
KTH EI1102 /EI1100 Elkretsanalys Omtenta 2015-10-29 kl 14–19

Tentan har 6 tal i 2 delar: tre tal i del A (15p), tre i del B (15p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . .

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Godkänd tenta kräver minst 25% i del A, 25% i del B, och 50% i genomsnitt (b̊ada delar). Betyget
räknas fr̊an summan över b̊ada delar, med gränser (%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

Nathaniel Taylor (073 919 5883)

Del A. Likström och Transient

1) [5p]

a) [4p] Bestäm de följande:
De markerade uy.
De markerade iz.
Effekten som källan U2 absorberar.
Effekten som motst̊andet R1 absorberar.

b) [1p] Uttryck Rx som funktion av andra komponent-
värden, s̊adant att den största möjliga effekten levereras
till motst̊andet Rx fr̊an resten av kretsen.
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2) [5p]

Bestäm Nortonekvivalanten med
avseende p̊a polerna a och b.

Kom ih̊ag konventionen att de
markerade u, i och ix är okända.

Ledning: Vilka komponenter är
relevanta för lösningen?

+
−hix

R1

R2

+

−

u

i

a

b

I R3

ixki

1 / 7 KTH EI1102 /EI1100, Elkretsanalys (CINTE,CMIEL,CELTE[gammal]), Omtenta HT15, 2015-10-29



3) [5p]

Bestäm i(t) för tider t > 0.

i(t)

+
−U · 1(t)

C

R I

Del B. Växelström

4) [5p]

Bestäm ix(t).

+
− Û cos(ωt)

C

R

Î sin(ωt)

ix(t)

5) [5p]

a) [2,5p] Bestäm nätverksfunktionen H(ω) = ix(ω)
I(ω) ,

och visa att den kan skrivas som

H(ω) =
−k

(1 + jω/ω1) (1 + jω/ω2)
.

b) [2,5p] Skissa ett Bode amplituddiagram av H(ω),
p̊a antagandet att ω1 ≪ ω2 och k = 10.
Markera viktiga punkter och lutningar.
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ixR3

6) [5p]

Källan ger en växelspänning med vinkelfrekvens
ω, och effektivvärde U .

a) [3p] Vilket val av C gör att den största
möjliga effekten levereras till motst̊andet R3

fr̊an resten av kretsen? Uttryck C som funktion
av andra komponentvärden.

+
−U

R1

R2

L

R3

C

b) [2p] När C är enligt svaret i deltal ’a’, vad är effekten levererat till R3?
(Om du inte har löst deltal ’a’ kan du behandla i stället det allmänna fallet med kapacitans C.)
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Solutions (EI1102/EI1100, HT15, 2015-10-29)

Q1 Note: this is the same as Q1 in the EI1110 TEN1 2015-10-29.

a)

uy = I2R3 series with current-source (i.e. KCL)

iz = I2 − I1 KCL

PU2 = izU2 = U2(I2 − I1) note: this expression defines the power into source U2. For some choices
of component values the resulting number will be negative, indicating that in fact this source is supplying
power to the rest of the circuit, and for other choices of component values the resulting number will
be positive, indicating that the source is absorbing (receiving) power from the rest of the circuit. A
source can absorb or produce power, whereas a resistor of positive value can only absorb it (the current
is always going from a higher to lower potential, since this potential-change is what drives the current
through the resistor).

PR1 =
(

U1−I2Rx

Rx+R1

)2
R1 this can be found by nodal analysis on one node (i.e. KCL), which allows

the voltage across, or current through, R1 to be found. Looking at the node above (or below) R1, there
are three branches: U1 and Rx in one branch, R1 is another, and all the other components are equivalent
to a source I2. Hence, with u being the voltage across R1, KCL gives u−U1

Rx

+ u
R1

+ I2 = 0. We could

solve for u, then find PR1 = u2/R1. Or substitute u = iR1 where i is the current in R1, and thus solve
KCL directly for the current, followed by PR1 = i2R1.

b) If Rx is to be adjusted to receive the highest possible power from the rest of the circuit, it should
have the same value as the Thevenin resistance of the rest of the circuit to which it’s connected.

