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This topic seems hard to introduce. We used this
document in VT15, then a revised, handwritten version
in VT16. We change it a little each time, trying to get
the most important points across in an accessible way. In
spite of these efforts it always feels that this is simply a
surprisingly hard topic. Perhaps this is because of having
more connection to practical questions, or too much
terminology to get familiar with. There is in fact no new
theory, but just a set of phasor calculations and power
calculations. Learning to see and exploit symmetries, and
various formula based on them, is an important part.

Topic 13: Three-phase AC systems
All our power-circuit examples so far have been based
on power flowing in a pair of wires, where the currents
in the two are equal and opposite. This gave us a
simple relation such as S = ui∗ for the complex power
flow (assuming rms values).

You probably have realised that most power lines you
see have three main conductors, with similar levels
of insulation on each.1 In this Topic we look a little
at why “three-phase ac” is practically universal for
electric power systems, and then we consider some
definitions (terminology) and calculations.

The actual calculations do not require any more
than your existing knowledge. However, there are
convenient ways to handle three-phase calculations, so
it is useful to get familiarity with these. We’ve already
become used to the factor

√
2 turning up everywhere

. . . now it’s joined by the factor
√

3. We also need to
be familiar with some terminology, such as line- and
phase-voltages, and wye and delta connections.

1 Why three-phase ac systems

Some justification of “Why ac” has been given in
the Extra part of Topic 12, on transformers. If an ac
generator (alternator) with a single coil2 is connected
to a resistive load, the output power will vary between
zero and a peak value. We have seen this idea
already in Topic 10, where the instantaneous power
of a sinusoidal source is an oscillation at twice the
frequency of the ac voltage or current.3 This variation

1The main exceptions to three-phase ac for high-voltage
lines will be HVDC (high-voltage direct current), which usually
consists of a balanced positive and negative conductor; these are
very unusual compared to ac lines. Another exception special
to Sweden, Germany, and a few other countries around them, is
rail traction supplies at what is now called 16.7 Hz (it used to
be called 16 2

3
Hz, i.e. 1

3
×50 Hz) [link]. These traction supplies

are in some regions linked together by a grid at a higher voltage,
e.g. 130 kV, than is used for the actual railway wires, using just
a pair of conductors.

2“Winding”: complete set of turns of wire in a machine such
as a motor, generator or transformer, with two wires coming out
to connect. (The word is used in various ways, e.g. sometimes
for all the wires in some region of the machine.)

3The output doesn’t have to be a sinusoid; it won’t be
perfectly so. But there are practical constraints against making
or using near-squarewave voltages and currents.

of the electrical power coming out of the generator
will result in a mechanical oscillation. This time-
variation of instantaneous power can be reduced by
having another coil, or several coils, at equal spacing
around the generator, then connecting loads to each:
the varying powers then sum to a constant, so the
total power output is smooth. In other situations, such
as modern power electronics, it is also useful to have
this smoothness of power that is given by a three-
phase system, so that converters can give smooth
output power without needing large energy-storage
components.

Another feature of polyphase ac is that by applying
the phase-shifted voltages to a set of coils equally
spaced inside another machine, a magnetic field is
set up that appears to “rotate”, i.e. its direction
changes smoothly in time. A metal object in this
field will have currents induced in it that cause it
to be dragged round! This allows a simple, reliable,
but quite efficient design of motor (induction motor
(sv: asynkronmotor)), which has been the main form
of industrial motor for over a century. That idea came
in at least two places around 1890, and was originally
based on two phases shifted by 90°.

It isn’t actually necessary to have a pair of wires for
each phase: one of the two wires from each coil can be
connected to a common point (e.g. “ground”), usually
called a neutral. It turns out that the currents in the
different phases cancel, due to their equal phase-shifts.
So the neutral isn’t even needed in many cases. This
gives a saving of materials, as three wires can do the
job that six would have done. Three phases is the
minimum number where one gets a cancellation of the
currents and the smooth power and “rotating field”.

