
EI1110 Elkretsanalys, Omtentamen TEN1, 2015-01-09 kl 08–13

Hjälpmedel: Ett A4-ark med godtyckligt inneh̊all (handskriven, datorutskrift, diagram, m.m.).

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller
alternativ lösningsmetod.

Godkänd tentamen TEN1 kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen man
fick i dessa respektive sektioner i tentan, och ak är poängen man fick fr̊an kontrollskrivning KS1 vilken
motsvarar tentans sektion A. Omtentan är ett alternativ till ordinarietentan: man kan inte använda t.ex.
sektion A fr̊an en och sektion B fr̊an den andra; i stället räknas den tentamen vilken som helhet ger
bästa poäng efter hänsyn till kontrollskrivningen.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b
A+B .

Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).
I vissa gränsfall där betyget är lite under 50%, eller bara en av sektionerna är underkänd trots 50% eller
bättre som helhet, kommer betyget ’Fx’ registreras, med möjlighet att f̊a betyget E om ett komplette-
ringsarbete är godkänt inom n̊agra veckor efter tentamen.

Använd kvarst̊aende tid för att kolla p̊a svaren. Lycka till!

Nathaniel Taylor

1) [4p]

a) [3p] Bestäm Theveninekvivalenten av kretsen här,
med avseende p̊a polerna ’a’ och ’b’.

b) [1p] Betrakta fallet där polerna ’a’ och ’b’ kopplas
till en extern komponent som är anpassad s̊a att den
största möjliga effekten dras fr̊an denna krets. Bestäm
u i detta fall.

+
− U

a
+

−

u

bR1
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I

2) [4p]

Skriv ekvationer som skulle kunna lösas
för att finna de markerade potentialerna
v1, v2, v3, v4 som funktioner av de givna
komponentvärderna.

Du m̊aste inte lösa eller förenkla dina
ekvationer.

Använd helst en systematisk metod, för
att försäkra tillräckliga ekvationer utan
onödigt arbete.
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3) [4p]
Bestäm de följande:

a) [1p] Spänningen u3 (över R3).

b) [1p] Spänningen u4 (över R4).

c) [1p] Effekten levererad fr̊an källan U2.

d) [1p] Strömmen i2.

R1

I1 R3

+ −u3

+
− U1

R2
i2

R4

+ −u4

+
− U2

I2 R5

4) [5p]
Bestäm i1(t), i2(t) och u(t) vid
de följande tiderna (det blir d̊a 9
svar sammanlagd).

a) [1,5p] t = 0−

b) [2p] t = 0+

c) [1,5p] t → ∞

C1

R1

L1

i1(t)

R2

I · (1− 1(t))

+
−U

i2(t)

C2

L2

+

−

u(t)

R3

5) [5p]

Bestäm u(t) för tider t > 0.

Enhetsstegfunktionen är 1().
Observera minustecken i 1(−t).

(Antag jämvikt innan steget, d.v.s. vid t = 0−.)

+
−U · 1(−t) R0

R1

R2 L

+

−

u(t)
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Solutions, EI1110 TEN1 re-exam, 2015-01-09

1)

a) To find the Thevenin equivalent we need to find the open-circuit voltage and the source resistance.
There are several ways to do this.

This circuit has no dependent source, so it is probably easiest to find the source resistance directly, by
setting all the independent sources to zero: the branch at the right can then be ignored (current-source
is open-circuit), and the branch on the left is just R1 (voltage-source is short-circuit). From this, the
resistance seen between terminals ‘a’ and ‘b’ is simply RT = R1.

When the terminals ‘a’ and ‘b’ are open-circuit, all the current from the source I must travel round
the whole loop. The voltage across R1 is therefore known as IR1, and so – taking careful note of the
direction of this voltage – we see that uoc = UT = U + IR1.

+
−U + IR1

R1

+

−

u

b) Maximum power transfer is when the output voltage is half of the open-circuit voltage; hence,
umaxpow = U+IR1

2 .

2) Two solution methods are shown, and a numerical check is made.

Extended nodal analysis (“the simple way”)

The current in voltage source U is unknown: let’s define it as iα, going into the source’s + terminal. The
current at the opamp output is also unknown (the opamp’s output can be regarded as a voltage source
whose other side is connected to the ground node); let’s define this current as iβ coming out from the
opamp into node 4.

Now write KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = −I +
v1 − v2
R1

+
v1
R2

(1)

KCL(2) : 0 =
v2 − v1
R1

− iα + 0 (2)

KCL(3) : 0 = iα +
v3 − v4
R3

(3)

KCL(4) : 0 = −iβ +
v4 − v3
R3

+
v4
R4

+ kix (4)

These are 7 unknowns (v1, v2, v3, v4, ix, iα, iβ) in just 4 equations.