As there are no dependent sources, our easiest way to find the Thevenin resistance (between the nodes
where Rx connects, without Rx present) is to set the sources to zero. The part to the right then
disappears, due to the series current-sources (open-circuits). The Thevenin resistance is just R1.

Rx(maxP)
= R1.

Q2 Note: this is the same as Q3 in the EI1110 TEN1 2015-10-29.

IN = I
1+k and RN = (1 + k)R3.

The Norton source should be drawn, showing the current-source pointing towards the ‘a’ terminal (or
else IN should be a negative expression) and showing the resistance in parallel with the source.

One method. From the terminals a-b, everything to the left is equivalent to the dependent current-source
ki (it’s a branch including a series current-source). So KCL at the top node gives ki+ i− I + u

R3
= 0.

At its terminals a Norton source has the u-i relation i = IN − u
R

N
. By rearranging the KCL to group

the terms in a similar way, we can compare the i-u relation of the circuit to the i-u relation of a generic
Norton source,

i =
I

1 + k
−

1

(1 + k)R3
u = IN −

u

RN

.

from which the Norton parameters are identified.

Another method. There are dependent sources in the circuit, so we cannot rely on the method of
finding the circuit’s equivalent resistance by setting sources to zero and finding the resistance between
the terminals. The short-circuit and open-circuit method seems a good choice.

With a-b short-circuited, u = 0, and hence ix = 0. KCL at the top node gives i + ki = I, hence
isc =

I
1+k = IN .
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With a-b open-circuited, i = 0, and so by KCL at the top node I = ix so uoc = IR3. The Norton
resistance is then uoc

isc
= R3(1 + k).

If the simplification of ignoring R1, R2 and hix is not seen, some more work with equations will have
been needed, e.g. defining a further potential below R2, with a further KCL at that node. Instead of
defining potentials (and a reference node) one can define one more voltage besides u, e.g. define the
unknown voltage across the current-source ki, then eliminate this from the equations.

Q3 Note: this is the same as Q5 in the EI1110 TEN1 2015-10-29.

The only change that happens in this circuit is the step-change in the voltage-source value: it changes
from 0 to U at time t = 0.

Let’s try to find the continuous variable of the capacitor, as a time-function in the requested period of
‘t > 0’. We can call this variable (the capacitor voltage) u(t), choosing the positive reference side at the
top. Then the requested quantity i(t) can be found when u(t) is found.

The source-resistance (e.g. Thevenin resistance) seen by the capacitor is simply R. This can be seen by
setting both sources to zero, removing the capacitor, and finding the resistance between the nodes where
the capacitor was connected. Thus the time-constant for changes in this circuit is CR.

The final value u(∞) can be found by KVL. The equilibrium condition requires no current in the
capacitor, so all of the current I flows in the resistor R. By KVL in the left-hand loop, u(∞) = −U−IR.

The initial value u(0+) can be found from continuity as being equal to the initial equilibrium value
u(0−). The calculation is the same as for u(∞) except that we need 0 instead of U . Hence, u(0+) =
u(0−) = −IR.

Putting these together, by the principle of y(t) = yfinal + (yinitial − yfinal) e
−t/τ ,

u(t) = −U − IR+ (−IR+ IR+ U) e−t/CR = −IR− U
(

1− e−t/CR
)

.

The requested quantity was the capacitor’s current, not its voltage. The defined directions of our chosen
voltage and the marked current are such that

i(t) = −C
du(t)

dt
.

Substituting the above solution for u(t), the solution is i(t) =
U

R
e−t/CR.

Another way of solving this would be to use the initial and final values of the current, instead of working
first with the capacitor’s continuous variable of voltage. The danger in this is that the current can jump
between different values at t = 0− and t = 0+. One must be careful to use the current at t = 0+ as the
initial value of the variable. This current turns out to be i(0+) = U/R (in contrast to i(0−) = 0); finding
this requires use of the equilibrium voltage and continuity, so one does not avoid this step by working
directly with the current. The final current is i(∞) = 0. Putting these initial and final values together
with the time-constant will also lead to the same solution as shown above.