2 Typical components

The main source of three-phase power is still three-
phase alternators.4 These are machines with rotating
magnets and three sets of stationary coils, which are
positioned so that there is a 120° phase-shift between
their induced voltages.

For our purposes in circuit analysis, we will see an
ideal three-phase voltage source as having three phase
terminals and possibly a fourth terminal, the neutral.
The neutral’s potential is the mean of the phase
potentials at any time. In a public power system this
is almost always deliberately connected to earth. We
will normally have neutral points connected to ground
(reference potential) in our circuits.

4Another source is power-electronic converters, where three
output voltages with controlled magnitude and phase are
synthesised by rapidly switching them between different dc
levels, and filtering away the high-frequency changes due to the
switching. Converters are increasingly important for interfacing
dc sources such as photovoltaic cells to the grid. They also
interface the ac system with high-voltage dc systems that are
used for transmitting power over long subsea cables, or very
long land distances: hot-topic examples are offshore wind farms
in the north sea, remote hydro power in India, and new long-
distance connections in China.

http://en.wikipedia.org/wiki/15_kV_AC_railway_electrification


The following diagram shows how we can draw an
ideal three-phase source, including a neutral terminal,
using just the normal two-terminal voltage sources
that we are familiar with.
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The three source-voltages can be described by the
following phasors,

ua = Up 0°
ub = Up −120°
uc = Up −240°

(1)

where Up is the rms magnitude of the “phase-voltage”
between one of the phase outputs and the neutral.
Using rms values is strongly the convention in power
subjects, so that we don’t have to keep writing a factor
1/2 when calculating power.

The set of voltages defined above (1) has phase-
sequence (sv: fasföljd) abc.5

The following figure shows these voltages as time-
functions over one cycle. The values are normalised
to the rms of the individual sources, Up.
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After phase-a has had, for example, a positive peak,
then the phase that has its positive peak soonest
afterwards is phase-b, and then phase-c. There are
only two possibilities for phase-sequence: abc and acb

5Various sets of letters are used to denote the phases: the
abc choice, or colours red/yellow/blue or red/green/blue are
common particularly in English-language use. One common
European choice is RST. For marking the two ends of each
phase-coil in a motor, one sometimes uses RST (one end) and
UVW (other end).

(you could also write e.g. cba, but this is the same
sequence as acb if it keeps repeating).

The voltage between phase-c and the neutral is
marked on the diagram as ucn. It is common to use
this double subscript to make clear that it is phase-
c relative to the neutral; a shorter form of uc is
sometimes used. The voltage between phase-a and
phase-b is marked as uab. There are six different
voltages that we can measure between pairs of these
four conductors.

By symmetry, there are only two different magnitudes.
One magnitude Up has already been defined, for the
voltages from any phase to neutral. The other is
the magnitude of voltage between different phases.
However, the voltages all have different phase (angle).

Loads, in our calculations, are usually represented
as impedances. It is often reasonable and useful to
model a three-phase load as three similar impedances,
which form a balanced load. Machines designed for
three-phase operation will usually have a quite similar
impedance on each phase. Loads consisting of lots of
single-phase loads will usually have a quite similar
amount of load on each phase at a given time.

Consider three equal resistances connected between
the three phases and neutral, of a source with voltages
defined as in the previous plot. The instantaneous
powers in the resistors, and the total instantaneous
power, are shown in the following figure.
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We can note how the individual phases have powers
oscillating between zero and twice their mean value,
but the total power input at any time is a constant of
three times the mean value of each phase.

A further question is then how the impedances are
connected. There are two ways to connect three similar
impedances to a three-phase source in a symmetrical
(balanced) way.
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The one the left is the same as was used for the
voltage sources that we looked at earlier. This type
of connection can be called star wye (Y), based on its
shape. Each terminal connects to one end of just one
of the impedances. The other ends of the impedances
connect together, to a point that has been labelled ‘n’
for neutral: this is sometimes called the star point.

