
EI1110 Elkretsanalys (Elektro) Tentamen TEN1, 2015-10-29 kl 14–19

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt.

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p).

Godkänd tentamen TEN1 kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen
man fick i dessa respektive sektioner i tentan, och ak är poängen man fick fr̊an kontrollskrivning KS1
vilken motsvarar tentans sektion A; funktionen max() tar den högre av sina argument.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b
A+B .

Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

I vissa gränsfall där betyget är lite under 50%, eller bara en av sektionerna är underkänd trots 50% eller
bättre totalt, kommer betyget ’Fx’ registreras, med möjlighet att f̊a betyget E om ett kompletterings-
arbete är godkänt inom n̊agra veckor efter tentamen.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara
kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller en
spänningskälla) antas vara okända storheter.

Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner.

Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte!

Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Använd kvarst̊aende tid för att kontrollera svaren. Lycka till! Nathaniel Taylor (073 919 5883)

Sektion A. Likström

1) [4p]

a) [3p] Bestäm de följande:
De markerade uy och iz.
Effekten som källan U2 absorberar.
Effekten som motst̊andet R1 absorberar.

b) [1p] Uttryck Rx som funktion av andra komponent-
värden, s̊adant att den största möjliga effekten levereras
till motst̊andet Rx fr̊an resten av kretsen.
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2) [4p]

Skriv ekvationer som skulle kunna lösas
för att finna de markerade potentialerna
v1, v2, v3, v4 som funktioner av de givna
komponentvärdena.

Du m̊aste inte lösa eller förenkla dina
ekvationer.
Använd helst en systematisk metod, för
att försäkra tillräckliga ekvationer utan
onödigt arbete.
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3) [4p]

Bestäm Nortonekvivalanten med
avseende p̊a polerna a och b.

Kom ih̊ag konventionen att de
markerade u, i och ix är okända.

Ledning: Vilka komponenter är
relevanta för lösningen?
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Sektion B. Transient

4) [5p]

Bestäm i1(t) och u2(t) vid de
följande tiderna:

a) [2p] t = 0−

b) [2p] t = 0+

c) [1p] t → ∞

kix(t) C1

R1 i1(t)

+
−U

L

+

−

u2(t)

R2

C2

R3

t = 0

ix

5) [5p]

Bestäm i(t) för tider t > 0.

i(t)

+
− U · 1(t)

C

R I
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Solutions, EI1110 TEN1 2015-10-29

1)

a)

uy = I2R3 series with current-source (i.e. KCL)

iz = I2 − I1 KCL

PU2 = izU2 = U2(I2 − I1) note: this expression defines the power into source U2. For some choices
of component values the resulting number will be negative, indicating that in fact this source is supplying
power to the rest of the circuit, and for other choices of component values the resulting number will
be positive, indicating that the source is absorbing (receiving) power from the rest of the circuit. A
source can absorb or produce power, whereas a resistor of positive value can only absorb it (the current
is always going from a higher to lower potential, since this potential-change is what drives the current
through the resistor).

PR1 =
(

U1−I2Rx

Rx+R1

)2
R1 this can be found by nodal analysis on one node (i.e. KCL), which allows

the voltage across, or current through, R1 to be found. Looking at the node above (or below) R1, there
are three branches: U1 and Rx in one branch, R1 is another, and all the other components are equivalent
to a source I2. Hence, with u being the voltage across R1, KCL gives u−U1

Rx

+ u
R1

+ I2 = 0. We could

solve for u, then find PR1 = u2/R1. Or substitute u = iR1 where i is the current in R1, and thus solve
KCL directly for the current, followed by PR1 = i2R1.

b) If Rx is to be adjusted to receive the highest possible power from the rest of the circuit, it should
have the same value as the Thevenin resistance of the rest of the circuit to which it’s connected.

As there are no dependent sources, our easiest way to find the Thevenin resistance (between the nodes
where Rx connects, without Rx present) is to set the sources to zero. The part to the right then
disappears, due to the series current-sources (open-circuits). The Thevenin resistance is just R1.

Rx(maxP)
= R1.

2) Two solution methods are shown, and a numerical check is made.

Extended nodal analysis (“the simple way”)

Define the unknown current in voltage source U : we’ll call it iα, going into the source’s + terminal.

KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = I1 +
v1
R1

+
v1 − v2
R6

− iα +
v1 − v3
R3

(1)

KCL(2) : 0 =
v2
R2

+
v2 − v1
R6

+
v2 − v4
R4

+
v2 − v3
R5

(2)

KCL(3) : 0 = −I2 +
v3 − v2
R5

+ iα +
v3 − v1
R3

(3)

KCL(4) : 0 =
v4 − v2
R4

+ I2. (4)

Next, include the further information given by the voltage source,

v3 − v1 = U. (5)

No marked controlling variable needs to be defined (there is no dependent source in this circuit).

