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Topic 12: Power and Transformers

The mutual inductors and [ideal] transformers can be
seen as new components in this Topic, or as extensions
of inductors. Transformers are often used in models
of power circuits, and are often relevant to power
calculations. Mutual inductance is a more general way
to model transformers with more complexity. Both
transformers and mutual inductors can potentially
be replaced by equivalents made of already familiar
components, in case you find it less scary to use
dependent sources in your solution!

1 Mutual inductance

A single inductor is a construction where current
between two terminals causes a magnetic field, and
a change in this current (and therefore a change in
the field) causes a voltage to be induced between the
terminals. A deliberate inductor is typically a coil of
wire, possibly with a magnetic core to increase the
magnetic field. Undesired inductors are also formed
by the single loops that all circuits consist of, such as
tracks on a circuit board or power lines in the air.

What if we take an inductor, consisting of a coil of
wire, and add another wire that follows a path very
close to the first one? Then any voltage induced in
the first wire should also be induced in the second,
as they “feel” the same magnetic field. And if a
current flows through this second wire, it will also
contribute to the field. So currents in either wire
affect the voltage induced in both! This magnetic
coupling between two separate conductors is a mutual
inductance (sv: ömsesidig induktans), for which we use
the symbol M .

The two ‘coils’ do not have to be similar or very
close: it is enough that any part of the magnetic
field from one of them passes through the other.
Nor do they have to be obvious coils with multiple
turns: they could be two circuits working close to
each other, such as adjacent power lines, adjacent
tracks on a computer circuit board, or different coils
in a motor or transformer. Practical situations often
involve more than two magnetically coupled inductors:
a mutual inductance can then be defined between
each pair. We, however, consider just the basic case
of two mutually coupled inductors. The term coupled
coils (sv: kopplade spolar) is sometimes used for the
general concept, even though the magnetically coupled
circuits do not have to resemble coils. I think coupled
inductors might be a better name.

A symbol for coupled coils is the following:
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The circuit variables, as defined in this diagram, are
related by the equations

u1(t) = L1
di1(t)

dt
+ M
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dt

u2(t) = L2
di2(t)

dt
+ M

di1(t)

dt

(1)

or for ac analysis,

u1(ω) = jωL1i1(ω) + jωMi2(ω)

u2(ω) = jωL2i2(ω) + jωMi1(ω).
(2)

The coils look like normal inductor symbols. The
familiar variables L1 and L2 can be called self-
inductances if we want to distinguish them from the
general case of inductance, which includes mutual
inductance. They describe the contribution of d

dt i(t)
in a coil to the voltage induced in the same coil.

One of two new things in the above symbol is a
two-headed arrow showing the coupling; in the above
case it shows two component-values, M and k. The
value M is the mutual inductance, describing the
contribution of d

dt i(t) in one coil to the voltage induced
in the other coil. Note that this is the same value in
both directions; we don’t need one mutual inductance
for the effect of coil 1 on coil 2, then a different one
for the effect of coil 2 on coil 1.

The value k is called the coupling coefficient, and it
describes how much of the magnetic field through one
coil is also linked with the other. If k = 1, then all
magnetic field through one coil also passes through the
other. This is approximated when the coils are very
close and perhaps even have a magnetic core. In this
case, there is a relation between the three inductances:
M =

√
L1L2. If k = 0, then L1 and L2 are just two

separate inductors with no coupling between them;
we’ve already seen circuits with two separate inductors
in earlier Topics! In the general case, with k ranging
from 0 to 1,

M = k
√
L1L2. (3)

The other new thing in the symbol is the dots: one
end of each coil has a dot. This is important for the
direction in which the current in one coil affects the
voltage in the other. The dots say “if the magnetic
field linking the two coils is changed, then the voltage
this induces in the coils is in the same direction in
each, with respect to the dots”.