The other type of connection is shown on the right.
This is called a delta (∆) or mesh connection.
Each impedance connects between a pair of phases.
There is no possible neutral-point. Each impedance is
exposed to the full line-voltage. The current into each
terminal is the phasor sum of the currents in the two
impedances that connect to that terminal.

Now we can look at some terminology, which also
will help to show the relations between voltages and
currents across the impedances and in the supply
wires. In the following diagrams, there is a balanced
load modelled by three impedances, and there are
three wires (nodes) supplying this load from a three-
phase source that is assumed at the left.

The impedances can be called the phases; the voltages
across them, and the currents through them, can be
called the phase values. This terminology is normal for
people who work with the loads: each impedance is one
“phase” of their device, such as a coil in a motor, or a
resistance-wire in a heater. The voltages between the
supply wires, and the currents through these wires,
can then be called the line values, referring to the
power line.

The diagram below shows three equal impedances
forming a Y-connected load, with an ideal three-phase
voltage source assumed at the left.
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The current through each phase of the Y-connected
load is clearly the same as the current in the supply

line that is connected to it,

ib = ibn

The voltage between two supply lines is different from
the voltage across any phase of the load. For example

uab = uan − ubn (KVL)

This can be seen in the earlier time-plot of voltages.
The magnitude |uan − ubn| is greater than |uan| or
|ubn|, due to the angle between these voltages. Noting
that the star point is at neutral potential (due to
symmetry), the magnitude of the voltage is the same
across each phase, and is the value Up that was defined
when we defined the source. The voltage between
two lines can be calculated by phasor subtraction. It
turns out that the magnitude of this line voltage is
Ul =

√
3Up. So

|uab| =
√

3|uan|.

The next diagram shows three equal impedances
forming a ∆-connected load.
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Now the situation is reversed: each phase of the load
has a voltage equal to the line voltage. But each line
current is a phasor sum of the two phase-currents of
the impedances that connect to the line. For example,

ib = ibc − iab.

This again gives a factor of
√

3: for example,

|ib| =
√

3|ibc|

The complex power to each impedance in a Y-
connected load is U2

p/ZY
∗. The total complex power to

a balanced Y-connected load is therefore

S =
3U2

p

ZY
∗ =

U2
l

ZY
∗ .

The complex power to each impedance in a ∆-
connected load is U2

l /Z∆
∗. The total complex power

to a balanced ∆-connected load is therefore

S =
3U2

l

Z∆
∗ =

9U2
p

Z∆
∗ .
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Two useful results come from the above.

One is that by setting Z∆ = 3ZY, the balanced delta
or star connected load will have the same power.

The other is that, if we know the magnitudes of
balanced line voltage Ul and line current Il to an
unknown (but balanced) load, the apparent power can
be calculated as |S| =

√
3UlIl. This is a standard

part of three-phase calculation: for example, what
maximum design current would be expected from
each terminal of a three-phase transformer that is
rated at 1 MVA, 400 V (line-voltage)? Answer, |i| =
|S|/(

√
3U) = 1.44 kA. The complex power can be

found if the phase angle between a voltage and current
can also be measured.

4-wire or 3-wire Y connection. A Y-connected load can
have its star-point (centre) floating (connected only
to the three impedances) or connected to a neutral
that leads back to the source. In the latter case, this
point is held to a fixed potential even if the load
or source is not balanced. Calculation is easier if we
know this point’s potential: then we know each Y-
connected impedance’s voltage. If the load and source
are balanced, then by symmetry we can argue that
the star-point is at the same potential as the neutral.
To be more formal, node analysis can be used: define
the start-point of a balanced load as having potential
V . KCL gives 0 = ua−V

Z + ub−V
Z + uc−V

Z . So V =
ua+ub+uc

3 , and the definition of a balanced three-phase
voltage source with grounded neutral gives us that
V =

Up

3 (1 0 + 1 −120° + 1 −240°) = 0, with the
zero coming from simplifying the summed complex
numbers.