As a further approach, the differential-equation method can be started from the relations

U + u(t)

R
+ I = i(t) (KCL)

−C
du(t)

dt
= i(t) (capacitor).

Hence
du(t)

dt
+

1

CR
u(t) = −

1

CR
(U + IR) ,

for which the general solution can be found and the initial condition included.
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Q4

ix(t) =
(

Î − ωCÛ
)

sin(ωt).

It might help to re-draw this, to make clear that the two sides are independent of each other: they are
two loops, with the bottom node as a common node, and the marked ix(t) is the sum of the currents in
these two loops.

Î sin(ωt)

R

+
− Û cos(ωt)

C

ix(t)

The resistor is in series with the current source, so its current is already determined (the resistance R is
not relevant). The capacitor has a voltage Û cos(ωt) across it, which determines its current.

For more complicated circuits with ac sources, it would be very helpful to use ac analysis (‘jω-metoden’).
We could choose e.g. a cosine reference, and describe the sources as −jÎ and Û . Then the current in the
capacitor (from the source towards the point marked ix) is jωCÛ . The current in the resistor, towards

this same point, is −jÎ. The total marked current is thus ix(ω) = j
(

ωCÛ − Î
)

. Converting back to a

time-function, notice that a positive imaginary value (j) of the phasor corresponds to − sin(ωt). Hence,

ix(t) =
(

ωCÛ − Î
)

(− sin(ωt)) =
(

Î − ωCÛ
)

sin(ωt).

In our specific case, each part of the analysis is independent and relatively simple. The current in the
resistor is Î sin(ωt). The capacitor and voltage source are directly connected, so they have the same volt-
age, Û cos(ωt). For a capacitor, i = C du

dt , from which our capacitor carries a current ωCU(− sin(ωt)).
Since these two currents both are a constant times a sin(ωt) function, their sum is easily written. This
sum is the solution, as both currents return via the marked point of ix.

Q5

a)

The opamp’s inverting input is a “virtual earth”, i.e. it has zero potential. That is because the feedback
holds it to the same potential as the non-inverting input, which is directly earthed.

In the node above the capacitor, we can define potential v, and can use nodal analysis to find this from
KCL:

jωCv − I +
v

R1
= 0 =⇒ v =

I
1
R1

+ jωC
.

The combination of the opamp, R1, and R2, can be seen as a classic inverting amplifier, where
vout
vin

=
−R2/R1. Now that we know vin, the opamp’s output potential can be found,

vout = −
R2

R1

I
1
R1

+ jωC
.

The sought current, ix, is then

ix =
vout

R3 + jωL
= −

R2

R1

I
1
R1

+ jωC

1

R3 + jωL
.

Then the network function is

H(ω) =
ix(ω)

I(ω)
=

−R2/R1
(

1
R1

+ jωC
)

(R3 + jωL)
=

−R2/R3

(1 + jωCR1) (1 + jωL/R3)
.

5 / 7 KTH EI1102/EI1100 (Electric circuit analyis) Exam SOLUTIONS, 2015-10-29



This fits the given form of equation if k = R2/R3, ω1 = 1
CR1

, and ω2 = R3/L; alternatively, the defini-
tions of ω1 and ω2 could be swapped, as this was not defined.

Q6

a)

This is not quite the classic maximum power question.

The classic is that there is a source with fixed parameters, and a load that can be varied. The source
parameters are its Thevenin or Norton equivalent values: a source impedance, and an open-circuit voltage
or short-circuit current. These parameters determine the maximum power that the source can supply.
The load parameters are two values of magnitude and angle (or rectangular form) of an impedance or of
a voltage or current source. These determine whether the load is giving the right conditions to extract
maximum power from the source. As we should remember, the condition for maximum power into a
load impedance is that this should be the complex conjugate of the source impedance. For any other
type of load that’s not an impedance, for example a current-source, it should result in the same voltage
and current as this choice of impedance would.