For each one of the inductors, the choice of passive
convention in defining the current in(t) and voltage



un(t) will ensure that a positive sign is needed for the
contribution of Ln

d
dt in(t) to un(t). If a coil’s voltage

is defined in the same way as the other coil’s voltage,
with respect to the dots, then the mutual inductance
term will have the same sign as that other coil’s
self-inductance term: the following paragraph gives
examples.

The situation shown in the above diagram is that
passive convention is followed on both coils, and the
voltages have the same definition with respect to the
dots.1 This leads to the equations (1) and (2). If both
dots were swapped (put at the bottom) the equations
would stay the same. If just one dot were swapped,
then both mutual inductance terms (M d

dt ix) would be
negative. If both coils had active convention, and their
voltages were defined in the same way with respect to
the dots, then all four terms in the equations would
be negative.

A good starting point for solving an ac circuit with
mutual inductance is simply to write the circuit
equations for the rest of the circuit in terms of u1, u2,
i1, i2, then add the equations for the mutual inductor,
(2). However, if you don’t like the symbol, you could
notice that (2) are the same as could be obtained by
replacing the “M ,k” part of the mutual inductor with
a pair of current-controlled voltage sources! On the left
side, a CCVS would be in series with the inductor L1,
and would have a value of jM and controlling current
i2; a symmetric situation would be done on the right-
hand side. This could help to get used to the concept
of what a mutual inductance does; but I suspect it’s
not very useful in the long term.

2 Ideal transformers

The “ideal transformer” is a special case of mutual
inductance, where k = 1 and L1 → ∞ and L2 → ∞
(and therefore M →∞).

A high value of k is achieved by having windings close
to each other, usually around a common magnetic
core. From a practical viewpoint, inductances are
“infinite” if the amount of current they would draw
when connected to a voltage source (u/(ωL)) is very
small compared to the current we expect to have when
both coils are in use.

The symbol for an ideal transformer typically includes
two lines to show an “iron core”, which could even
be included for magnetic-cored mutual inductors in
general. We can also write “ideal” to make it explicit.

1And, if the voltage are defined in the same direction with
respect to the dots, and the same convention is used on each
coil for the relative voltage and current directions of that coil,
then the currents also will have the same definition with respect
to the dots.
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The biggest difference from the general coupled coils
is that the inductances and coupling are not included:
they are already defined above, as being as big as
possible. Only one thing is important: the ratio of the
number of turns on the two coils, which can be written
r = N2/N1 for the above case.

As the coils are perfectly coupled (k = 1), all magnetic
field through one of them also passes through the
other. Any change in this field therefore induces the
same voltage in every turn (sv: varv) of each coil. This
can be expressed as

u1

N1
=

u2

N2

which gives the well-known transformer equation for
voltages,

u2

u1
=

N2

N1
= r. (4)

A two-winding transformer usually has one side
referred to as the primary, and the other as the
secondary. Sometimes the higher voltage one is called
the primary, or else the one that is expected to have
the power input might be called primary . . . or just
an arbitrary choice.

The very high inductances imply that even a very
small current can cause a large amount of magnetic
field linking with the coils. Even a small rate of change
of current will lead to a very large induced voltage.
This means that the rate of change of the total current
passing around the magnetic core must be very close to
zero: otherwise, extreme voltages would be induced, in
a direction to oppose the change of total current that is
causing them (Lenz’s law). By the “total current” we
mean that if current i1 goes around the core N1 times
and therefore is i1N1, and current i2 (defined in the
same direction with respect to the dots) goes around
the same way N2 times, then the total going around
the core in a particular direction is i1N1 + i2N2. If the
currents and voltages are ac, as is often the case when
using practical transformers, we could say that the
rate of change2 of total current is ω(i1N1+i2N2). This
suggests that, in the ideal transformer, the phasors i1
and i2 are related by i1N1 = −i2N2, so that zero total

2If a current is sinusoidal with rms (or peak) value i at
angular frequency ω, then its time-derivative is sinusoidal with
rms (or peak) value ωi; if we care about the phase angle we
should also add a shift of π/2 (multiply by j) since d

dt
cos(ωt)

is ω cos(ωt+ π/2).
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current goes around the core: the two currents must
cancel each other.

