
EI1110 Elkretsanalys, Kontrollskrivning KS1, 2015-09-29 kl 08–10

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt.

Kontrollskrivningen har 3 tal, med totalt 12 poäng. Den omfattar ämnet ’Likström’ och motsvarar sektion A i
tentan. I tentan är kravet för godkänd minst 40% för sektion A, samt minst 50% över hela tentan.
Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner av variabler.
Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte p̊a dessa.
Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Använd återst̊aende tid för att kontrollera svaren! Nathaniel Taylor (073 919 5883)

1) [4p]

a) [0,5p] Vilken effekt absorberas av R4?

b) [1p] Vilken effekt absorberas av R1?

c) [0,5p] Vilken effekt levereras av källan Ic?

d) [1p] Bestäm spänningen u2 över R2.

e) [1p] Vilken effekt levereras av källan Ub?
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2) [4p]

Använd nodanalys för att skriva ekvationer som
skulle kunna lösas för att f̊a ut de markerade
nodpotentialerna v1, v2, v3, v4 och v5.

Du m̊aste inte lösa eller förenkla ekvationerna:
du behöver bara visa att du kan översätta fr̊an
kretsen till ekvationerna.
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3) [4p]

a) [3p] Vad är spänningen u när
polerna a och b är öppenkrets (i = 0)?

b) [1p] Bestäm Theveninekvivalenten
med avseende p̊a polerna a och b.
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Solutions, EI1110 KS1 2015-09-29

1)

a) Power absorbed by R4:
I2dR4 series connection with current-source ensures current of Id.

b) Power absorbed by R1:
(Ua − Ub)

2/R1 KVL around R1 and the two voltage-sources.

c) Power delivered from source Ic:
UaIc Ua is the voltage across source Ic, as these sources are parallel-connected.

d) Voltage u2 across R2:
−IdR2R3

R2+R3
resistors R2 and R3 are in parallel, with current Id passing through.

e) Power delivered from source Ub:
Ub

Ub−Ua

R1
current in Ub is same as in R1; see part ‘b’.

The circuit can be analysed in the way that it was shown, or it could be re-drawn. As usual, re-drawing
has the disadvantage of taking time and risking errors. The advantage of easier analysis may, however,
outweigh the disadvantage. See what you think of the following way of drawing the circuit diagram:
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This circuit can be seen as two separate circuits, joined only in one node. In the above re-drawing, the
two parts have therefore been treated separately, each with its own choice of which node goes at the
bottom. A connection is included between the two parts, to make the circuit exactly the same as the
original one. Note, however, that this single connection cannot have any current, and thus does not
affect the voltages and currents (and therefore the powers) in the components. The connection would
only be relevant if the questions had been about potentials, with an earth node somewhere in the circuit.
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2) Two examples will be shown. Many variations are possible. The first example is the one that we
suggest is probably easiest to do for this type of question.

Extended nodal analysis (“the simple way”)

Let’s define the unknown currents in the voltage-sources to be going into the source’s + terminal.
We’ll call them iα in the independent source U , and iβ in the dependent source hiy.

Now we can write KCL at all nodes except ground:

KCL(1)(out) : 0 = −iβ +
v1
R1

+
v1 − v5
R4

+ kix − iα (1)

KCL(2)(out) : 0 = iβ +
v2 − v3
R2

(2)

KCL(3)(out) : 0 =
v3 − v2
R2

+
v3 − v4
R3

− kix (3)

KCL(4)(out) : 0 =
v4 − v3
R3

+ iα + I (4)

KCL(5)(out) : 0 = −I +
v5 − v1
R4

+
v5
R5

(5)

These are only 5 equations so far, but with 9 unknowns: v1, v2, v3, v4, v5, iα, iβ , ix, iy.

We now add the further information given by the voltage sources:

v4 − v1 = U (6)

v2 − v1 = hiy (7)

It is also necessary to define the marked (but unknown) quantities that are the controlling variables of
the dependent sources:

ix = iβ −

v1
R1

(8)

iy =
v5
R5

(9)

End. That’s it. The above 9 equations in 9 unknowns should be solvable. The node potentials will thus
be found, along with the currents iα and iβ in the voltage-sources and the marked current ix and iy.

Note that these definitions could easily have been expressed in a very different way. For example, it
is also true that iy = −v1

R1
in this circuit.1 A similar situation exists for ix. It doesn’t matter which of

the possible definitions is written, because the KCL equations contain the information that shows the
different ways to be identical! If we had written KCL for the earth node, it would tell us that v1

R1
+ v5

R5
= 0,

and therefore that the two alternative equations we’ve shown for iy are equivalent. We didn’t actually
write KCL for the earth node: we don’t do that, as we know that this KCL must be the sum of the
KCLs for all the other nodes, so it tells us nothing new.

A familiar warning from earlier exams is repeated here! The systematic way in which this was done is

important! There are many ways to write a sufficient set of equations, but there are also many ways

to write insufficient equations: it is dangerously easy to write some linearly dependent equations and

assume that “n unknowns, n equations, therefore it’s all ok”. The procedure used above is a simple way

to ensure the equations are sufficient.