Confusing names.

The following description is for background
information. It should not be a problem in our
course. It will be made very clear in exams
which voltages or currents are being discussed, by
marking them on diagrams and referring to them
as e.g. ubn.

We’ve just looked at a common meaning of
phase and line values of voltage and current,
typical when distinguishing between loads and the
electricity network.

Sometimes, people working with systems
(networks) instead call the voltage from one
phase to neutral the phase voltage. In this way,
the terms phase voltage (sv: fasspänning) and
line voltage (sv:huvudspänning) are used to
distinguish what we’d have called the line-neutral
and line-line voltages in our earlier definition. The
two definitions would only disagree if discussing
a ∆-connected load. Part of the reason for this
network-oriented definition is that it’s common
to call the different wires the phases (a synonym
for lines). The word phase is already confusing,

as we’ve used it for the angle of a sinusoidal
signal, or for a coil or set of conductors!

Summary: the words line-voltage and line-current
have clear definition; phase-voltage and phase-
current might be used differently by different
groups. Introductory textbooks usually use the
first of the definitions above, that we used when
studying the Y and ∆ connections.

3 The toolkit

As was already mentioned, there’s nothing fundamen-
tally new about “three phase systems” when you’ve
already studied ac circuits and power. There’s just
a bit of extra terminology, which has already been
described: Y and ∆ connections, phase- and line-
voltages and currents.

There are a few methods that can be helpful as
shortcuts.

3.1 Symmetry

Symmetry is probably the most important shortcut.

If we have balanced loads (same impedance) from each
phase to neutral, then we know the currents are of
similar magnitude but displaced from each other by
120°. Then we can immediately say they sum to zero
in the neutral.

If we have a balanced load with a particular complex
power, it does not matter whether the load is
actually three impedances Z in Y connection, or three
impedances 3Z in a ∆ connection: the currents into
the loads will be the same. This can be useful when
solving a system with Y and ∆ loads, where it’s easier
to combine them with line (connection) impedances
and each other if they are, e.g. in Y.

A balanced Y load does not actually “use” its neutral.
By symmetry you can see that no neutral current
will flow, and even if the connection to the star-
point (the centre node of the Y) is removed, that
point’s potential will stay at zero. That potential
can be calculated by node analysis, or just seen
from symmetry. Node analysis is useful if needing to
calculate neutral potential for an unconnected neutral
in an unbalanced load.

3.2 Power

It is often simple to think in terms of complex power;
this is a “conserved quantity” (what goes in must
come out). So the sum of active powers consumed
by loads, and consumed in any resistance of the
connections between the loads, must equal the active
powers provided by any sources. The same is true for
reactive powers.

A very suitable case for power-based calculations is
when lots of load impedances are connected in various
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ways to a three-phase source. If the voltage magnitude
is known, across a known impedance, that is enough
to calculate the complex power in the impedance, i.e.
S = |u|2/Z∗. The same is true if current magnitude
is known. In this way, the actual phase-angle of the
current or voltage in each element of a ∆ or Y load is
not important, as the complex power can be found by
just knowing the voltage magnitudes.

In balanced three-phase systems, the complex power
in one of the three impedances of a balanced load can
be calculated then multiplied by three, to find the total
complex power.

This is a convenient way to, for example, add powers
of several balanced three-phase loads, then design
power-factor compensation in ∆ or Y. When series
impedance in the supply system has to be included,
then it can be more difficult to apply a power-based
calculation with rigour, since the voltages might not
be the same for all loads. Voltage division can be
done between series impedances and loads, but the
complex numbers have to be considered: phase angles
are important for finding the magnitudes of voltages
and currents. It is not hard with a computer, but
it would quickly become messy using pure symbolic
manipulation.

In Q7 of the 2013-03 [Exam] it was convenient to think
in terms of power or a Y-∆ transformation to find the
part if ib due to the balanced ∆ load. If working from
normal circuit analysis, you would find the currents in
the two impedances Z that connect phase-b to phases
a and c. By the quick method, it’s enough to see that a
star with impedances Z/3 is equivalent, and therefore
that the current into phase b of the balanced load is
ub/(Z/3).

