
EI1110 Elkretsanalys, Tentamen TEN1, 2014-10-31 kl 08–13

Hjälpmedel: Ett A4-ark med godtyckligt inneh̊all (handskriven, datorutskrift, diagram, m.m.).

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för en motst̊and, U för en spänningskälla) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i en motst̊and) antas vara okända storheter. Lösningar
ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner av variabler.
Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Godkänd tentamen TEN1 kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen
man fick i dessa respektive sektioner i tentan, och ak är poängen man fick fr̊an kontrollskrivning KS1
vilken motsvarar tentans sektion A.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b
A+B .

Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).
I vissa gränsfall där betyget är lite under 50%, eller bara en av sektionerna är underkänd trots 50% eller
bättre överallt, kommer betyget ’Fx’ registreras, med möjlighet att f̊a betyget E om ett kompletterings-
arbete är godkänt inom n̊agra veckor efter tentamen.

Använd kvarst̊aende tid för att kolla p̊a svaren. Lycka till!

Nathaniel Taylor

1) [4p]

a) [3p] Bestäm Theveninekvivalenten av kretsen
här, med avseende till polerna ’a’ och ’b’.

b) [1p] Vilken ström i resulterar i den största
effekten fr̊an kretsen här, ut till en krets eller kom-
ponent som kopplas mellan polerna ’a’ och ’b’?
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2) [4p]

Skriv ekvationer som skulle kunna lösas
för att finna de markerade potentialerna
v1, v2, v3, v4 som funktioner av de givna
komponentvärderna.

Du m̊aste inte lösa eller förenkla dina
ekvationer.

Använd helst en systematisk metod, för
att försäkra tillräckliga ekvationer utan
onödigt arbete.
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3) [4p]
Bestäm de följande:

a) [1p] Strömmen i1 (genom R1).

b) [1p] Spänningen u2 (över R2).

c) [1p] Effekten leverad till R3.

d) [1p] Effekten leverad fr̊an källan I2.
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4) [5p]
Bestäm de följande:

a) [1p] i2(0
−)

b) [1p] i1(0
+)

c) [1p] i1(∞)

d) [2p] u(0+)
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5) [5p]

Bestäm u(t) för tider t > 0.

Enhetsstegfunktionen är 1().
Observera minustecken i 1(−t).
(Antag jämvikt innan steget, d.v.s. vid t = 0−.)
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Solutions, EI1110 TEN1 2014-10-31

1)

a) The marked voltage across resistor R is ux = U − u.
This determines by Ohm’s law the current through the resistor.
It also determines the current in the controlled source, as ux is the controlling variable.
By KCL on these two currents, the output current i is seen to be

i = (U − u)

(

1

R
+ g

)

.

The Thevenin equivalent can be directly found from this equation, by rearranging it and comparing
terms with the u-i equation of Thevenin source,

u = U −
R

1 + gR
i = UT + iRT.

This shows UT = U and RT = R
1+gR .

An alternative method that would also work well is to find the open-circuit voltage and short-circuit
current. In short-circuit, u = 0 and therefore ux = U so isc = U

(

1
R + g

)

. In open-circuit, KCL with
i = 0 demands that ux

(

1
R + g

)

= 0 which implies ux = 0, so uoc = U . The Thevenin resistance is then
uoc/isc. Finding the resistance directly, by ‘setting independent sources to zero’ is in this case (with a
dependent source) not an easier alternative to calculating isc: proper inclusion of the dependent source
requires as much work as just doing the full short/open-circuit method.

b) The maximum possible power is delivered from the two-terminal circuit when it supplies half of
its short-circuit current, or (equivalently) when the current is enough to reduce the circuit’s terminal
voltage to half of its open-circuit value.

The short-circuit current was already calculated in part ‘a)’.
For maximum power, we need a current imaxP = U

2

(

1
R + g

)

.

2) Two solution methods are shown, and a numerical check is made.

Extended nodal analysis (“the simple way”)

Let’s define the unknown current in voltage source U as iα, going into the source’s + terminal.

KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = iα +
v1 − v2
R1

+
v1 − v3
R2

(1)

KCL(2) : 0 = kix − I +
v2 − v1
R1

(2)

KCL(3) : 0 =
v3 − v1
R2

+
v3 − v4
R3

(3)

KCL(4) : 0 =
v4 − v3
R3

+ iβ + I +
v4
R4

(4)

These are 7 unknowns (v1, v2, v3, v4, ix, iα, iβ) in just 4 equations.

