
EI1110 Elkretsanalys, Kontrollskrivning KS1, 2014-09-30 kl 15–17

Hjälpmedel: Ett A4-ark med godtyckligt inneh̊all (handskriven, datorutskrift, diagram, m.m.).

Kontrollskrivningen har 3 tal, med totalt 12 poäng. Den omfattar ämnet ’Likström’ och motsvarar del
A i tentamen. Det högre av betygen fr̊an KS1 (den här) och fr̊an tentans del A kommer att användas
vid betygsättning av tentan. (Del A är godkänt vid ≥40%, men glöm inte att tentan kräver ocks̊a minst
50% räknat över talen i alla delar.)

Om inte annan information anges i ett tal, ska: angivna värden av komponenter (t.ex. R för en motst̊and,
U för en spänningskälla) antas vara kända storheter; och andra storheter (t.ex. strömmen markerad i
en motst̊and) antas vara okända storheter; och komponenter antas vara idéala.
Lösningar ska uttryckas i kända kvantiteter, och förenklas. Var tydlig med diagram och definitioner av
variabler. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Använd återst̊aende tid för att kolla p̊a svaren! Examinator: Nathaniel Taylor

1) [4p]

a) [1p] Vilken effekt absorberas av R3?

b) [1p] Vad är den markerade strömmen i1?

c) [1p] Vilken effekt absorberas av R4?

d) [1p] Vilken effekt levereras av källan U?
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2) [4p]

Använd nodanalys för att skriva ekvationer som skulle
kunna lösas för att f̊a ut de markerade nodpotentialerna
v1, v2, v3 och v4.

Du m̊aste inte lösa eller förenkla ekvationerna: du
behöver bara visa att du kan översätta fr̊an kretsen till
ekvationerna.
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3) [4p]

a) [2p]
Vad är potentialen p̊a pol ’a’?
(D.v.s. spänningen mellan ’a’ och ’b’.)

b) [2p]
Vad är den störste effekten som kan levere-
ras fr̊an denna krets till en valfri extern krets
som kopplas mellan polerna ’a’-’b’? (Du f̊ar
tänka p̊a den externa kretsen som ett enda
motst̊and om det hjälper: slutsatsen är samma
för most̊and eller mer allmänt fall.)
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Solutions, EI1110 KS1 2014-09-30

1) a) PR3
= I2R3, b) i1 =

−IR2

R1 +R2

, c) PR4
= U2/R4, d) PU = Uix = U

−I + U/R4

1 + k
.

The following re-drawing may help in considering the above results.
The final one was obtained by simplification and nodal analysis, taking KCL just at the voltage source
+ pole, into three simplified parallel branches.
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2)

Extended nodal analysis (“the simple way”)

Let’s define the unknown current in voltage source U as iα, going into the source’s + terminal.

KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = I + gux +
v1 − v3
R2

+
v1
R3

(1)

KCL(2) : 0 = −I +
v2 − v3
R1

(2)

KCL(3) : 0 =
v3 − v2
R1

+
v3 − v1
R2

− iα (3)

KCL(4) : 0 = iα +
v4
R4

(4)

Now there are 6 unknowns (v1, v2, v3, v4, ux, iα), and 4 equations.

Next, include the further information given by the voltage source,

v4 − v3 = U, (5)

and also define the controlling variable ux in terms of the existing known or unknown quantities,

ux = v3 − v1 (6)

The systematic way in which this was done is important! There are plenty of ways to write a sufficient
set of equations, but it is also dangerously easy to write some linearly dependent equations and assume
that “n unknowns, n equations, therefore it’s all ok” . . . the above method is useful!
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Alternative: Simplifications and/or Supernode

It’s quite a nice circuit to solve if we had to do the solution by hand. The supernode approach would be
good. (However, the method used above is better when you don’t have to solve the equations, such as
in this type of exam question or for solutions by computer-algebra system: that’s because it minimises
how much manipulation you do of the equations.)

The “standard procedure” in the supernode method is to notice that v4 = v3 + U , and therefore to
include only one of these potentials in the equations that we have to solve; the other can easily be
found after the solution. Then KCL is taken over both of these nodes together, to avoid dealing with
the unknown current in the voltage source U . Let’s choose to use v3; then if the potential v4 is needed
in our equations (e.g. for KCL with R4) we can write it as v3 + U . (The reason for choosing to use v3
instead of v4 was that v3 will obviously appear more in the equations, since there are several resistors
connected to node 3, and a controlling variable that depends on this potential.)

