
EI1110 Elkretsanalys (Elektro) Omtenta TEN1, 2016-01-07 kl 08–13

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt.

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p).

Godkänd tentamen TEN1 kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen
man fick i dessa respektive sektioner i tentan, och ak är poängen man fick fr̊an kontrollskrivning KS1
vilken motsvarar tentans sektion A; funktionen max() tar den högre av sina argument.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b
A+B

.
Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

I vissa gränsfall där betyget är lite under 50%, eller bara en av sektionerna är underkänd trots 50% eller
bättre totalt, kommer betyget ’Fx’ registreras, med möjlighet att f̊a betyget E om ett kompletterings-
arbete är godkänt inom n̊agra veckor efter tentamen.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara
kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller en
spänningskälla) antas vara okända storheter.

Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner.

Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte!

Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Använd kvarst̊aende tid för att kontrollera svaren. Lycka till! Nathaniel Taylor (073 919 5883)

Sektion A. Likström

1) [4p]

Bestäm effekten absorberad av
följande komponenten:

a) [1p] Motst̊anden R1 och R2.

b) [1p] Motst̊anden R4 och R5.

c) [1p] Källan I1.

d) [1p] Motst̊andet R3.

Ledning: I vissa fall ovan är
lösningen beroende bara p̊a ett f̊atal
närliggande komponenter.
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2) [4p]

Skriv ekvationer som skulle kunna lösas för att
finna de markerade potentialerna v1, v2, v3, v4 som
funktioner av de givna komponentvärderna.

Du m̊aste inte lösa eller förenkla dina ekvationer.

Använd helst en systematisk metod, för att försäkra
tillräckliga ekvationer utan onödigt arbete.
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3) [4p] Kända storheterna: U och R, där

U1 = U2 = U3 = U

R1 = R2 = R

I1 = I2 = U/R

Bestäm en krets med bara tv̊a komponenter,
som kan ersätta alla komponenterna här och
ge identiskt beteende av u och i med avseen-
de p̊a polerna a-b.
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Skriv svaret med diagram, där komponenterna definieras bara med storheterna U och R.

Ledning: Förenkla. Observera att det inte finns n̊agra beroende källor här.

Sektion B. Transient

4) [5p]

Bestäm följande värden:

a) [2p] ua(0
−), ib(0

−).

b) [2p] ia(0
+), ib(0

+).

c) [1p] ia(∞), ub(∞).

Obs: ‘1(t)’ är enhetsstegfunktionen.
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5) [5p]

Bestäm u(t) för tider t > 0.

t = 0 C
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Solutions, EI1110 TEN1 2016-01-07

1)

a)

PR1 =
U2
1

R1
parallel with voltage-source (rest of circuit is irrelevant).

PR2 = I21R2 series with current-source (as opamp input has no current).

b)

PR4 =
U2
2

R4
parallel with voltage-source.

PR5 = I22R5 series with current-source.

c)

PI1 = −I21R2 KVL around I1 & R2 (knowing that the current in R2 is the current I1).
Note the negative sign: the question was about the power absorbed by the component; when taking
account of the direction of current and voltage we see the current source is supplying I21R2.
Another approach is to re-draw: after ignoring the opamp input (which has no current), you will see
that I1 and R2 are directly connected to each other and have only one node connecting to the rest of
the circuit, which therefore becomes irrelevant.

d)

This is more difficult. The resistor R3 is connected between two potentials that do not depend on the
value R3 . . . this would be an easy solution if the potentials were known, but one of them is not yet
known. That unknown is the output voltage of the opamp, which we only can find after solving the
circuit of the inputs and the feedback.

At the non-inverting input, the potential can be found by adding voltages along a path from the earth-
node: v+ = U1 − I1R2 (you can also see this as a form of KVL, where the final voltage in the KVL loop
is the unmarked one from the +-input back to earth).

Let’s call the potential of the opamp’s output v. The inverting input is assumed to have the same
potential as the non-inverting input: v

−
= v+. KCL at the inverting input then gives

U1 − v
−

Ri
+

(v − Uf)− v
−

Rf
= 0 =⇒

U1 − (U1 − I1R2)

Ri
+

(v − Uf)− (U1 − I1R2)

Rf
= 0

from which

v = U1 + Uf − I1R2

(

1 +
Rf

Ri

)

At the bottom of R3 the potential is U2, due to the direct connection to that voltage source, which is
connected to earth on the other side. The voltage across R3 is therefore v − U2.

PR3 = (v−U2)
2

R3
=

(

U1 + Uf − I1R2

(

1 + Rf
Ri

)

− U2

)2
/

R3.
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2) Two solution methods are shown, and a numerical check is made.

Extended nodal analysis (“the simple way”)

Define the unknown current in voltage source U : we’ll call it iα, going into the source’s + terminal.1

Likewise, define iβ into the + terminal of the dependent voltage source k2uy.