So that’s it. The above equations are a sufficient answer.
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Alternative: Supernode method

KCL is done at each node (or supernode group) apart from the ground node.

There’s only one voltage-source, U . It connects between nodes 1 and 3, which therefore form a supernode.
Only one of the nodes in the supernode needs its potential to be defined: let’s use the potential at node
1, v1, in which case the potential in node 3 is v1 + U .

No further substitutions are needed for dependent sources and their controlling variables, as there aren’t
any in this circuit.

The KCL equations at the supernode and other nodes (other than earth) are

KCL(1,3) : 0 = I1 − I2 +
v1
R1

+
v1 − v2
R6

+
v1+U − v2

R5
(1)

KCL(2) : 0 =
v2
R2

+
v2 − v1
R6

+
v2 − v4
R4

+
v2 − v1−U

R5
(2)

KCL(4) : 0 =
v4 − v2
R4

+ I2. (3)

It is not sufficient to answer with just the above equations, without also saying how to find the remaining
potential (even if it’s obvious),

v3 = v1 + U (4)

The above equations are a sufficient answer.

Alternative: supernode and simplification

Node 4 just connects two components (a ‘trivial node’). One of these is a current source, which determines
the current in R4. We can therefore write KCL at v2 using the known I2 instead of the expression
v2−v4
R4

(this is like substituting the KCL(4) equation into the KCL(2) equation). We can then write
v4 = v2 − I2R4 to find v4 after solving for the other two potentials.

(Of course, just like the whole supernode approach, this isn’t something radically different: we’re just
finding a way to write the equations in an already-simplified form, instead of simplifying the bigger
system of equations from extended nodal analysis.)

KCL(1,3) : 0 = I1 − I2 +
v1
R1

+
v1 − v2
R6

+
v1+U − v2

R5
(1)

KCL(2) : 0 =
v2
R2

+
v2 − v1
R6

+ I2 +
v2 − v1−U

R5
(2)

The two other potentials can then be defined, for finding after solving for the above two unknowns.

v3 = v1 + U (3)

v4 = v2 − I2R4 (4)

The advantage of writing 4 equations this way, instead of the earlier way, is that only two (instead of
three) have to be solved simultaneously.
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3)

IN = I
1+k and RN = (1 + k)R3.

The Norton source should be drawn, showing the current-source pointing towards the ‘a’ terminal (or
else IN should be a negative expression) and showing the resistance in parallel with the source.

One method. From the terminals a-b, everything to the left is equivalent to the dependent current-source
ki (it’s a branch including a series current-source). So KCL at the top node gives ki+ i− I + u

R3
= 0.

At its terminals a Norton source has the u-i relation i = IN −
u
R

N
. By rearranging the KCL to group

the terms in a similar way, we can compare the i-u relation of the circuit to the i-u relation of a generic
Norton source,

i =
I

1 + k
−

1

(1 + k)R3
u = IN −

u

RN

.

from which the Norton parameters are identified.

Another method. There are dependent sources in the circuit, so we cannot rely on the method of
finding the circuit’s equivalent resistance by setting sources to zero and finding the resistance between
the terminals. The short-circuit and open-circuit method seems a good choice.

With a-b short-circuited, u = 0, and hence ix = 0. KCL at the top node gives i + ki = I, hence
isc =

I
1+k = IN .

With a-b open-circuited, i = 0, and so by KCL at the top node I = ix so uoc = IR3. The Norton
resistance is then uoc

isc
= R3(1 + k).

If the simplification of ignoring R1, R2 and hix is not seen, some more work with equations will have
been needed, e.g. defining a further potential below R2, with a further KCL at that node. Instead of
defining potentials (and a reference node) one can define one more voltage besides u, e.g. define the
unknown voltage across the current-source ki, then eliminate this from the equations.

4)

a) Initial equilibrium: t = 0−.
Draw the circuit in its state at time: switch closed.
Make all possible simplifications: replace C and L components, based on equilibrium with constant
sources.

kix

+

−

uC1

R1 i1

+
−U

iLu2

+

−

R2

+

−

uC2

R3

switch

ix

By normal dc analysis of this circuit,

i1(0
−) = kU

R2+R3
from i1 = kix (KCL) and ix = U

R2+R3
(KVL, right).

u2(0
−) = 0. as the inductor has zero voltage in equilibrium (didt = 0).
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b) Immediately after the change (switch opened): t = 0+.
Again, draw the circuit in its current state: the switch is now open.
For C and L components, continuity provides the values of continuous variables, based on the equili-
brium values at t = 0−; these can be drawn as sources to ease our analysis.

kix = 0

+
−uC1

R1 i1

+
−U

iL

+

−

u2

R2

+
−uC2

R3

switch

ix = 0

The open switch ensures that ix = 0, and hence the dependent current source kix is fixed to zero,
equivalent to an open circuit.

