
KTH EI1120 Elkretsanalys (CENMI), Tentamen 2015-03-17 kl 08–13

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . ).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Examinator: Nathaniel Taylor

Del A. Likström

1) [4p]

Bestäm de följande:

a) [1p] Effekten levererat till R3.

b) [1p] Effekten levererat till R4.

c) [1p] Spänningen u1 över R1.

d) [1p] Effekten levererat fr̊an källan I1.

+−

U1 R5

R4

+ −

U2

I1

+

−

ud

R2

R1

− +u1

I2
R3

+
− kud
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2) [4p]

Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att f̊a ut de
markerade nodpotentialerna v1, v2, v3, v4, v5.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste inte

lösa eller förenkla ekvationerna.

Som vanligt är det komponentvärdena
R1, I1, k1 o.s.v. som är kända, medan de
markerade storheterna v1, ix, o.s.v. är okända.

+
− U1

ix

R1

R2

I1

+ −
uy

+
− k1 uy

R4k2 ix

R3

v1

v2

v3 v4

v5

3) [4p]

L̊at R1 = R2 = R3 = R4 = R, och I = U/R.
Bara U och R är kända storheter.
Svaren borde därför inte uttryckas i R1, I, o.s.v.

a) [2p] Bestäm Theveninekvivalenten av kretsen, med avseende
p̊a polerna ’a’ och ’b’. Rita upp ekvivalenten inklusive polerna.

b) [1p] Hur mycket är maximaleffekten som kan levereras fr̊an
kretsen mellan polerna a-b?

c) [1p] En spänningskälla Ux är nu ansluten till kretsen, med
sin +-pol till kretsens pol a, och − till pol b. Vilket värde måste
spänningen Ux ha för att den maximala möjliga effekten dras fr̊an
kretsen till källan?

R1

+−

U
R2

I R3

R4

ab

Del B. Transient

4) [5p]

a) [2p] Betrakta jämvikten när
t → ∞. Bestäm i1(∞) och u3(∞).

b) [3p] Betrakta tiden t = 0+, d.v.s.
direkt efter brytaren sl̊as p̊a.
Bestäm i1(0

+), u3(0
+) och i2(0

+).

L1

C1 R2

i1(t)

R1

L2

t = 0

C2

i2(t)

R4

R3

L3

C3

+

−

u3(t) I
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5) [5p]

Bestäm u(t), för t > 0.
+
−

U

R2 L

+

−

u(t)

R1

t = 0

R3

I

Del C. Växelström

6) [4p]

a) [2p] Bestäm ic(t).

b) [1p] Bestäm den genomsnittliga effekten (’aktivef-
fekt’ i växelströmsterminologi) förbrukat av motst̊andet R.

c) [1p] Vilken genomsnittlig effekt levereras av
strömkällan I(t) om en spänningskälla Û cos(3ωt + π/4)
nu är seriekopplad mellan R och L med pluspolen upp̊at.

I(t) = Î sin(ωt)

R

L

C

ic(t)

7) [5p]

−

+

vi

R1 L1

R2

vm

C2

C3

R3

−

+

R4 L4

vo

a) [2p] Bestäm nätverksfunktionen H(ω) = vo(ω)
vi(ω)

av kretsen ovan.

Det kan hjälpa att räkna i tv̊a steg, med hjälp av den (okända) potentialen vm i mitten av kretsen.

b) [1p] Visa att svaret till deltal ’a’ kan skrivas i den följande formen,

H(ω) = k · (1 + jω/ωβ)(1 + jω/ωγ)

(1 + jω/ωα)(1 + jω/ωδ)
,

där k och ωα,β,γ,δ är positiva reella tal (p̊a antagandet att komponentvärdena ocks̊a är det).
Det räcker att uttrycka de fem konstanterna i de kända komponentvärdena.

c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Anta att 100ωα = ωβ = ωγ = 1

100 ωδ, och att k = 10.
Markera viktiga punkter och lutningar.
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8) [5p]

Deltal ’a’ och ’b’ betraktar bara den övre kretsen.

