
KTH EI1102 /EI1100 Elkretsanalys Omtenta 2015-06-11 kl 14–19

Tentan har 6 tal i 2 delar: tre tal i del A (15p), tre i del B (15p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . ).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Godkänd tenta kräver minst 25% i del A, 25% i del B, och 50% i genomsnitt (b̊ada delar). Betyget
räknas fr̊an summan över b̊ada delar, med gränser (%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

Examinator: Nathaniel Taylor

Del A. Likström och Transient

1) [5p]
Bestäm de följande:

a) [1p] Effekten levererat till R3.

b) [1p] Spänningen u1 över R1.

c) [1p] Effekten levererat till R4.

d) [1p] Spänningen u4 över R4.

e) [1p] Effekten levererat fr̊an källan U2.
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2) [5p]

Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att f̊a ut de
markerade nodpotentialerna v1, v2, v3, v4.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste inte

lösa eller förenkla ekvationerna.

Som vanligt är det komponentvärdena
R1, I, g, h o.s.v. som är kända, medan de
markerade storheterna v1, ix, o.s.v. är okända.
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3) [5p]

Bestäm ic(t), för t > 0.

C
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t = 0
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Del B. Växelström

4) [5p]

Källornas värden är: U(t) = Û sin(ωt), I(t) = Î cos(ωt).

Bestäm ux(t).
I(t)

+
−U(t)

C

L

+
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5) [5p]

a) [2p] Bestäm nätverksfunktionen H(ω) = vo(ω)
vi(ω)

av kretsen.

b) [1p] Visa att H(ω) i deltal ’a’ kan skrivas som

H(ω) =
k

1 + jω/ωx
,

där k och ωx är positiva reella tal (vid antagandet
att komponentvärdena ocks̊a är det).
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c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Markera viktiga punkter och lutningar.

6) [5p]

Källan ger en växelspänning med vinkelfrekvens
ω, beskriven av fasvektorn U .

a) [3p] Betrakta den övre kretsen. Komponent-
värdena R2 och C är okända; de andra värdena är
kända storheter. Välj R2 och C för att maximera
effekten som levereras till motst̊andet R2.

b) [2p] Betrakta nu den nedre kretsen, där en
ideal transformator med relativ antal varv n : 1
används i stället för direktkoppling. Välj R2 och
C med samma villkoren som i deltal ’a’, men nu
med transformatorn. Kvoten n är känd.
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Solutions (EI1102/EI1100, VT15, 2015-06-11)

Q1

a) Power into R3 is U2
1 /R3, as the resistor is parallel with the voltage source U1, which fixes its voltage

and makes all the other components irrelevant to the solution.

b) Voltage u1 is U1
R1

R1 +R2
, as the series pair R1 and R2 is in parallel with the voltage source U1 which

fixes their voltage and makes all other components than these three irrelevant to u1.

c) Power into R4 is I2R4. This resistor is in series with the independent current source I! It may not
be obvious immediately, but it can be seen by considering the whole region of { R1, R2, R3, U1 }: KCL
says that the current in from I has to pass out into R4. Alternatively, consider KCL on the right-hand
side of the circuit, for voltage source U2 and the dependent current source g u4.

d) By seeing that the current from right to left in R4 must be −I, we get u4 = −IR4.

e) The current through the voltage source U2 needs to be found, in order to find what power this source
delivers. Let’s define the source’s current as i2, out from the ‘+’ terminal. Then by KCL at the node
below U2, i2 = I + gu4. Substituting the u4 from question ‘e’ (above), the KCL expression becomes
i2 = I (1− gR4). The power out from source U2 is therefore U2I (1− gR4).

Q2

We’ll show the “extended nodal analysis” (which I’ve sometimes called the simple method, because it
has few rules although it generates longer equation systems).

First, KCL at every node except ground. We’ll define the currents in the voltage sources as iα (in U)
and iβ (in the dependent voltage source), both being into the ‘+’ terminal.

KCL(1) : 0 =
v1 − v3
R1

+ I − g v3 (1)

KCL(2) : 0 =
v2
R2

− I + iβ (2)

KCL(3) : 0 =
v3 − v1
R1

− iβ +
v3
R3

+
v3 − v4
R4

(3)

KCL(4) : 0 =
v4 − v3
R4

+ iα. (4)

Then, include the relations of node potentials that the voltage sources determine,

v4 = U (5)

v2 − v3 = h ix. (6)

Finally, define controlling variables of dependent sources in terms of already defined quantities. In this
case, one source had a node potential as its controlling variable, so it needs no equation (it would be
just ‘v3 = v3’).

ix =
v3
R3

(7)

We will leave other methods, such as the supernode approach, as ‘an exercise for the reader’.
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Q3

After the switch opens, the current I of the current source must split between the capacitor and resistor.
Let’s define the voltage across the capacitor (with the positive reference upwards) as uc.

As the resistor and capacitor are in parallel, the current in the resistor is known as uc(t)
R .

By KCL, we see that

ic(t) = I −
uc(t)

R
.

The constitutive equation for a capacitor is ic(t) = C duc(t)
dt , which allows a differential equation in uc to

be written as

C
duc(t)

dt
= I −

uc(t)

R
.