However, a more normal way to define the currents in
a transformer is to use the active convention on the
“secondary side”. The secondary is the coil numbered
2, and the definition is usually by power flow. The
power usually comes in to the primary side, and
leaves at the secondary. This is why the passive
and active conventions, respectively, are sensible.
There are situations where the power flow can be
different at different times; so the terms primary and
secondary, and the choice of current definitions, can
be defined various ways. The following diagram shows
a transformer where the ratio of N2/N1 is simplified to
r, and the secondary current is defined by the active
convention.

ideal

i1

+

−

u1

i2

+

−

u21 r

With this definition of current, the relation of the
currents at the two sides becomes i1N1 = i2N2, so

i2
i1

=
1

r
=

N1

N2
. (5)

This shows that the currents are changed by the
turns ratio r in the opposite way to the voltage. The
result can be expected if one considers that the ideal
transformer, with no resistance or stored magnetic
energy, must always have the same instantaneous
power in and out: the currents must therefore scale
the opposite way to the voltages, as p(t) = u(t)i(t).

In a sloppy case people might not bother to write
dots, nor to write “ideal” explicitly. In many practical
applications the circuits on the two sides are not
connected to each other except possibly by a ground
point, and the variables of interest are voltage
magnitudes and powers but not relative phase-angles
between the two sides. In this case the dots are not
needed.
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2.1 Circuit solutions

To model an ideal transformer in a circuit, we can
follow the same idea as with coupled coils in general:

write out equations for the circuit(s) around the coils,
including the 4 defined variables of u1, u2, i1, i2. Then
add the equations (4) and (5) that the transformer
imposes between u1 and u2, and i1 and i2. The
resulting equation system can then be solved, if the
rest of the circuit is sufficiently well defined. However,
the rigid ratios of voltage and current make the
ideal transformer an easier case to solve than general
coupled coils.

If some information in a transformer circuit allows
you to know the current or voltage in one side of
a transformer, then you can fill the corresponding
current or voltage on the other side, scaled in the
appropriate way by N1 and N2. If you don’t directly
know a current or voltage at the transformer, but have
equations to relate it to other components, then you
can add the transforer equations to your list of known
equations, and do some substitutions.

One common method of simplifying a transformer
circuit is to translate an impedance across the
transformer. That means that an impedance at one
side of the transformer is replaced by an impedance
at the other side of the transformer, chosen in a way
that is equivalent when seen from a part of the circuit
that you are studying. A simple case is a resistor R
connected to an N2-turn secondary, while a voltage
source U is connected to an N1-turn primary. The
resistor sees a voltage N2

N1
U , so its current is i2 = N2

N1

U
R .

The current on the primary side is i1 = N2

N1
i2, which is

i1 = N2

N1

N2

N1

U
R . If instead a resistor defined as R′ =

N2
1

N2
2
R

were connected to the primary, it would behave in
the same way as the resistor R on the other side of a
N2/N1 transformer. Hence, impedances can be moved
between sides of an ideal transfomer, when scaled by
the square of the turns ratio.

More generally, a Thevenin (or Norton) source coupled
through a transformer can be modelled by scaling its
impedace as above, and its voltage by the appropriate
transformer ratio.
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3 — Extra —

3.1 Links

The Wikipedia page on transformers is a good
place for some further details and nice diagrams and
pictures.

3.2 Why ac ?

Some very early power supplies, for local lighting, were
dc, at tens or hundreds of volts. That was around
the 1880s. One advantage of dc was that batteries
(“accumulators”) could be used for storage. Another
was that dc motors were quite well known. It was
presumably easier to operate multiple dc generators
in parallel, as there would not be a need to get them
to a similar speed and angle (phase) before connecting
them. For small, local systems dc was a reasonable
choice.