Källan ger en växelspänning med effektivvärdet
U och vinkelfrekvens ω. Komponentvärdena
R2 och C är okända, och f̊ar bestämmas av oss.
De andra komponenterna har fasta, kända värden.

a) [3p] Välj R2 och C för att maximera effekten
som levereras till motst̊andet R2.

b) [1p] Vad är den maximala effekten levererad
till R2 (i fallet av deltal ’a’)? Uttryck den som en
funktion av de kända variablerna.

+
− U

R1

R2C

L

ideal

n : 1

L

+
− U

R1

R2C

c) [1p] Betrakta nu den nedre kretsen. Skillnaden är bara att en transformator används i mitten av
kretsen, i stället för direktkoppling. Lös deltal ’a’ igen, men för den nedre kretsen. Betrakta n som känd.

9) [4p]

Polerna a,b,c visar en anslutning till en
balanserad trefas spänningskälla, av vinkel-
frekvens ω.
Källans huvudspänning är U , d.v.s.
|uab| = |ubc| = |uca| = U . Som vanligt när
det gäller elkraft, är det ett effektivvärde.

Varje impedans Z representerar ett
motst̊and R och en spole L, paral-

lellkopplade. Värdet av Zx ska bestämmas.
De kända storheterna är U , ω, R och L.

c
b

a

Zx Zx Zx

Z

Z

Z

a) [2p] Vilken aktiv effekt och reaktiv effekt förbrukas av delta-lasten (de tre impedanserna Z)?

b) [1p] Bestäm en komponent (spole, kondensator, eller motst̊and) för Zx, och dess värde, för att
effektfaktorn (pf) av alla sex impedanser, sett fr̊an källan vid polerna a,b,c, blir 1.

c) [1p] L̊at impedanserna Z modellera en maskin som säljs till en kund som kräver att effektfaktorn
sett p̊a maskinens poler a,b,c ska vara lägst 1/

√
2 induktiv (cirka 0,71). Tyvärr har vi gjort maskinen

s̊adan att ωL = R/
√
3. Vilken effektfaktor har ∆-lasten i s̊a fall?

Man skulle kunna välja en komponent till Zx enligt lösningen till deltal ’b’, d̊a pf= 1 fyller kravet. Men
man kan i stället välja samma slags komponent med ett mindre värde som ger bara den nödvändiga
effektfaktorkompenseringen för att uppfylla kravet: vilket värde behövs i s̊a fall?
Alternativt, skulle man kunna uppfylla kravet genom att välja en annan slags komponent, av de tre
möjligheterna listade i deltal ’b’. Ett s̊adant val är bara ’juridiskt skoj’ med en otillräckligt begränsad
specifikation av kravet . . . men i alla fall: vilken komponent kan den vara, och vilket värde behövs för
att uppfylla kravet om pf, med minimal skenbar effekt i Zx?

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120, VT15, 2015-03-17)

Q1

a) Power into R3 is I22R3 (it’s in series with the current source).

b) Power into R4 is
(U1 + U2)

2

R4
(it’s directly connected to the pair of voltage sources).

c) Voltage across R1 is u1 = −R1(I1 + I2) (by KCL with the two current-sources).

d) This is definitely the hardest question!
The power out from source I1 is −I1ud, but ud is not known.
It can only be solved by considering the (relevant parts of the) rest of the circuit. Consider KVL around
the smallest loop that includes source I1: then ud = I2R3+? + U2, where ‘?’ is the voltage across the
other current-source! We could do another KVL in the lower loop, to get another expression including
the same ‘?’, then substitute it into the above. But it’s easier just to take KVL around a bigger loop
that doesn’t include the other current source at all. Hence,

ud = U2 + kud − (R1 +R2)(I1 + I2),

whence

ud =
U2 − (I1 + I2)(R1 +R2)

1− k
,

so the power is

PI1(out) = −I1ud =
I1(I1 + I2)(R1 +R2)− I1U2

1− k
.

Q2 As usual, we show several alternative solutions here: many more are possible.

Extended nodal analysis (“the simple way”)

Let’s define the unknown currents in the voltage sources, with the positive direction going into the
source’s + terminal: iα in source U1, and iβ in source k1uy.

KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = iα +
v1 − v2
R1

(1)

KCL(2) : 0 =
v2 − v1
R1

+
v2
R2

+ k2ix +
v2 − v4
R4

(2)

KCL(3) : 0 =
v3 − v5
R3

− k2ix (3)

KCL(4) : 0 =
v4 − v2
R4

+ iβ (4)

KCL(5) : 0 = −I1 +
v5 − v3
R3

− iβ (5)

Now there are 9 unknowns (v1, v2, v3, v4, v5, iα, iβ , ix, uy), but only 5 equations. So we add the further
information that the voltage sources provide,

v1 − 0 = U1 (6)

v4 − v5 = k1uy (7)

and also define the controlling variables ix and uy in terms of the existing known or unknown quantities,

ix = −iα (8)

uy = 0− v5. (9)
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There are now 9 equations in 9 unknowns. The systematic way in which this was done is important! We
can be confident that the equations are all providing useful information, i.e. that they are not linearly
dependent.

There are various possibilities for writing the above. For example, ix is marked in the diagram between source
U1 and resistor R1, in the ‘trivial node’ where they join. It could therefore equally well have been written as
ix = v1−v2

R1

. The choice makes no difference to the result: the algebra already ‘knows’ from equation (1) these two
statements are equivalent. Or, we could have noticed from the start that the current in U1 is already defined as
ix, out of the + pole, then we would have had just 8 variables and could have avoided the equation (8).

For comparison between the symbolic solution from our nodal equations, and the numeric SPICE circuit
solution, we can assign some numeric values to the component values:
U1=15, I1=0.5, R1=12, R2=5, R3=8, R4=3, k1=2, k2=1.5

The circuit can then be described by the following “netlist” for solving in SPICE:

EI1120_VT15_TEN

V1 1 0 DC 15.0

I1 0 5 DC 0.5

R1 1 2 12.0

R2 2 0 5.0

F1 2 3 V1 -1.5

E1 4 5 0 5 2.0

R3 3 5 8.0

R4 2 4 3.0

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4) V(5)

.END

which results in the following output (reformated):

POTENTIALS

v1: 15.0000

v2: 6.1765

v3: -2.1618

v4: 10.9853

v5: -10.9853

VSRC

i: -7.353E-01 (ia)

VCVS

v: 21.971

i: -1.60E+00

CCCS

i: 1.10E+00

This can be conveniently compared to the earlier set of symbolic equations, by solving those equations
in (e.g.) Matlab symbolic toolbox and then substituting the same numeric values as were used in the
SPICE solution.

s = solve( ...

’0 = ia + (v1-v2)/R1’, ...

’0 = (v2-v1)/R1 + v2/R2 + k2*ix + (v2-v4)/R4’, ...

’0 = (v3-v5)/R3 - k2*ix’, ...

’0 = (v4-v2)/R4 + ib’, ...

’0 = -I1 + (v5-v3)/R3 - ib’, ...

’v1 - 0 = U1’, ...

’v4 - v5 = k1*uy’, ...

’ix = -ia’, ...

’uy = 0 - v5’, ...

’v1,v2,v3,v4,v5,ia,ib,ix,uy’ )

%% set numeric values for comparison with the SPICE solution

U1=15, I1=0.5, R1=12, R2=5, R3=8, R4=3, k1=2, k2=1.5
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% find the result of substituting the above values into the symbolic expressions

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

v1: 15.000000

v2: 6.176471

v3: -2.161765

v4: 10.985294

v5: -10.985294

ia: -0.735294

ib: -1.602941

ix: 0.735294

uy: 10.985294

Supernode and Simplifications approach (fewer equations, more thinking)

There are, of course, many (very many) different ways to form equations to solve for the potentials.
The most mechanical sort of method was shown above. What will be tried here is to identify some node
potentials in terms of others:

v1 = U1 (1)

v3 = v5 +R3k2
U1 − v2

R1
(2)

v4 = v5(1− k1) (3)

This means that only 2 KCL equations are now needed. (We had 6 nodes. KCL isn’t needed on one of
them anyway, since that would just be saying the same thing as summing the other KCLs: we normally
choose to ignore the earth node. We have now expressed three other potentials, v1, v3, v4, in terms of the
remaining two v2, v5 and known quantities. So just two KCL equations, at nodes 2 and 5 should suffice.