3.3 Splitting balanced and unbalanced

The symmetry methods are based on balanced
conditions, but there are cases where there is some
unbalanced load. It may still be profitable to analyse
the balanced part in a simple way, then add the
unbalanced part.

3.4 Common factors, angles and surds

For the cases where you have to do some phase-
based calculation by paper and pen, instead of using
symmetry and power and computers, it is useful to be
familiar with the commonly occuring angles and their
sine and cosine. For example,
cos(60°) = sin(30°) = 1/2 = 0.5
cos(30°) = sin(60°) =

√
3/2 ' 0.866

cos(45°) = sin(45°) = 1/
√

2 ' 0.707.

The line-line voltages (or line voltage) are
√

3 the
magnitude of the line-neutral voltage (sometimes
called phase-voltage). The currents into a set of 3
∆-connected elements are

√
3 the magnitude of the

currents in the separate elements.

For some people, phasor diagrams (draw phasors in
the complex plane) are very useful, for thinking about
angles and addition or subtraction of phasors.

4 Final word!

However simple the basic concept of ‘three-phase
system’ might be, as an add-on within the already
existing background of ac, ac power, etc, it is quite
difficult to get used to the power calculations in some
strange unbalanced cases.

You can try writing everything from first principles,
and thereby create a lot of equations; or you try
thinking of how to make it simpler, but realise that it’s
hard and not always obvious what is the right thing
to do. It’s not always easy, even for people who’ve
done it for years. So don’t be too disheartened if you
think it’s hard: you’re not alone. People who use the
concepts regularly in their jobs will tend to know
well the solutions of the few special cases they tend
to meet, which can be different for different types of
study (and they probably use computers for much of
the work).
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5 Example: three-phase solution

This solution was requested in 2014, for a question in a textbook that provided no solution.

The circuit (problem 12.7-7 8th-ed Introduction to Electric Circuits, Dorf/Svoboda) is the following:

a
Zs ia

b
Zs ib

c
Zs ic

+

−
uab

+

−
ubc

+

−
u′ab

+

−
u′bc

2

1

Load 1 is: ∆-connected, 1.8 MVA apparent power at pf= 0.9 lagging.
Load 2 is: Y-connected, 2.4 MW active power at pf= 0.96 lagging.
The supply’s series impedance is Zs = (0.48 + 0.96j) Ω in each phase.
We’ll assume balanced loads, and a balanced three-phase voltage source at terminals a,b,c.
The loads “require 5 kV rms”. I’ll assume that’s a line-voltage.
It seems we’re supposed to assume the line-voltage at the load is this value, so UL = |uab| = |ubc| = |uca| = 5 kV.

Find:
a) The required magnitude of line-voltage at the supply (e.g. |u′ab| in the diagram above).
b) The active power from the supply.
c) The proportion of the active power from the supply (part ‘b’) that reaches the loads.

It is useful to find the loads as complex powers; then the current phasors can easily be found. Although we
only care about voltage magnitudes for the final answer, the calculations have to be done as phasors, since the
magnitude of a sum of complex numbers (e.g. |x + y|) depends on the angles as well as the magnitudes of these
numbers.

% load 1

s1 = 1.8e6 % apparent power

pf1 = 0.9 % power factor

P1 = pf1 * s1 % active power

Q1 = sqrt(s1^2 - P1^2) % reactive power

% (note: Q1 should be positive because pf1 was lagging, so it consumes

% reactive power: if pf1 had been leading, we’d make Q1 negative)

S1 = P1 + 1j*Q1 % complex power

% load 2

P2 = 2.4e6

pf2 = 0.96

s2 = P2 / pf2

Q2 = sqrt(s2^2 - P2^2)

S2 = P2 + 1j*Q2

% total complex power of both loads

Sl = S1 + S2

% define other given information:

% line voltage at loads (rms, of course...)