The controlled source gux can be written as g(v3 − v1) so that the variable ux isn’t used.

The branch of I and R2 behaves, of course, like a current source I, because the series resistor is irrelevant
when seen from outside this branch. The solution of the rest of the circuit only needs to know that I
comes out of node 1 and into node 3. After the other potentials have been solved, we can find v2 by
v2 = v3 + IR1: the resistor in series with a current source is, in effect, a known voltage source, because
the voltage across it is completely determined by the current and resistance! This special treatment
of the left branch is not a standard procedure in the supernode-method: it’s just something that we
can notice as a simplification, with the advantage of reducing the number of equations that have to be
handled at the same time.

Node 1 is a further node, with unkown potential v1.

There are now only two unknown variables: v1 and v3.
Writing KCL (out) at the supernode of nodes 3 and 4, and at node 1,

0 = −I +
v3 − v1
R2

+
v3 + U

R4

(7)

0 = I + g (v3 − v1) +
v1 − v3
R2

+
v1
R3

(8)

To do as the question required, one should also write as equations the earlier statements that would let
us define v2 and v4 after the above equations are solved for v1 and v3,

v4 = v3 + U (9)

v2 = v3 + IR1 (10)

Computer-assisted check of solutions to Question 2

We can choose some arbitrary numeric values:
U = 12V, I = 1.7A, g = 0.9 S, R1 = 8Ω, R2 = 15Ω, R3 = 33Ω, R4 = 4.7Ω,

and then compare solutions of our equations and a circuit-solver program.

The circuit can be described by the following “netlist” for solving in SPICE.

EI1110_HT14_KS1Q2

V1 4 3 DC 12.0

I1 1 2 DC 1.7

G1 1 0 3 1 0.9

R1 2 3 8.0

R2 3 1 15.0

R3 0 1 33.0

R4 4 0 4.7

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4)

.END
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The result from putting the above into SPICE 2g.6 [1983-03-15!] is

node potentials:

( 1) -1.3975 ( 2) 10.2133 ( 3) -3.3867 ( 4) 8.6133

current in voltage source V1 -1.833E+00

current from controlled i-source -1.79E+00

total power dissipation 4.17E+01

Putting our equation systems directly into Matlab symbolic toolbox, the ‘extended method’ gives

%% solve the equation-system symbolically, for the 6 listed unknowns

% (put an underscore onto variable "I", to avoid it being treated as an imaginary unit

% in matlab symbolic toolbox)

s = solve( ...

’0 = I_ + g*ux + (v1-v3)/R2 + v1/R3’, ...

’0 = -I_ + (v2-v3)/R1’, ...

’0 = (v3-v2)/R1 + (v3-v1)/R2 - ialph’, ...

’0 = ialph + v4/R4’, ...

’v4 - v3 = U’, ...

’ux = v3 - v1’, ...

’v1, v2, v3, v4, ux, ialph’ )

s = simplify(s);

%% now show all the results of the 6 unknowns

for f=fields(s)’, disp(f{1}), s.(f{1}), end

% ialph: -(U + I_*R2 - I_*R2*R3*g)/(R2 + R3 + R4 - R2*R3*g)

% ux: (I_*R2*R3 - R2*U + I_*R2*R4)/(R2 + R3 + R4 - R2*R3*g)

% v1: -(R3*U + I_*R2*R3 - R2*R3*U*g + I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

% v2: (I_*R1*R2 - R3*U - R2*U + I_*R1*R3 + I_*R1*R4 + I_*R2*R4 + R2*R3*U*g -

% I_*R1*R2*R3*g - I_*R2*R3*R4*g) /(R2 + R3 + R4 - R2*R3*g)

% v3: -(R2*U + R3*U - I_*R2*R4 - R2*R3*U*g + I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

% v4: (R4*U + I_*R2*R4 - I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

%% set numeric values for comparison with the SPICE solution

U = 12, I_ = 1.7, g = 0.9, R1 = 8, R2 = 15, R3 = 33, R4 = 4.7

% find the result of substituting the above values into the symbolic expressions

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

% ialph: -1.832612

% ux: -1.989180

% v1: -1.397543

% v2: 10.213276

% v3: -3.386724

% v4: 8.613276

A similar treatment of the equations derived from the supernode and simplification methods also matches
the above.