KCL(2) : 0 =
v2 − U1

R1
+

v2
R2

+ k2
U1 − v2

R1
+

v2 − v5(1− k1)

R4
(4)

KCL(5) : 0 = −I1 − k2
U1 − v2

R1
− v2 − v5(1− k1)

R4
(5)

Together, the above set of 5 equations in the 5 unknown node potentials should be able to give our
solution.

s = solve( ...

’v1 = U1’, ...

’v3 = v5 + R3*k2*(U1-v2)/R1’, ...

’v4 = v5*(1-k1)’, ...

’0 = (v2-U1)/R1 + v2/R2 + k2*(U1-v2)/R1 + (v2 - v5*(1-k1))/R4’, ...

’0 = -I1 - k2*(U1-v2)/R1 - (v2 - v5*(1-k1))/R4’, ...

’v1,v2,v3,v4,v5’ )

% set values, and substitute into the expressions

U1=15, I1=0.5, R1=12, R2=5, R3=8, R4=3, k1=2, k2=1.5

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

v1: 15.000000

v2: 6.176471

v3: -2.161765

v4: 10.985294

v5: -10.985294

That seems to have worked! It was shorter, and it gave us all that we had to find. But we did not get
the extra answers, about the currents in the sources. And if the circuit were changed, it could require
significant work to change the equations: the ‘extended’ method keeps a very simple relation between
equations and topology.

The above was almost the standard supernode method: it avoided needing to know the currents in
voltage sources, which it achieved by using those source values to relate node potentials to each other,
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thereby reducing the number of nodes where KCL was needed. But we also did this for node 3, by
noticing that the voltage across R3 is determined by the CCCS k2ix, where ix can in turn be expressed
in terms of node potentials and known component values. This is just an example. For later exams, the
extended method is recommended for this type of question. For further understanding and some quick
practical circuits, the simplifications+supernode approach can be useful.

Q3

a) With terminals a-b in the open-circuit condition, all the current
I must pass through R2, and the voltage across R4 must be zero.
The terminal voltage uab is therefore U + IR2, which is U + U

RR =
2U when expressed in only the known quantities.

The Thevenin resistance at a-b can be found most easily by
setting the sources to zero and finding the resistor equivalent
(this method is possible because there are not dependent sources
in the circuit). Then R4 and R2 are in series; the current-
source branch is open, and the voltage-source short-circuits R1.
The result is R2+R4, which is 2R in terms of the known quantities.

+
−U

T
= 2U

R
T
= 2R

a

b

It is important to show how the terminals a-b are related to the poles of the voltage source in the
Thevenin equivalent. This is conveniently done by a diagram.

b) The maximum power output from the two-terminal circuit (or its equivalent) is obtained when
the current and voltage are half their (respectively) short-circuit and open-circuit values. Hence, the
maximum power is

P =
U

T

2
· U

T

2R
T

=
2U

2
· 2U

2 · 2R =
U2

2R
.

c) We already stated that the maximum power condition is when the voltage is half the open-circuit

value, i.e. uab =
U
T

2 = U . This is the value that the external source should have, to extract maximum
power from the shown circuit: Ux = 2U/2, so Ux = U . We should be careful to note that the extra source
needs its + side towards the terminal ‘a’, since the value of U

T
was derived for ‘a’ with respect to ‘b’.

Otherwise, a minus sign would be needed.

Q4 Remember to redraw the circuits in your own solution . . . almost certainly useful!
Quick answers are given below: check the derivation with your diagrams.

a)

i1(∞) = 0 (equilibrium), u3(∞) = I
R3R4

R3 +R4
.

b)

i1(0
+) = 0, u3(0

+) = I
(R1 +R2 +R3)R4

R1 +R2 +R3 +R4
, i2(0

+) = I
R1 +R2

R1 +R2 +R3 +R4
.

Most of the above are fairly clear if one draws the diagrams carefully, replacing C and L with with open-
and short-circuits for the equilibrium conditions, or voltage- and current-sources for the short time at
0+ when continuity can be assumed.