Ul = 5e3

% supply impedance
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Zs = 0.48 + 0.96j

5.1 First method

a) The voltage at the loads is their correct voltage, so they should be consuming the stated power. From this,
we can immediately work out the currents taken by the loads together. This current, in the supply’s impedance,
causes a voltage across the supply impedance, which is added to the voltage at the load to find the voltage at the
source.

% take voltage from phase-a to neutral, at the load, as

% the reference phase (purely real)

uan = Ul/sqrt(3)

% current ia, based on line-neutral voltage u_an as reference phase

ia = conj( (Sl/3) / uan )

% the above should make obvious where this expression comes from:

% one third of the complex power is supplied in each phase, and the

% phase-neutral voltage is 1/sqrt(3) of the line voltage;

% phases b and c will be the same, with 120degree shifts (balanced)

% voltage at source (left of diagram) is sum of load voltage and ia*Zs

uan_s = uan + ia*Zs

% line voltage magnitude at source is thus

Uls_s = abs( sqrt(3)*uan_s )

% which is about 5.7 kV with the given numbers

b&c) The real power from the supply is the sum of real powers in all phases; these are equal as the system is
balanced, so we can calculate in phase-a alone then multiply by 3.

Ssa = uan_s * conj(ia) % complex power into phase-a at source

Ss = 3 * Ssa % total complex power at source

Ps = real(Ss) % real power at source

eta = (P1+P2) / Ps

% about 92% of the source’s power gets to the load in this case

5.2 Alternative method

This is very similar to the above, but is more explicit about using a single-phase equivalent for the balanced
three-phase calculation. This might help you to understand better why the calculations are made in this way.

To get a single-phase equivalent, we can replace the above diagram with the following:

a
Zs ia

+

−

uan = UL√
3

0

+

−

u′an S2/3 S1/3

Let’s name the diagram’s variable u′an as uan s in our computer program. We assume the variables S1 and S2 are
already defined, as we did at the start. Then,

uan = 5e3/sqrt(3)

ia = conj( (S1/3 + S2/3) / uan )

uan_s = uan + ia*Zs
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% line-voltage at source (in actual, 3-phase circuit)

Ul_s = sqrt(3) * abs(uan_s)

% power from source (for all three phases)

P_s = real( 3 * uan_s * conj(ia) ) % ~4.37 MW

eta = (P1+P2) / Ps % ~92%

Notice how the power-based balanced three-phase calculation didn’t require us to use the information about Y-
or ∆-connection of the loads.

And another method: Impedances

The above diagrams and calculations did not define load impedances; they just showed generic two-terminal loads
with a given power. We were not told that the loads behaved like fixed impedances; for example, some motor
loads can take almost the same active power even if the voltage drops by 5%, which is not the behaviour of a
simple impedance. The reason we didn’t need to care is that we were told the voltage and the power at the load,
so we can find the current.

We could have got the same result by assuming the loads to be impedances, given the assumption of the known
voltage at the load.

But then it’s important to remember that if we start asking questions about “what happens if the voltage at the
load changes”, then the results will be wrong unless we were correct to assume the load to be an impedance.

For example, we might want to assume the supply voltage u′ is fixed, and we want to find the load voltage. Then
we would need to know how the loads’ currents depend on voltage. When loads don’t act as impedances, these
types of question can (in some cases) lead to nonlinear equations.