Next, include the further information given by the voltage source,

v1 = U, (5)
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and also define the controlling variable ix in terms of the existing known or unknown quantities,

ix =
v4
R4

. (6)

There is still one equation too few. The opamp has introduced an unknown current iβ in its output,
for KCL at node 4. Some further knowledge about the opamp should provide a further equation. We
use the assumption of negative feedback and infinite gain, to state that the opamp’s two inputs will be
forced to have equal potential,

v3 = v2. (7)

(Alternatively, we could approximate this situation by assigning a high but finite gain A to the opamp,
then representing it as a voltage-controlled voltage source such that v4 = A (v2 − v3); this is what is
done to model the opamp with a VCVS in SPICE.)

To solve these equations, we can use a symbolic solver to avoid even the need of rearranging into a
matrix form for numeric calculation.

% solve the above system of 7 equations in 7 unknowns

s = solve( ...

’0 = ia + (v1-v2)/R1 + (v1-v3)/R2’, ...

’0 = k*ix - I_ + (v2-v1)/R1’, ...

’0 = (v3-v1)/R2 + (v3-v4)/R3’, ...

’0 = (v4-v3)/R3 + ib + I_ + v4/R4’, ...

’v1 = U’, ...

’ix = v4/R4’, ...

’v3 = v2’, ...

’v1, v2, v3, v4, ix, ia, ib’ )

% show the results symbolically

% for f=fields(s)’, f{1}, getfield(s,f{1}), end

% set some numbers for the components, and calculate the result;

% this makes it easy to compare the solution with SPICE

U = 10, I_ = 0.33, R1 = 47, R2 = 68, R3 = 333, R4 = 100, k = 5

%

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

%

ia: -0.019350

ib: -0.390380

ix: 0.068288

v1: 10.000000

v2: 9.462246

v3: 9.462246

v4: 6.828832

Alternative: Supernode method

KCL is done at each node (or supernode group) apart from the ground node. Notice, in this circuit, that
the ground node is part of a supernode: this ground supernode includes node 1 and node 4 (because of
the opamp output). So just nodes 2 and 3 need KCL equations.

In order to get a small but solvable set of equations, we can express the marked (but unknown) ix in
terms of other quantities, ix = v4

R4
. The potential v1 can be directly substituted as U . The output v4

of the ideal opamp cannot be directly expressed in terms of the VCVS in the opamp model: instead,
we have to take advantage of the principle that v+ − v

−
, which allows us to substitute v3 for v2 or vice

versa. With these substitutions, the KCL equations at the non-ground nodes are

KCL(2) : 0 = k
v4
R4

− I +
v3 − U

R1

KCL(3) : 0 =
v3 − U

R2
+

v3 − v4
R3

.
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It is not sufficient to answer with just the above equations, without also saying how to find the remaining
two potentials (even if it’s obvious),

known voltage source to known (zero) potential : v1 = U

opamp negative feedback assumption : v2 = v3.

Checking the answers

When we actually care about a result, it is wise to double-check by another route that is as independent
as possible. A specific circuit-solver lets us check by a route that is independent of the nodal equations
that we wrote.

The following SPICE netlist describes the same circuit.
The component called E1 models the opamp as a VCVS of ‘high’ gain, A = 109.
The component Vix is a zeroed voltage source between R4 and ground, where the circuit’s marked
current ix can be measured for use as the controlling variable to CCCS F1. This program calculates
currents in voltage sources, so it is common to add zeroed voltage sources to measure currents.

EI1110_HT14_TEN1Q2

V1 1 0 DC 10.0

I1 4 2 DC 0.33

F1 2 0 Vix 5

E1 4 0 2 3 1e9

R1 1 2 47

R2 3 1 68

R3 4 3 333

R4 4 5 100

Vix 5 0 0

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4)

.END

The venerable program from 1983 (!) solves this tiny, simple, linear dc circuit with the following output.

*******10/24/14 ******** spice 2g.6 3/15/83 ********22:48:16*****

node voltage node voltage node voltage node voltage

( 1) 10.0000 ( 2) 9.4622 ( 3) 9.4622 ( 4) 6.8288

voltage source currents

name current

v1 -1.935E-02

vix 6.829E-02

3)

Re-drawing the circuit may be of help, although it is not obvious that this will always be useful. There
is one node, at the bottom of R4, that clearly has more components connecting to it than any other
node: let’s put this big node at the bottom of our new diagram.

+
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+
−U2

i1

R1

R2

+ −u2

I1

−I2

R3 R4 +R5
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Then it is important to double-check that all the information from the original diagram matches with
our new diagram. The new diagram, above, has combined R4 and R5, which means we have lost infor-
mation about the node between these two . . . if we wanted to find the potential at that node, then we
would have to look at the original diagram to find whether R4 should be the upper or lower resistor in
our new version. But we don’t need to find this potential, so it’s ok. The sort of check that one should
do thoroughly includes such questions as does i1 go towards the node where U1 and U2 have their −

terminals? (or −U1 has its + terminal).

a) By noticing that R1 is parallel with source U1, we find i1 =
U1

R1
.

b) The current through R2 is the sum of currents due to the two current sources, which allows its voltage
to be calculated: u2 = (I1 − I2)R2.

c) The current of I2 is divided between the R4 +R5 pair and R3.
The power dissipation in R3 is i23R3 if we define i3 as the current through this resistor (the direction
doesn’t matter, as the current is squared to find power — we know a positive resistor’s voltage will
always be in the direction to cause the current to lose energy).