The hardest is i2(0
+). The first step is to find the voltage on C2, which can be done from equilibrium

and continuity. It comes out as u
C2

= R3
R4

(R1+R2+R3)+R4
I, by current division and Ohms’ law in the state

at t = 0−. When the switch closes, R3, R4 and C2 are all in parallel, and the current in L3 at t = 0+

is still equal to I by continuity. Ohm’s law with u
C2
(0+) gives the current in the two parallel resistors,

R3
R4

(R1+R2+R3)+R4
I R3R4

R3+R4
. The difference between this and the current I in the inductor is i2, by KCL.

Some rearrangement gives the above answer.
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Q5

There is just one change in this circuit over all time: the switch closes at t = 0. We need to find the
voltage on the inductor for all time after this change. The initial value of the inductor’s continuous
variable (current) will be important: it can be found by continuity, from the equilibrium before the
switch closed.

Before the switch closes, equilibrium can be assumed, since the circuit has been standing “a long time”
(i.e. since t = −∞) and the circuit has no special cases such as a voltage source directly across an
inductor, or a dependent source that gives a negative resistance. The inductor can therefore be treated
as a short-circuit: it has a steady current, so its voltage is zero. The inductor’s current (let’s define it as
i, downwards) can then be found by KCL in the top node, which we can label as v, treating the bottom
as zero.

0 =
v − (−U)

R2
+

v

R1
+ I

from which v = −R1(U+IR2)
R1+R2

, so

i(0+) = i(0−) = −U + IR2

R1 +R2
.

When the switch closes, the branch of L and R1 is connected to a short-circuit. All the other components
thus become irrelevant to what happens around L. KVL around the loop gives that u(t) + iR1 = 0,
which can be expressed as

L
di(t)

dt
+ i(t)R1 = 0.

We can solve for i(t) then find the requested u(t) from that. The final value, i(∞) is zero: this can be
seen by noticing that current in R1 loses energy, but there is no source in this branch; or consider that
the inductor L is connected to a Thevenin source with zero voltage and resistance R1.

The current can then be found (by considering final and initial values in a first-order circuit, or by
solving the differential equation), as i(t) = −U+IR2

R1+R2
e−tR1/L for t > 0.

The voltage u(t), by u(t) = Ldi(t)
dt , is

u(t) = −L
−R1

L
· U + IR2

R1 +R2
· e−tR1/L =

(U + IR2)R1

R1 +R2
e−tR1/L (t > 0).

Q6

a) Let’s translate this time-domain current I(t) = Î sin(ωt) to a phasor I(ω) = Î 0. (This implies we’re
using peak magnitude and sine-reference. You might have preferred e.g. a cosine reference. Then the
final time-domain solution of ic(t) should be equivalent to the ones found here, but the phasors will be
different during the calculation.)

By current division,

ic(ω) = I(ω)
R+ jωL

R+ j
(

ωL− 1
ωC

) .

Now this current needs to be converted back into a time-function. First, express it in polar form, to get
the magnitude and phase for the time-function. The big question: shall we find these properties for the
top and the bottom, then add in polar form, shall we put the whole expression into rectangular form
then convert? Let’s show both. First, separate conversion of top and bottom to polar form,

ic(ω) = I(ω)
R+ jωL

R+ j
(

ωL− 1
ωC

) = Î

√

R2 + (ωL)2

R2 +
(

ωL− 1
ωC

)2 tan−1 ωL
R − tan−1 ωL− 1

ωC

R .
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Ok. That didn’t look too bad, but perhaps we’d like to avoid having two inverse tangents. Let’s try the
other approach, where we first make the complex part be only on the top,

ic(ω) = I(ω)
R+ jωL

R+ j
(

ωL− 1
ωC

) = Î
R2 + ω2L2 − L

C + j R
ωC

R2 +
(

ωL− 1
ωC

)2 ,

and then express this in polar form with a single inverse tangent,

ic(ω) =
Î

√

(

R2 + ω2L2 − L
C

)2
+
(

R
ωC

)2

R2 +
(

ωL− 1
ωC

)2 tan−1
R
ωC

R2+ω2L2− L
C

.

which unfortunately seems not better to look at than the earlier result. The choice of a better solution
would depend on what we want to use the solution for. (In the above expression, it would also be
necessary to check the sign of the R2 + L

C − ω2L2 term, and to add π to the angle if it is negative. We
can avoid thinking of this when we do numerical calculations on computers, making use of a suitable
function, like angle() in Octave/Matlab, to find the phase of a complex number.)