1Notice that it would not have to be true if the earth symbol could have any current flowing in it. This could happen
if another node had an earth symbol too. One example is if there were an opamp in the circuit, getting its output current
from the earth node but without showing this explicitly.
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Alternative: supernode

There are two voltage sources, both connected to v1. There is thus one supernode, consisting of the
nodes with potentials v1, v2 and v4. Just one of these potentials is needed as an unknown in KCL: let’s
choose v1. Then the other potentials in the supernode are defined in terms of this: v4 = v1 + U , and
v2 = v1 + hiy. Only the potentials v1, v3 and v5 should be used in the KCL equations.

In order to avoid introducing iy as a further unknown, we immediately define it in terms of existing
variables: iy = v5

R5
. Then the expressions for the supernode potentials can be written in terms of just the

node potentials and the known values of components.

v4 = v1 + U (1)

v2 = v1 +
h

R5
v5 (2)

These two equations are needed as part of the answer, in order to find the potentials v2 and v4 after v1
has been solved.

The marked current ix can be defined as ix =
v3−

(

v1+
h

R5
v5

)

R2
−

v1
R1

, and this expression will be substituted
when the current in the dependent current source is needed in KCL. In this way, we avoid having a
further unknown in the equations.2

KCL at the supernode and other nodes (except earth node), using outgoing currents, gives

KCL(124) : 0 =
v1
R1

+
v1 − v5
R4

+
v1+

h
R5

v5 − v3

R2
+

v1+U − v3
R3

+ I + k

(

v3−
(

v1+
h

R5
v5

)

R2
−

v1
R1

)

(3)

KCL(3) : 0 =
v3 − (v1 + U)

R3
+

v3 −
(

v1 +
h
R5

v5

)

R2
− k

(

v3−
(

v1+
h

R5
v5

)

R2
−

v1
R1

)

(4)

KCL(5) : 0 = −I +
v5 − v1
R4

+
v5
R5

(5)

These equations could be rearranged to separate the terms for v1, v3 and v5. There is no requirement
to do so for this question.

The supernode method has given 5 equations in 5 unknowns, which are the node potentials. Only the 3
KCL equations need simultaneous solution. The earlier 2 equations for the potentials in the supernode
can then be used to find v2 and v4 after v1, v3 and v5 have been found.

2This immediate substitution is done to reduce the number of unknowns and thus the number of equations. It is the
‘standard’ way that we’ve seen in the supernode method for nodal analysis. However, in this particular case the expression
for ix is rather long: it might actually be easier to use the short name ix during part of the solution, then to substitute the
above expression later.
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3)

a) In the open-circuit condition, no current flows in R5: the node b is therefore at zero potential, and
so the marked voltage u is equal to the opamp’s output potential.

This potential can be found by a step-by-step approach or by formal nodal analysis.

The nodal analysis could be done in the following way. Define the opamp’s output potential as vo. Define
the potential of the opamp inputs3 as vi.

KCL can be written for the nodes at the two opamp inputs. The opamp output and the point above
source U can be treated as fixed potentials where we don’t care about the current in the voltage sources
(the supernode type of approach). Remember: we ultimately only want to find vo.

KCL(+)(out) : 0 =
vi − vi
R2

+
vi − U

R3
(6)

KCL(−)(out) : 0 =
vi − vi
R2

+
vi
R1

− I +
vi − vo
R4

(7)

After solving for vo, which was shown above to the equal to u for the open-circuit case, the result is

u = vo = U

(

1 +
R4

R1

)

− IR4

The less formal, step-by-step method is to notice that no current can flow in R2 if the opamp inputs
have equal potential, and thus that no current can flow in R3 either, as the opamp input has no current.
Thus, both inputs are at potential U . KCL can then be written for the inverting input, using potential
U ; the only unknown is the sought potential vo.

b) The ideal opamp’s output is an ideal voltage-source, with its other side connected to earth. The
Thevenin resistance between the opamp’s output and earth is therefore zero. In the shown circuit, the
terminals a-b are connected ‘almost’ between opamp output and earth . . . the difference is that there is
a resistance R5 in series. Thus the Thevenin resistance between a-b is RT = R5. The Thevenin voltage
is the open-circuit voltage of the circuit, which was found in part ‘a’.

There are several other ways of determining the Thevenin resistance. One could derive an expression
for the relation of i and u, then check the gradient that this gives in the u-i plane. Or one could solve
for the current i with the terminals a-b short-circuited: the ratio of open-circuit voltage to short-circuit
current is the Thevenin resistance.

An equivalent circuit should be shown as a diagram, to make clear the direction of the source, and that
the voltage-source and resistance are in series in a Thevenin source.
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3The opamp inputs are expected to have the same potential, so we only need to define one symbol vi. An alternative
would be to define v+ and v

−
, then to include an equation stating v+ = v

−
.
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