This remaining circuit has three branches between the top and bottom nodes: let’s define the voltage
between these two nodes as u. Writing KCL at the upper node (above source U),

u− uC1

R1
+ iL +

u− uC2

R2
= 0,

from which

u =
uC1R2 + uC2R1 − iLR1R2

R1 +R2
.

The sought quantity i1 can now be found as

i1(0
+) =

uC1 − u

R1
=

uC1 − uC2 + iLR2

R1 +R2
.

The other sought quantity is the voltage across the inductor. It is found from KVL, as

u2(0
+) = u− U =

uC1R2 + uC2R1 − iLR1R2

R1 +R2
− U.

The above expressions are not yet in terms of the given (known) quantities, since they includes the
capacitor and inductor states, such as uC1(0

+). These will have to be found, by assuming continuity
from the equilibrium before the change.
At t = 0−, looking back to the earlier circuit-diagram, we find that:

uC1(0
−) = U

(

1 + kR1
R2+R3

)

= uC1(0
+)

uC2(0
−) = U R3

R2+R3
= uC2(0

+)

iL(0
−) = U k−1

R2+R3
= iL(0

+)

Substituting these, and simplifying: i1(0
+) = k

R2+R3
U , and u2(0

+) = 0. Notice that these have turned

out to be the same at t =+ as at t = 0−, although they are not continuous quantities. The reason is
that the change (switch opening) and its immediate consequence (dependent-source becoming zero, as
ix = 0) are initially ‘hidden’ by the two capacitors. These capacitors are in parallel with the two outer
branches of the circuit: their behaviour like voltage-sources at t = 0+ means that the outer parts of
the circuit are irrelevant to the central part where the marked i1 and u2 are. It’s quite a lot of work to
make the above algebraic steps, but on the other hand it’s easy to fail to notice a more physically-based
argument such as the above, that would have avoided the algebra.
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c) Final equilibrium: t → ∞.

The only difference here, compared to the initial equilibrium (part ‘a’), is that the switch is open.
This, however, makes the further simplification that ix = 0 and therefore the dependent source is an
open-circuit (as in part ‘b’).

i1(∞) = 0 KCL: the only paths for i1 are zero current-source or a capacitor with du
dt = 0.

u2(∞) = 0 as the inductor has zero voltage in equilibrium (didt = 0).

5)

The only change that happens in this circuit is the step-change in the voltage-source value: it changes
from 0 to U at time t = 0.

Let’s try to find the continuous variable of the capacitor, as a time-function in the requested period of
‘t > 0’. We can call this variable (the capacitor voltage) u(t), choosing the positive reference side at the
top. Then the requested quantity i(t) can be found when u(t) is found.

The source-resistance (e.g. Thevenin resistance) seen by the capacitor is simply R. This can be seen by
setting both sources to zero, removing the capacitor, and finding the resistance between the nodes where
the capacitor was connected. Thus the time-constant for changes in this circuit is CR.

The final value u(∞) can be found by KVL. The equilibrium condition requires no current in the
capacitor, so all of the current I flows in the resistor R. By KVL in the left-hand loop, u(∞) = −U−IR.

The initial value u(0+) can be found from continuity as being equal to the initial equilibrium value
u(0−). The calculation is the same as for u(∞) except that we need 0 instead of U . Hence, u(0+) =
u(0−) = −IR.

Putting these together, by the principle of y(t) = yfinal + (yinitial − yfinal) e
−t/τ ,

u(t) = −U − IR+ (−IR+ IR+ U) e−t/CR = −IR− U
(

1− e−t/CR
)

.

The requested quantity was the capacitor’s current, not its voltage. The defined directions of our chosen
voltage and the marked current are such that

i(t) = −C
du(t)

dt
.

Substituting the above solution for u(t), the solution is i(t) =
U

R
e−t/CR.

Another way of solving this would be to use the initial and final values of the current, instead of working
first with the capacitor’s continuous variable of voltage. The danger in this is that the current can jump
between different values at t = 0− and t = 0+. One must be careful to use the current at t = 0+ as the
initial value of the variable. This current turns out to be i(0+) = U/R (in contrast to i(0−) = 0); finding
this requires use of the equilibrium voltage and continuity, so one does not avoid this step by working
directly with the current. The final current is i(∞) = 0. Putting these initial and final values together
with the time-constant will also lead to the same solution as shown above.

As a further approach, the differential-equation method can be started from the relations

U + u(t)

R
+ I = i(t) (KCL)

−C
du(t)

dt
= i(t) (capacitor).

Hence
du(t)

dt
+

1

CR
u(t) = −

1

CR
(U + IR) ,

for which the general solution can be found and the initial condition included.
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