Let’s take the earlier form.

ic(t) = |ic(ω)| sin
(

ωt+ ic(ω)
)

= Î

√

R2 + (ωL)2

R2 +
(

ωL− 1
ωC

)2 sin

(

ωt+ tan−1 ωL

R
− tan−1 ωL− 1

ωC

R

)

.

b) By current division, this time finding the current to the left branch, the familiar |i|2R formula for
power can be used. We must remember that we chose the phasor to be a peak value, so the power
calculation must include the factor of 1

2 .

P
R
=

∣

∣

∣

∣

∣

Î

1
jωC

R+ j
(

ωL− 1
ωC

)

∣

∣

∣

∣

∣

2
R

2
=

Î2

(ωCR)2 + (1− ω2LC)2
R

2
.

c) Answer: The same power as in part ‘b’ ! Power superposition can be a useful principle . . .
Reason: In the original circuit, the active power supplied by the current source is equal to the active
power consumed by the resistor: there’s nowhere else for the active power to go. When another source,
with different frequency, is added to the circuit, power superposition allows the contribution to powers
at each frequency to be treated separately (with sources at other frequencies ‘set to zero’). If this is
done for calculating the power from the current source, the voltage source would be set to zero when
the current source is considered: then the circuit is like the original circuit, as L and R are connected
by a short-circuit, so the current source’s power output is the same as before. Another way of seeing it
is that the voltage source will contribute a voltage across the current source, but this voltage is at a
different frequency from the current, so they make no (average) power together.

Q7

a) The output of the left opamp is labelled vm. We can see the circuit as two opamp-based inverting
amplifiers, where the left one drives the input of the right one. The point vm is a stiff voltage source, i.e.
its “source impedance” is zero: this potential will not be affected by the current that goes into R3 and
C3 (because the left opamp always adjusts this voltage to the level that forces its inputs to be equal).
So we can find the separate network functions of the left and right circuits, then multiply them.

H(ω) =
vo
vi

=
vm
vi

· vo
vm

=

− 1
1

R2
+jωC2

R1 + jωL1
· −(R4 + jωL4)

1
1

R3
+jωC3

=
(R4 + jωL4)

(

1
R3

+ jωC3

)

(

1
R2

+ jωC2

)

(R1 + jωL1)

b) By multiplying the four terms in the above expression for H(ω) by suitable values of 1/R4, R3, etc,
then multiplying the whole expression by the reciprocals of these, the more standard network-function
form can be found,

H(ω) = k · (1 + jω/ωβ)(1 + jω/ωγ)

(1 + jω/ωα)(1 + jω/ωδ)
.
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where k = R2R4

R1R3
, ωα = 1

L1/R1
, ωβ = 1

C3R3
, ωγ = 1

L4/R4
, and ωδ =

1
C2R2

.
Note: we could swap ωα ↔ ωδ or ωβ ↔ ωγ , as there is no numerical data in the question to say which
pair of components provides each pole (denominator term) or each zero (numerator term) in the network
function.

c) This figure shows the classic asymptotic approximation (dashed lines) which was all that was neces-
sary for this question, along with the actual function |H(ω)|. The choice of frequency is arbitrary (a.u.
means ‘arbitrary units’), but the ratios must be correct: we know, for example, that ωδ = 100ωγ .
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There is no pure ω-term (e.g. jω/ωx) so the low-frequency value, ω → 0 is H(ω) → k. With the given
relations, where ωα ≪ ωβ = ωγ ≪ ωδ, the magnitude |H(ω)| starts decreasing at 20 dB/decade when
the frequency exceeds ωα. Then, at ω = ωβ = ωγ , the two ‘zeros’ (terms on the top of the network
function) become active, each contributing an increase of 20 dB/decade: the total result is an increase
of 20 dB/decade. Finally, when ω > ωδ, the other ‘pole’ (term on the bottom) becomes active, giving a
slope that cancels the second zero.