Next, include the further information given by the voltage source,

v3 = v2 + U, (5)

and also define the controlling variable ix in terms of the existing known or unknown quantities,

ix =
v4
R4

. (6)
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There is still one equation too few. It’s the opamp’s fault that there’s an unknown current iβ in its
output. Some further knowledge about the opamp should provide the further equation that we need.
We use the assumption of negative feedback and infinite gain, to state that the opamp’s two inputs will
be forced to have equal potential,

v+ = v−, v2 = 0 (7)

(Alternatively, we could approximate this situation by assigning a high but finite gain A to the opamp,
then representing it as a voltage-controlled voltage source such that v4 = A (0− v2); this is what is done
if modelling an opamp with a VCVS in SPICE.)

To solve these equations, we can use a symbolic solver to avoid even the need of rearranging into a
matrix form for numeric calculation.

% solve the above system of 7 equations in 7 unknowns

s = solve( ...

’0 = -I_ + (v1-v2)/R1 + v1/R2’, ...

’0 = (v2-v1)/R1 - ia’, ...

’0 = ia + (v3-v4)/R3’, ...

’0 = -ib + (v4-v3)/R3 + v4/R4 + k*ix’, ...

’v3 = v2 + U’, ...

’ix = v4/R4’, ...

’v2 = 0’, ...

’v1, v2, v3, v4, ix, ia, ib’ )

% show the results symbolically

% for f=fields(s)’, f{1}, getfield(s,f{1}), end

v1 = (I_*R1*R2)/(R1 + R2)

v2 = 0

v3 = U

v4 = (R1*U + R2*U - I_*R2*R3)/(R1 + R2)

ia = -(I_*R2)/(R1 + R2)

ib = (R1*U + R2*U - I_*R2*R3 - I_*R2*R4 + R1*U*k + R2*U*k - I_*R2*R3*k)/(R4*(R1 + R2))

ix = (R1*U + R2*U - I_*R2*R3)/(R4*(R1 + R2))

% set some numbers for the components, and calculate the result;

% this makes it easy to compare the solution with SPICE

U = 10, I_ = 0.33, R1 = 47, R2 = 68, R3 = 333, R4 = 100, k = 5

%

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

%

v1: 9.171130

v2: 0.000000

v3: 10.000000

v4: -54.978435

ia: -0.195130

ib: -3.493837

ix: -0.549784

Alternative: Supernode method

KCL is done at each node (or supernode group) apart from the ground node.

In this circuit, the ground node and node 4 form a supernode together because of being connected
through the opamp. This means that no KCL is needed on either of these nodes. The unknown voltage
of the opamp means that we cannot just represent v4 directly (in the way we would if node 4 were
connected to ground by an independent voltage source like ‘U1’ or by a dependent voltage source like
hiy). Instead, we can keep the unknown v4 when we need this potential for writing the KCL equation for
node 3, and we can then use the v+ = v− assumption to provide another equation to make the system
solvable.
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Nodes 2 and 3 also are a supernode, as they are connected through source U .

Components R4 and kix are connected between parts of the same supernode, so they are not relevant
to any KCL that is needed in the supernode method.

Only two KCL equations are therefore needed: one for node 1, and the other for the supernode (2+3).

KCL(1) : 0 = −I +
v1 − v2
R1

+
v1
R2

KCL(2+3) : 0 =
v2 − v1
R1

+
v2 + U − v4

R3
.

It is not sufficient to answer with just the above equations, without also saying how to find the remaining
two potentials (even if it’s obvious),

known voltage source to known (zero) potential : v3 = v2 + U

opamp negative feedback assumption : v2 = 0.

Checking the answers

When we really care about a solution, perhaps because we’re going to base some later work on it, then
it’s wise to double-check by another route that is as independent as possible. A specific circuit-solver
lets us check by a route that is independent of the nodal equations that we wrote.

The following SPICE netlist describes the same circuit.
The component called E1 models the opamp as a VCVS of ‘high’ gain, A = 109.
The component Vix is a zeroed voltage source between an extra node (5) introduced at the bottom of
R4, and ground; this is the way in which current ix can be measured in order to use it as the controlling
variable to the VCCS F1. SPICE calculates currents in voltage sources, so it is common to add zeroed
voltage sources to measure currents.

EI1110_HT14_OMTEN1Q2

V1 3 2 DC 10.0

I1 0 1 DC 0.33

F1 4 0 Vix 5

E1 4 0 0 2 1e9

R1 1 2 47

R2 1 0 68

R3 4 3 333

R4 4 5 100

Vix 5 0 0

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4)

.END

The venerable program from 1983 (!) solves this tiny, simple, linear dc circuit with the following output.

v1 = 9.1711

v2 = 0.0000

v3 = 10.0000

v4 = -54.9784

(voltage-source currents:

v1: -1.951E-01

vix: -5.498E-01

controlled sources:

E1: v-source -54.978

E1: i-source 3.49E+00

F1: i-source -2.75E+00

)
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3)

Re-drawing the circuit may be of help, although it is not obvious that this will always be useful. There
is one node, at the left of R4, that clearly has more components connecting to it than any other node:
let’s put this big node at the bottom of our new diagram.