It would also have been possible to write a differential equation in another variable such as ic or i (which
is the variable we’re ultimately solving for); we have chosen to use the continuous variable, since this
makes it easy to handle the initial condition.

The initial condition for uc has to be found from the equilibrium before the switch opened. With the
switch closed (t < 0) the voltage source was connected in parallel with the resistor and capacitor. The
capacitor voltage must therefore have been uc(0

−) = −U , by KVL. By continuity, uc(0
+) = −U .

The above differential equation and initial condition can be solved for uc(t) during t > 0. The alternative
method is to use the initial value (uc(0

+) = −U), the final value (uc(∞) = IR), and the time-constant
given by the capacitor and the equivalent source that it sees (τ = RC here) to write the solution directly.
Either way,

uc(t) = IR− (U + IR) e−
t

CR .

We were actually looking for ic(t), the current through the capacitor. This has already been seen to be

ic(t) = C duc(t)
dt , so we can write

ic(t) = C
d

dt

(

IR− (U + IR) e−
t

CR

)

=

(

U

R
+ I

)

e−
t

CR .

Q4

Let’s take a sine reference, so that U(t) = Û sin(ωt) becomes U(ω) = Û 0.
Then I(t) = Î cos(ωt) becomes I(ω) = Î π/2 = jÎ.

The phasor equation for KCL in the node above L, omitting for neatness the ‘(ω)’ after the phasors, is

−I +
ux
jωL

+ jωC (ux − U) = 0,

from which the sought voltage is

ux(ω) =
I + jωCU

j
(

ωC − 1
ωL

) =
Î + ωCÛ

ωC − 1
ωL

.

This expression has no imaginary parts. Its phase-angle is either 0 or π, depending on the sign of the
denominator. (If a different reference, such as cos(ωt) or sin(ωt+ π/2) had been used, then the phasor
ux(ω) would not have zero angle, but it would still have the special feature of being a particular angle
or that angle plus π.)

One way of writing the time-function is

ux(t) =
Î + ωCÛ

ωC − 1
ωL

sin (ωt) .

This looks rather different from what we often see when solving ac circuits and writing their time func-
tions. Normally we have phase-angles that can vary over a range; then we have written time-functions
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in the form f(t) = A sin(ωt + φ) (or with cos instead), where A is positive real. Some square-roots are
usually needed for finding the magnitude A, and perhaps an inverse tangent for finding φ. In the case
above, we have instead allowed the term before the sin function to be positive or negative, to make
the phase-angle change by π when the difference between ωC and 1/ωL changes sign. The phasor was
already purely real, so the square-roots and inverse tangents were not needed. This choice seemed the
simplest way to get the right behaviour. Note that when ωC = 1/ωL there is a resonance at which ux
has unbounded magnitude.

Q5

a) The potentials of the two opamp inputs are expected to be the same, due to the negative feedback.
Let this potential be v. Then, from KCL separately at the two inputs, we get two equations,

v − vi
jωL

+
v

R1
= 0, and

v − vi
R2

+ (v − vo) jωC = 0.

Eliminating v and rearranging,

vo
vi

= H(ω) =
(1 + jωCR2)− (1 + jωL/R1)

jωCR2 (1 + jωL/R1)
.

This can be further simplified as shown in part ‘b)’.

b) Simplification of the result from part ‘a)’ gives,

H(ω) =
1− L

CR1R2

1 + jωL/R1
,

which can be written in the requested form of k
1+jω/ωx

by setting

k = 1−
L

CR1R2
and ωx =

R1

L
.

This is a quite surprisingly simple function: swapping of the positions of the same components in this
circuit can result in more complicated Bode plots.

c)
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This is an unusually easy Bode amplitude plot. It is just the curve of a single pole, shifted vertically by
k (in dB). The values k and ωx could be used, or their equivalent in terms of circuit quantities such as
R1/L. In case you wonder: ‘a.u.’ means ‘arbitrary units’. Normally the hand-written Bode plot would
use straight lines instead of showing the curve around ωx.
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Q6

a) As C and R2 are able to be chosen, while other components are fixed, it is convenient to see this
maximum power question as having a source of U and R1, a load of C and R2.

Maximum power to the load is attained when the load impedance is the complex conjugate of the source
impedance. In this case, the source impedance is pure resistance: we need R2 = R1 and C = 0.

This can be shown more formally by writing

Zload =

R
jωC

R+ 1
jωC

= Z∗

source = R∗

1 = R1.

b) The only difference now is the n : 1 transformer between source and load. Probably the simplest
way to start is to replace the source and transformer by an equivalent source that represents what the
load ‘sees’ at the terminals of the right-hand side of the transformer.

If we disconnect the load from the transformer, the open-circuit voltage of the transformer’s right-hand
coil is U/n. The resistance R1 is equivalent to a resistance R1/n

2 on the other side of the transformer: this
is a commonly used substitution, and can be derived by considering the ratios of primary to secondary
voltage (n : 1) and current (1 : n). Thus, the following substitution can be made:

ideal

n : 1

+
−U

R1

=⇒

+
−

U

n

R1

n2

By the same reasoning as in part ‘a)’, we need R2 = R1/n
2 and C = 0.

As usual with maximum power calculations, the source voltage was not relevant to what load impedance
should be chosen, although it would affect how large the maximum power is.
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