As we were even told the numeric value of k and the numeric relations between the frequencies ωα,β,γ,δ,
we can use the known changes in dB/decade to find the numeric values of |H(ω)|. There are two decades
(×100) between ωα and ωβ , and the same factor again to go up to ωδ: the change is therefore 40 dB for
both of the sloping regions. The final value, of |H(ω)| when ω ≫ ωδ, can be found either by starting
at the low-frequency value and following the slopes, or algebraically by ignoring all the ‘1+’ terms,
H(≫ ωδ) ≃ kωδωα

ωβωγ
. With the given relations of the ωx values, this becomes simply k.

Q8

a) This is just a form of the familiar ac maximum-power problem, with a Thevenin source and a load
impedance. As U , R1 and L are fixed, it is convenient to see these as the ‘source’, and the components
that we are free to choose can be the ‘load’.

It’s best to start by equating admittances. That’s because the two unknowns (R2 and C) are in parallel,
so they independently determine the real and imaginary parts of the admittance. That makes it easy to
equate each of these components separately with the real or imaginary part of the total impedance.

Using the ac maximum power criterion of Zload = Z∗
src, but with admittances,

Y ∗
src =

(

1

R1 + jωL

)∗
=

R1 + jωL

R2
1 + ω2L2

= Yload =
1

R2
+ jωC.

The real and imaginary parts can then be equated directly to find R2 and C,

R2 =
R2

1 + ω2L2

R1
, C =

L

R2
1 + ω2L2

.
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b) The quickest way to answer this is to find the maximum power possible from the source. That can be
found purely from the known quantities describing the source. The advantage is that we then don’t have
to use the expressions from part ‘a’ to convert the unknown load components into known quantities.

Consider a load impedance that is chosen for maximum power, Zload = Z∗
src. In the circuit consisting of

the voltage-source U , then source impedance Zsrc = R1 + jωL, then load Zload = R1 − jωL, the reactive
components cancel. The total impedance in this loop is therefore just 2R1, which is the same as the
dc maximum power situation if the reactive components are ignored. The power to the load is then
Pmax = U2

4R1
.

(The 4 is because the current is U/2R1, and the power to the load is |i|2R1; there are a few other ways to
reason to the same conclusion. If the phasor U 0 had been a peak value instead of rms, then a further
1/2 would have been needed.)

A longer way to get the solution would be to solve the circuit using all the components, to find the
actual power in R2, and then to substitute the calculated values for R2 and C from part ‘a’ and do some
simplification. This also comes to the above result of U2

4R1
, but it might not be obvious from the resulting

expressions! It’s easier to make a simplifying choice from the start, thereby avoiding the extra work.

c) The addition of a transformer makes it look worrying. It’s not that bad. The transformer could be
seen as part of the source, or part of the load. We know that impedances can be ‘translated’ across the
transformer by the ratio n2, and voltages can be translated by n (or reciprocals, depending on which
side the components are on, and whether impedance or admittance is being considered). In fact, if n = 1
in the lower circuit, then it is equivalent to the upper circuit.

It seems easiest to consider the transformer as being part of the load. That way, only the impedances
R2 and 1

jωC need to be translated across the transformer.

We find the maximum power condition by making the total load-admittance (seen by the source at the
left winding of the transformer) be equal to the conjugate of the source impedance. A simple change is
needed in the derivation from part ‘a’,

Y ∗
src =

(

1

R1 + jωL

)∗
=

R1 + jωL

R2
1 + ω2L2

= Yload =
1

n2

(

1

R2
+ jωC

)

.

The real and imaginary parts can then be equated directly to find R2 and C,

R2 =
R2

1 + ω2L2

n2R1
, C =

n2L

R2
1 + ω2L2

.

