û cos(ωt)B1 sin(ωt) + . . . )dt
where T is the period of the periodic waveform. The
interesting result from writing in this form is that
we see that only one of these terms will not have a
zero integral: this is the Û cos(ωt)A1 cos(ωt) term.
Products of cosine and sine, or between functions
at different frequencies, have zero integral over a
whole number of periods. You can see this from
equation (3); it is a basic principle, on which indeed
the calculation of a fourier-series is based!

From the above, we see that when the current has
harmonics that the voltage does not have, then these
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parts of the current do not contribute to the energy
delivered to a component. The harmonics do, however,
increase the total current in the wires, and therefore
the power losses. Harmonic currents also generate
harmonic voltages by Ohm’s law in the network’s
impedances. There are many further subtleties to the
ways in which harmonics can even further increase the
energy losses in transformers, motors, generators and
wires.

8.5 Exchange

In polyphase (e.g. 3-phase) systems, or any other
situation where there are more than two conductors
to a load, it is possible for power to flow in through
one pair of conductors and simultaneously out through
another. This increases the current in the conductors
and therefore increases the apparent power, but it
doesn’t increase the delivered active power. This is
therefore another way, without needing energy storage
or nonlinearity, that there can be a “reactive power”,
in the sense of a difference between the mean delivered
power (active power) and the value that would be
possible given the measured rms current (apparent
power).
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