As a comment for students in VT19, who asked for further explanation of this solution: I think I’m now too cowardly
to put this question in an exam, as it could seem a bit of a trick when you’ve only really seen classic types of
maximum power question in our examples. It might have been expected that students taking this exam would not
bother thinking much about whether the maximum power principle they’d learned was strictly applicable to this
situation.
It should be possible to work it out from your existing knowledge, such as from the brief way in which we argued
our way to the ac maximum power crierion. But it could be confusing to some as we haven’t really thought of
other types of case like when one can vary only one parameter.

In this question we’re trying to get the maximum
possible power into the resistor R3, but we are only
permitted to adjust the capacitor. Changing C will
change the power to R3, but we would have to be
able to change R3 as well if wanting the power to R3

to be as high as the maximum possible power that
the rest of the circuit could supply. This question is
only about the maximum possible for a fixed R3.

+
−U

R1

R2

L

R3

C

Let’s start with one method; then we can continue to consider alternative methods. We can replace the
voltage-source and two adjacent resistors with their Thevenin equivalent, as shown below.

What determines the power into R3? As we
have a single loop, and therefore a single
current, it is convenient to express the power
in terms of current. This is |i|2R3, where i
is the current round the loop. Since in this
problem R3 is fixed, anything we can change
that increases the current magnitude will
increase the power to R3.

+
−UT = U R2

R1+R2

RT = R1R2
R1+R2

L

R3

C

The only thing we are permitted to change is C. The total current is

i =
UT

Ztotal
=

U R2
R1+R2

R1R2
R1+R2

+R3 + jωL− j 1
ωC

.

Anything that can make the magnitude of the denominator (nämnare) smaller is helping to make the
current magnitude larger, and thus the power to R3 greater. We are only allowed to change C. Clearly,
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this allows us to make the imaginary part become zero, by setting C such that jωL − j 1
ωC = 0. That

is the best we can do; we can’t adjust the real part, and any positive or negative imaginary part will
increase the magnitude of the total impedance.

As another type of solution, we could make simplistic use of the principle that maximum power is when
Zload = Z∗

source. By ‘simplistic’ it is meant that one interprets the principle to mean that the imaginary
parts of the source and load impedance should be made to be opposite, even if the real parts can’t be
adjusted. (Although we’ve shown above that this is true, it’s not safe to assume that a theorem can be
separately to one parameter even when another parameter is fixed and not at its optimal value.)

We can choose the ‘load’ to be just R3, or this together with the capacitor and/or the inductor. Some
of these options are shown by the positions of the terminals in the circuits below.

+
−U

R1

R2

L

R3

C

+
−U

R1

R2

L

R3

C

+
−U

R1

R2

L

R3

C

The load must include R3, as this is what the power will be delivered to. The maximum power theorem
is about maximising power out of the source, to the load. It cannot include R1 or R2, as these are what
are consuming active power within the ‘source’ and thus limiting what can go to the load. The reactive
components, L and C, can be in either the load or the source, since they cannot consume any active
power of their own, and therefore their presence in the load does not change that the ‘load’ active power
equals the active power into R3, which we have to maximise.

In any of these cases, attempting to make the imaginary parts of the source and load be ‘equal and
opposite’ results in choosing jωL− j 1

ωC = 0 and thus C = 1
ω2L

. That is the same result as we got earlier.
It will also turn out

b)

The first solution method used for part ‘a’ showed that the maximum power condition is when

jωL+
1

jωC
= 0

and derived the current i around the loop with U , R1 and R2 replace by their Thevenin equivalent.

The power into R3 is then |i|2R3, which is

PR3 =

(

UR2
R1+R2

R1R2
R1+R2

+R3 + jωL+ 1
jωC

)2

R3 =
U2R2

2R3

(R1R2 +R1R3 +R2R3)2
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