Q9

a) Each impedance Z has the line-voltage U across it, as they are in ∆-connection. The complex power
into each is U2/Z∗; remember that U is the magnitude, not a phasor, so it is not necessary to take the
absolute value |U |. As each element Z is two parallel components, it is convenient to calculate as U2Y ∗,
where Y = 1

R − j 1
ωL . The total complex power into the ∆ load is therefore S = 3U2

(

1
R + j 1

ωL

)

, from

which P = 3U2

R and Q = 3U2

ωL .

b) The only way of getting pf= 1 is to ensure that there is no reactive power flow at the terminals. Thus,
the component chosen for Zx must cancel the reactive power of the load Z. This requires a capacitor,
as the reactive part of Z is inductive. The solution is quite simple, as Z has parallel R and L, which
means that its reactive power consumption depends only on L, not R. The only complication, making
the problem less trivial than ‘ωL = 1

ωC ’, is that the compensation components Zx are Y-connected. For
equal-and-opposite reactive power,

3
U2

ωL
= 3

(

U/
√
3
)2

ωC = U2ωC,
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which requires that each Zx is a capacitor C = 3
ω2L

. Try drawing this as complex numbers representing
admittance or current, if that helps you to understand the algebra.

c) If the parallel R and L in each impedance Z are related by ωL = R/
√
3, then this load has a

pf= 1/2 lagging. Bearing in mind that the R and L are in parallel, it is easiest to think of their admittan-
ces. The magnitude and real and imaginary parts of the admittance of load Z are proportional to the ap-

parent, active and reactive powers, due to the parallel connection. From this, pf= P
|S| =

1
R

/

√

1
R2 + 1

ω2L2 ,

which after subsitution of ωL = R/
√
3 becomes 1/2. We know it is lagging, as the reactive part is an

inductance. (To work with power instead of admittance, we would just include a common factor of
U2, or of 3U2 for this whole 3-phase load, and multiply by the conjugate of admittance; the result for
power-factor is the same.)

In part ‘b’, an expression was found for a capacitor C that could be used as Zx to give complete power-
factor compensation. We might want to compensate only with the smallest possible current into Zx

that fulfills the requirement of ≥ 1/
√
2 lagging: that is probably cheaper than having full compensation,

if smaller components can be uesd. If the capacitance C from part ‘b’ is reduced, the power factor
will reduce from 1.0 and be lagging. How much capacitance is needed to achieve just pf= 1/

√
2? This

power-factor implies that the active and reactive power have the same magnitude. So our aim is that
the capacitor for Zx should result in the total reactive power equalling the total active power. Using the
subscripts ‘∆’, ‘x’ and ‘total’ for the separate ∆ and Y loads and their sum,

Q∆ +Qx =
3U2

ωL
+ (−U2ωC) = Qtotal,

and we want

Qtotal = Ptotal = P∆ =
3U2

R
=

3U2

√
3ωL

,

from which

Qx = P∆ −Q∆, so − U2ωC =
3U2

ωL

(

1√
3
− 1

)

,

giving C = 3−
√
3

ω2L
, which could be expressed in a variety of ways. This is less than half of the size of

capacitance needed for full power-factor compensation.

When the requirement is only to make the power factor get somewhat higher, we could add conductance
(a resistor) for Zx instead of a capacitor. This cannot compensate the reactive power of Z, but it can
increase the total active power and thus the total apparent power. The power factor therefore rises,
although it cannot reach exactly 1 as long as the load has some reactive power. That’s a silly cheat:
normally the main purpose of power factor ‘improvement’ is to reduce the apparent power, which is
related to the current through the wires, and thus to power losses and required materials. The power-
factor is the ratio between the active and apparent power, which is usually only worth optimising by
reducing the reactive power.

Anyway: let’s suppose we do want to choose Zx to be a pure resistance Rx, that gives just the minium
required power-factor of 1/

√
2 with the least possible current in Zx. Then we need to increase the total

active power until it equals the reactive power. This can be done by making Zx be a resistor Rx, with
a value of Rx = ωL

3−
√
3
. It could instead be expressed in terms of the resistance R, as Rx = R√

3(3−
√
3)
.

Check this! At the terminals a,b,c, the input is Ptotal = 3U2 1
R + U2

√
3(3−

√
3)

R and Qtotal = 3U2 1
ωL . The

active power can be rewritten in terms of ωL = R/
√
3, as Ptotal = 3U2 1√

3ωL
+ U2 3−

√
3

ωL . Using these

active and reactive powers, the power factor is Ptotal√
P 2

total
+Q2

total

at the terminals, which simplifies to 1√
2
, as

requested.
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