I2

R5

R4

−

+

u4

+ −

U2

+
− U1

R3

−+ u3

I1

i2

R2R1

Then it is important to double-check that all the information from the original diagram matches with
our new diagram. Check things like the number of each type of component, the nodes, which components
connect between the nodes, and the directions of the components and any marked quantities such as i2.
Now, based this or another re-drawn diagram, we find the requested quantities.

a) R3 is series with source I1. By KCL, the current in R3 must be I1.
By Ohm’s law, taking into account the directions, u3 = −I1R3.

b) By KVL around the loop of U1, u4, U2, we have U1 − u4 + U2 = 0, hence u4 = U1 + U2.

c) The power from source U2 is the current out of its ‘+’ terminal, multiplied by the source’s value U2.
From sub-question ‘b’, we can use Ohm’s law to find that the current flowing in resistor R4 towards
source U2 is U1+U2

R4
. The current in R5 is determined by the source I2, in series with it.

By KCL in the node where R4, R5 and U2 connect, the current coming into the ‘−’ terminal of source
U2 is therefore I2 +

U1+U2
R4

.
This must be the same as the current coming out of the ‘+’ terminal of source U2.
Therefore, PU2,out = U2I2 + U2

U1+U2
R4

.

d) The resistors R1 and R2 are in parallel (check!).
The current through the pair is determined by source I1.
Current division is therefore useful here, being careful about the relative directions, i2 = −I1

R1
R1+R2

.

4)

a) Current source gives I. Circuit is in equilibrium.
i1(0

−) = −I C1 behaves as an open-circuit, when in equilibrium; then use KCL above R2

i2(0
−) = 0 similar principle to the above: C2 behaves as an open-circuit

u(0−) = 0 L2 behaves as a short-circuit, in equilibrium

b) Current source has just now changed to 0. Circuit is not in equilibrium.
i1(0

+) = −I continuity of current in L1

i2(0
+) = −I continuity of current in L2, and KCL above C2

u(0+) = 0 continuity of voltage on C2, continuity of current in L2, then KVL around their loop

c) Current source is still 0. Circuit is in equilibrium.
i1(∞) = 0 the same reasoning as in part ‘a)’, but the current-source is now zero

i2(∞) = 0 same as part ‘a)’: equilibrium in C2 means no current
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u(∞) = 0 see part ‘a)’: equilibrium in L2 means no voltage

5)

The function 1(−t) is almost the same as the (1− 1(t)) from Question 4 (the difference is only in what
happens at exactly t = 0). So the voltage source has a value U before time t = 0, and is zero after this.
It is therefore like a short circuit during the period t > 0 for which we need to find u(t); the only thing
driving the circuit in that period is the energy that was stored in the inductor from before the step. This
energy corresponds to a current: it will die away, as the current has to pass through resistors, which will
consume energy.

The initial condition of the inductor can be found from the assumption of equilibrium at t = 0−.
To find this state, the inductor can be represented as a short-circuit, and the voltage source as U . Let’s
define the inductor’s current as i(t), going downwards so that u(t) = Ldi(t)

dt . Resistors R0 and R2 are
irrelevant, as they are in parallel with a voltage source or a short circuit respectively.
Thus, i(0−) = −U/R1; the negation is because of the direction of the source.

After t = 0, when the source has become zero, the R0 is parallel with a short-circuit so it can still be
ignored. (Be careful: R2 cannot be assumed to be parallel with a short-circuit, since the inductor is only
like a short-circuit if we can assume it to be in an equilibrium state.) In this period t > 0, the inductor
is therefore connected to the parallel combination of R1 and R2, i.e.

R1R2
R1+R2

.

This is then a simple question of an inductor and resistor connected together in a loop, with a known
initial condition in the inductor.
The equilibrium is i(∞) = 0.
The initial condition is i(0+) = i(0−) = −U/R1.
The time-constant is τ = LR1+R2

R1R2
.

Putting these together into the known ‘shape’ of a first-order ODE solution, we get

i(t) = −
U

R1
e
−t

R1R2
L(R1+R2) ,

which can be shown from the principle of y(t) = y∞ − (y0 − y∞) e−t/τ .

It was in fact the voltage across the inductor that was to be found: u(t) = Ldi(t)
dt . The solution for current

must therefore be differentiated and multiplied by L,

u(t) = −
U

R1
L

−R1R2

L(R1 +R2)
e
−t

R1R2
L(R1+R2) ,

so u(t) =
UR2

R1 +R2
e
−t

R1R2
L(R1+R2) .

Showing this more formally by ODE solution is left ‘as an exercise for the reader’. The only requirement
for the exam is that you get the right answer, with some explanation that indicates a reasonable method.

[A strange substitution of I instead of U/R1 was pointed out in 2016-10 (thanks!). This is now corrected.]
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