So, using the current division equation to find i3, PR3
=
(

I2(R4+R5)
R3+R4+R5

)2
R3.

d) This is somewhat long. We have to find the voltage across source I2, then to multiply this with the
source’s current to find the delivered power. (It is important to check the definition directions of current
and voltage, in order to use the right sign for calculating power.)
The voltage across the source I2 can be found by KVL around the outside loop of the circuit.

We get PI2 = I2

(

U2 − U1 + (I2 − I1)R2 + I2

(

R3(R4+R5)
R3+R4+R5

)

)

.

4)

a) i2(0
−) = 0. This is seen from the equilibrium condition for a capacitor, du

dt = 0 → i = 0.

b) i1(0
+) = i1(0

−) = U
R2+R3

. This solution uses continuity between t = 0− and t = 0+ for the current in

L1. In the initial equilibrium at 0−, resistors R2 and R3 are in series and connected directly to voltage
source U when we consider that the inductors have zero voltage in equilibrium.

c) i1(∞) = 0. The closed switch short-circuits the R2-L1 branch (you could think of the closed switch
as a zeroed voltage source, if that helps!) so the rest of the circuit is irrelevant to i1. The relevant circuit
is just this resistor and inductor connected directly together. The initial current will decay towards zero
as time goes on.

d) u(0+) = −U R3(R2+R3+R4)
(R2+R3)(R3+R4)

. This is definitely the hardest part of this question.

On the left of R3 is a short-circuit.
On the right is a branch of L2 and U : before the switch closed, we know by equilibrium and KCL that the
current up through this branch was U

R2+R3
− I; the inductor L2 ensures that this current is continuous,

so this whole branch at time t = 0+ looks like a current source of U
R2+R3

− I.
Further to the right are a capacitor and current source in parallel; the capacitor voltage is a continuous
variable, so during the short times around switching it behaves like a voltage source, making source I
irrelevant. The initial voltage of C2 is U + IR4 if defined with the reference + upwards. The rightmost
three components in the circuit therefore behave as a voltage source U + IR4 and series resistor R4.

Putting these three simplified branches together, nodal analysis for a potential v in the top node with
respect to the bottom is v

R3
−

U
R2+R3

+ I + v−(U+IR4)
R4

= 0.
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The definition of v that we have chosen in the above is such that u = −v, so the solution of v the above
nodal equation is the required solution of u(0+).

5)

The function 1(−t) is 1 for t ≤ 0 and 0 for t > 0. Before this step, the current source therefore has a
value I. The equilibrium state of the circuit, in which L can be treated as a short-circuit, is a current
division between R1 and R2; the resistor R3 is irrelevant to what happens outside the series branch of
I and R3.

Let’s follow the recommendation of dealing with the continuous variable, which is the inductor’s current;
we can define this as i into the + pole.

The equilibrium current in the inductor before the step is therefore i(0−) = −I R1

R1+R2
. Because this is a

continuous variable, i(0−) = i(0+).

After the step, the current source has zero value, so it is an open circuit. This whole branch can therefore
be ignored: the relevant circuit is just the loop of R1, R2 and L.

The final equilibrium is i(∞) = 0, as there is no source in the loop. The time-constant is τ = L
R1+R2

,
as the two resistors can be reduced to an equivalent of R1 + R2. If these two claims feel too much like
claims without formal proof, make a Thevenin source of the two resistors, then find the time-constant
and equilibrium voltage! Or write and solve the differential equation of the loop.

With the known initial-value, final-value and time-constant, we now find a function based on e−t/τ that

fits these: i(t) = −I R1

R1+R2
e
−t/ L

R1+R2 , for t ≥ 0.

As it was in fact the voltage u(t), not the current i(t), that was requested, we must calculate with

u(t) = Ldi(t)
dt (after checking that the definition directions of these quantities does not require a negative

sign in the equation!).

After simplifying, u(t) = IR1 e
−t
/

L

R1+R2 (t > 0).
An interesting matter of pedantry is that we should restrict this equation to times after zero. Exactly
at zero, u(0) = 0; but this immediately steps up to u(0+) = IR1. This situation arises because u is not
a continuous variable, and the unit-step function is commonly defined as being equal to 1 at t = 0. But
this question of step-function definitions is not a practical issue as long as we remember that only the
continuous variables can be relied upon to not have sudden changes.
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