Anyway: let’s assume impedances, and work with Y-connected impedances so that we can directly use them in
the single-phase equivalent. Then

% reminder of the rated phase-voltage of the loads

Up = 5e3/sqrt(3)

uan = Up

% load impedances (per phase, if Y-connected)

Z1 = conj( Up^2 / (S1/3) )

Z2 = conj( Up^2 / (S2/3) )

% total parallel impedance (of one phase)

Zl = 1/( 1/Z1 + 1/Z2 )

% voltage-division equation

% uan = uan_s * Zl / ( Zl + Zs ) ... therefore,

uan_s = uan * ( Zl + Zs ) / Zl

% line-voltage at source (in actual, 3-phase circuit)

Ul_s = sqrt(3) * abs(uan_s) % ~ 5.71 kV (line)

And for a little extra sport, we see how easy (with the help of a computer) it is to treat the more difficult problem
of a fixed supply voltage and unknown load voltage, assuming the loads behave like impedances,

uan_s = 5e3/sqrt(3)

uan = uan_s * Zl / ( Zl + Zs )

Ul = sqrt(3)*abs(uan) % about 4.38 kV (line)
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6 — Extra —

6.1 Some example waveforms

This is rather fun. A company that makes “power quality monitors” has a few customers that make their
measurements public. So you can see some different voltage standards (230 V, 120 V, etc), see some waveforms of
voltage and current, and see these in several different languages. It’s admittedly not very helpful to the exam in
our course, but it gives some indication of how three-phase concepts of “L1-L2 voltage” and so on are fundamental
in practical discussions of power networks.

See the Map. Yellow dots with a number indicate multiple sites that can be seen if you zoom. Click on a site with
green or flashing-yellow light.

The link ‘Meters’ will then show some rms values such as line voltages (e.g. L1-L2) and phase voltages (e.g. L3-N),
then possibly currents (if it monitors current), harmonic distortion (how nonsinusoidal the ac voltage or current
is), and some powers. Generally you’ll see how well balanced the voltage is between phases.

The link ‘Events’ might show some further links, in which case (if lucky) there might be some images with names
ending in Waveform.gif or Waveform.png. These get produced when some abnormality is detected: commonly
this is a brief reduction in voltage magnitudes (a ‘sag’). Many users are interested to analyse why their machines
or computers have problems: the instrumentation helps them find out what the problems are and where they
probably came from. If you find a lucky set of waveforms, you’ll see three-phase voltages and currents, be able to
see that the peaks are about

√
2 of the declared rms, see that the normal currents tend to be not good sinusoids

(distortion from nonlinear loads such as computers, modern lamps, etc), and perhaps see the ‘event’ that the
instrument had detected.

One recent example is shown below, with all these features, on a system rated at 600 V.

6.2 Single-line diagrams

A single-line diagram (SLD) is a common way to represent connections and loads in a balanced three-phase
system. It uses just one line to represent all three phases and a possible neutral. It is assumed that all loads
and generators have balanced three phase voltage and current; all series impedances representing cables, nonideal
transformers, etc, are assumed to be similar impedance in each phase.
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A small example is shown below, where a three-phase generator is shown as a wave inside a circle. The “nodes”
really represent three or four separate connections (each phase and a possible neutral) to each line or component
that terminates at the node.

S1

Z
b1

S2

Z b2

Zb3

Zl

In this way, one makes calculations as if on a single-phase circuit. It’s just occasionally necessary to remember
that in fact the system is a three-phase one – for example, if you wonder why a meter tells you it’s 230 kV to
earth, whereas you were calling it a 400 kV line. By a normalization called the power system “per-unit” method,
even the factor of

√
3 when calculating powers is not needed.

6.3 Balanced and Unbalanced

Many power-system calculations are made on the assumption of balanced three-phase operation. When the
calculated system is big, it naturally becomes unlikely that the loads would become very different between the
phases; so assuming balanced loads is often very reasonable. Most lines and transformers do not behave quite
like balanced impedances (which would look exactly the same for each phase) but they can be approximated as
balanced for a lot of studies.

Major reasons for needing a more general type of solution, for unbalanced conditions in a three-phase system, are
faults (e.g. short-circuit) that affect phases unequally.

An old and widely used way to calculate on unbalanced three-phase systems is a symmetric (sequence) components
transformation. In a commonly used basic form, some arbitrary state of sinusoidal voltage and current (not
necessarily balanced) is represented as a superposition of three sets of voltage and current: one is ideal balanced,
another is ideal balanced but with the opposite sequence (e.g. acb instead of abc for the time-order of the phases),
and the other has no phase-shift between the phases.