%% solve for potentials

ss = solve( ...

’0 = -I_ + (v3-v1)/R2 + (v3+U)/R4’, ...

’0 = I_ + g*(v3-v1) + (v1-v3)/R2 + v1/R3’, ...

’v4 = v3 + U’, ...

’v2 = v3 + I_ * R1’, ...

’v1, v2, v3, v4’ )

ss = simplify(ss)

ss.v1, ss.v2, ss.v3, ss.v4

% v1: -(R3*U + I_*R2*R3 - R2*R3*U*g + I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

% v2: (I_*R1*R2 - R3*U - R2*U + I_*R1*R3 + I_*R1*R4 + I_*R2*R4 + R2*R3*U*g -

% I_*R1*R2*R3*g - I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

% v3: -(R2*U + R3*U - I_*R2*R4 - R2*R3*U*g + I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

% v4: (R4*U + I_*R2*R4 - I_*R2*R3*R4*g)/(R2 + R3 + R4 - R2*R3*g)

U = 12, I_ = 1.7, g = 0.9, R1 = 8, R2 = 15, R3 = 33, R4 = 4.7

for f=fields(ss)’, fprintf(’ %s: %f\n’, f{1}, double(subs(ss.(f{1}))) ); end
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% v1: -1.397543

% v2: 10.213276

% v3: -3.386724

% v4: 8.613276

3)

a) uab = (IR0 + U)
R2

R1 +R2

Probably the easiest way is to find vo by putting together the equations v+ = IR0, v− = vo − U and
v+ = v

−
; then voltage division between R1 and R2 can be used to find the voltage across R2 (the same

as the voltage between ’a’ and ’b’).
We can treat vo as a voltage source, independent of the values of R1 and R2 or of what is connected between ’a’

and ’b’. As long as there is a negative-feedback path, the opamp will ensure that its output is whatever value is

needed to ensure v
−
= v+; this will not be affected by how much current is taken from the output.

Another way is, of course, nodal analysis. It’s probably easiest to take a supernode-based approach if
we have to solve the equations by hand. The inverting input would, in this circuit, be able to be treated
as part of the ground supernode: that’s because it’s connected through a voltage source to the opamp
output, which is itself regarded as being connected to ground through its internal “controlled voltage
source” model. There are then only two nodes where KCL is needed, and these are both trivial nodes
(only two connections). After substituting v+ = v

−
= vo − U , we get −I − vo

R0
= 0, and va−vo

R1
+ va

R2
= 0.

b) Rx =
R1R2

R1 +R2

.

Maximum power transfer from a two-terminal circuit [with finite, positive Thevenin resistance] is when
the current is half of the short-circuit current, which is also when the voltage is half of the open-circuit
voltage. A less general way of seeing this is that maximum power transfer occurs when a resistance
equal to the circuit’s Thevenin resistance is connected to the circuit. We must therefore find our circuit’s
Thevenin resistance: the desired Rx is this value.

It has already been described that vo behaves as an ideal voltage source, not affected by the current into
R1. The Thevenin resistance of this circuit seen from terminals ‘a’ and ‘b’ is therefore the same as if the
opamp were removed and an independent voltage source vo were inserted between ground and the left
of R1. In this case the Thevenin resistance could be found by setting the source to zero and looking at
the circuit’s resistance between the two terminals, which would be the parallel sum of R1 and R2.

If the reasoning in the above method is unclear, the more general method can be used: e.g. try nodal
analysis on the circuit again, but now with the terminals ‘a’ and ‘b’ short-circuited, to find the short-
circuit current. Then find the Thevenin resistance as the ratio of open-circuit voltage to short-circuit
current: the open-circuit voltage was already calculated in part ‘a)’.

c) Pmax =
R2 (U + IR0)

2

4R1 (R1 +R2)
.

This can be derived from the condition of iab,maxpower = iab,sc/2 or uab,maxpower = uab,oc/2, or from the
condition that Rx = R1R2

R1+R2
, as described above in part ‘b)’.
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