One major advantage of ac is that transformers can
be used to change the voltage. An ideal transformer
(with its infinite self-inductance of each winding)
could transform dc. But that is just a curiosity of the
imagination: a practical transformer definitely cannot
do so! If a dc voltage is applied to one winding, the
magnetic field in the transformer must keep rising
in order to provide an induced voltage equal to
the applied voltage. That means the input current
must keep increasing — remember how inductors
behave in dc steady state . . . a short-circuit! The
increasing magnetic field in the transformer causes
the magnetic material (iron) used for the core of a
practical transformer to saturate (sv: mättas), after
which the current will have to increase many times
more quickly, to maintain a given increase of magnetic
field. In more practical terms, a transformer designed
for 50 Hz might demand only 1 A or less to magnetize
it at the correct voltage and frequency, but after a few
tens of milliseconds of a similar voltage of dc being
applied the transformer would draw a much higher
current, looking almost like a short-circuit.

Conversions between ac and dc or between different
voltage levels of dc are made possible nowadays by
power electronics. Using inductors, capacitors, and
electronic switching devices that rapidly move energy
between these reactive components, conversion can
be done with high efficiency and high controllability.
Sometimes a transformer is included in the converter:
in that case it is usually run at a much higher
frequency than 50 Hz, made possible by the switching
devices, in order to permit it to be a small transformer.

Conversions of dc/dc or ac/dc were also possible
back in those early days of electricity supply, using
the obvious method of a motor-generator set —
this is where a motor drives a generator through a
mechanical connection. However, a motor-generator
combination also will have higher size, cost, noise and
losses, and lower reliability, compared to transformers.

A significant problem with rotating machines (motors
and generators) is that they are not easily made for
very high voltages. Even today, the biggest generators
only work at up to 20 kV or 30 kV, then their
output goes through a transformer into the electric
transmission system at 400 kV. The high voltages are
highly desirable for efficient transmission of electricity.

Transformers are stationary and simpler to build; they
are also relatively easy to make for high voltages.
The main restriction is that they require a voltage
without any significant dc. When transformers can be
used, they can “step up” the voltage from generators.
Then the electricity can be transferred efficiently over
long distances, by using high voltage and low current,
thereby reducing the power lost in the resistance
of the wires. The voltage can then be reduced by
other transformers to reasonable levels for using inside
buildings.

It is also easier to make switches and circuit-breakers
for ac, as the constantly changing direction of the
current enables the switch to stop the current near
the point when it is naturally zero in the ac cycle.
Generators and motors can be built in larger sizes
for ac, since the windings where the main power is
generated or consumed can be stationary and directly
connected to the power cables. In contrast, practical
dc machines contained some form of sliding contact
through which the main current had to flow, because
the current generated in the windings is naturally ac.
The ‘alternator’ found in a combustion-engined car is
a three-phase ac machine, with a set of diodes built in
to it to provide a dc output suitable for the battery
and car electrics; this is another way to get dc from
an internally ac machine.

3.3 Models for nonidealities

A common way to handle nonideal components is to
model them with ideal components. One example is a
real voltage source, which can be modelled to a better
approximation as a Thevenin source in which and ideal
impedance is limiting the output of an ideal voltage
source.

An ideal transformer can be added to in this sort of
way, to make a more detailed model of a practical
transformer. Series resistance models the resistance of
the metal wires. Series inductance models the part of
self-inductance of a coil that is not included in the
mutual inductance: i.e. the effect of flux that couples
only one coil. Parallel inductance models the need of
a finite current to force a magnetic field in the core,
and a parallel resistance can model the power due to
heat-losses in energising the core.

These models are popular as they allow idealised
components to be used. Many people in electric power
engineering appear to prefer models based on an
ideal transformer surrounded by some other ideal
components to model a transformer’s nonidealities,
instead of using a model based on mutual inductance.
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