One rather nice simple visualiser to allow comparing the actual abc quantities with the positive-, negative- and
zero-sequence sets is here [link]. You might like its beauty even if you don’t quite get the point! (This method
is very central to a lot of analysis of power systems and fault conditions.)

6.4 Supply to homes

There are quite big variations between countries about the choice of how many conductors (and what voltage) to
bring to a home.

In Sweden (and I think all the other Nordic countries, and Germany and several others in Eastern Europe) it is
normal to bring three phases and a neutral into each home. Then the main fuses can each be quite small (e.g.
20 A) and some larger loads can be supplied between two phases (to get a higher voltage and therefore a lower
current) or from all three phases together.

In the following diagram, ‘L’ denotes line conductors, ‘N’ the neutral (mid-point: sv: nolledare), and ‘PE’ the
protective earth (skyddsjord). In the aforementioned countries it’s common to keep the neutral and earth as one
conductor until the intake to a building, or even as far as the fuseboard (elcentral).
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As a matter of interest, Norway has a high proportion of public supply networks with the unusual feature of being
three-phase without a neutral. The line-voltage is about 230 V, so a normal socket outlet for ‘230 V’ is connected
between phases. The voltage between any phase and earth could be about 130 V. (‘About’ is written here because
they also do interesting things with not directly earthing any conductor of the supply, which means that the
potential of all three phases might not be symmetric around earth potential, depending on what impedances,
such as cable insulation capacitance and leakage current through damaged insulation, are connected.)

(In the laboratory room that we use in this course, a similar system is used, from a transformer at the back of
the room. This converts the normal 400 V line voltage to a 230 V line voltage. The workbench sockets are then
supplied with two phases, so 230 V is available to the things we plug into the sockets, but there is only 130 V to
earth. An advantage is that there is less of a shock risk. In contrast to the public supplies in Norway, the lab’s
source has an earthed neutral. In the lab there are also unusually sensitive earth-leakage breakers (jordfelsskydd)
that detect 10 mA ‘going missing’ in the circuit. By ‘going missing’ we mean passing back to the transformer
through a path that is not one of the intended live conductors: e.g. it may be through the protective earth wires,
or through someone’s body. They were very thoughtful in designing that lab: safety beyond the normal levels!)

In some other countries, including France, UK, Australia and New Zealand, it’s common to have a three-phase
system in the street, but take one phase and neutral to each home. Then the main fuse is bigger. Wiring looks
simpler, but large loads have two thick wires instead of three thinner ones.

/80/10060
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PE to all 
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PE

40 50 32 16 6

lights
(range)
cooker water

heater
shower outlets

L

PEN

meter

main switch

Note that a given load on a three-phase connection would need each of its three wires to carry only 1/3 of the
current compared to each of the two wires if the same load power is supplied from a single phase and neutral
(from a system with the same three-phase voltage). In the above diagram, many countries would have multiple
16 A circuits for socket outlets, but in the UK it’s common to have one to three bigger circuits to many sockets,
then to have smaller fuses in the plugs.

In North America and some of its surroundings (central, parts of southern America, Japan), it’s usual to have
120 V instead of 230 V as a normal rating for socket outlets, lamps, etc. This is commonly provided by a 240 V
single-phase transformer with the centre of its winding connected to ground (neutral). Then some things are
connected from one wire to neutral, and others from the other wire to neutral. Their currents can cancel in the
neutral, as these two other wires have 180° phase-shift. Larger loads can connect between the outer wires, to get
240 V. So a supply with two ‘hot wires’ each with a 100 A fuses, can give the same power as a single-phase supply
with 100 A fuse in e.g. Europe, or a three-phase supply with 32 A (ok, 33.3 A, but 32 A and 35 A are common
actual values of fuses). Now they sometimes have 200 A fuses on the supply in the US: there’s a lot of electricity
use!
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