KCL (outgoing currents) at all nodes except ground:

KCL(1) : 0 = iα +
v1
R1

+
v1 − v4
R6

+
v1 − v2
R4

(1)

KCL(2) : 0 =
v2
R2

+
v2 − v1
R4

+
v2 − v3
R3

(2)

KCL(3) : 0 = I − k1ix +
v3 − v2
R3

+
v3 − v4
R5

(3)

KCL(4) : 0 = −iβ +
v4 − v1
R6

+
v4 − v3
R5

(4)

Next, include the further information given by the voltage sources,

v1 = U (5)

v4 = −k2uy (6)

Define the marked quantities that are the controlling variables of the dependent sources. These should
be defined in terms of variables (known or unknown) that we already have in the equation system.

ix = −iα or ix =
v1
R1

+
v1 − v4
R6

+
v1 − v2
R4

(7)

uy = v1 − v2 (8)

Now there are 8 equations, in the 8 unknowns: there are 4 unknown node-potentials (and 4 KCL equa-
tions); then 2 unknown currents in voltage-sources (and 2 equations relating node-potentials in terms
of source-voltages); and 2 unknown marked controlling variables (with 2 equations expressing them in
terms of other quantities).

So that’s it. The above equations are a sufficient answer.

In this special case where the current in the voltage-source U has been described both as ix and as iα
(but with opposite reference directions) the relation in (7) can be simply written ix = −iα, or written
using KCL at node 1. From equation (1), these two forms can be seen to be equivalent.

Alternative: Supernode method

KCL is done at each node (or supernode group) apart from the ground node.

There are two voltage-sources, U and k2uy. One terminal of each is connected to the earth node, and
the other terminals are connected to nodes 1 and 4 respectively. We can say that these two nodes and
the earth node form a supernode. One part of the supernode (the earth node) has a known potential
(zero). Thus, the marked potentials v1 and v4 can be written as U and k2uy. KCL is only needed at
nodes 2 and 3, since it is not used at the earth node or at any part of a supernode that contains the
earth node. (This reduction in the number of KCLs is obtained by not caring about solving for currents
in the voltage sources.)

If we want to write the equations purely in terms of the variables v2 and v3, we must eliminate the
marked controlling variables ix and uy by defining them in terms of known quantities or v2 or v3, then

1In this particular circuit there already is a marked current ix in the voltage source, which we could have used instead
of defining a new unknown of iα. But we’ll try doing this according to the general set of rules we’ve learned, in which we
introduce a new unknown for the current. It will be clear from the equations that we could just eliminate one of these
currents by the substitution ix = −iα.
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substituting these definitions instead of ix or uy. It’s easiest to handle uy: it is just U −v2, both of which
are already defined (U is known, v2 unknown). There is some more work in ix: we can only find the
current in a voltage source by looking at the rest of the circuit: in this case the current is the sum for
the three resistors connecting to source U , and R6 connects to node 4 whose potential now has to be
written k2(U − v2) if we want to have only v2 and v3 (not uy) as unknowns in our supernode equations.

Hence, ix = U
R1

+ U−v2
R4

+ U−k2(U−v2)
R6

.

The KCL equations at the supernode and other nodes (other than earth) are

KCL(2) : 0 =
v2
R2

+
v2 − U

R4
+

v2 − v3
R3

(1)

KCL(3) : 0 =
v3 − k2(U − v2)

R5
+

v3 − v2
R3

+ I − k1

(

U

R1
+

U − v2
R4

+
U − k2(U − v2)

R6

)

(2)

It is not sufficient to answer with just the above equations, without also saying how to find the remaining
two potentials:

v1 = U (3)

v4 = k2(U − v2) (4)

The above equations are a sufficient answer.

As usual, we can point out that the above 4 equations should have been able to be obtained by subsi-
tution in the 8 equations.

3)

The question requests an equivalent with two components to be found: i.e. a Thevenin or Norton equiva-
lent. The components are marked with unique symbols, but we are told that these can all be expressed
in terms of U and R. In the following calculation we’ll use the unique symbols for clarity, then simplify
at the end.

The open-circuit voltage is ui=0 = U1 +U3 −U2 + I2R1. This can be found from KVL around the outer
loop. The condition i = 0 implies zero voltage across R2, and that all of I2 must pass through R1, from
which the voltages across the resistors can be found.

As there are no dependent sources, the resistance can be found directly by zeroing the sources and
finding the resistance between the terminals. In this case the circuit reduces to a series loop with just
R1 and R2. The equivalent circuit’s resistance is thus R = R1 +R2.

We can therefore make a Thevenin equivalent with UT = U1 + U3 − U2 + I2R1 and RT = R1 +R2.

Alternatively, a Norton equivalent can easily be found by source-transformation, where

IN =
U
T

R
T
= U1+U3−U2+I2R1

R1+R2
= U

R
and RN = R1 +R2 = 2R.

+
−2U

2R

+

−

u

i

a

b

U

R

+

−

u

i

2R

a

b

Either one of the above circuits is a sufficient answer.

Alternative

The resistance could be found in a different way, by finding the open-circuit voltage ui=0 as above, and

the short-circuit current iu=0: their ratio is the resistance, RN = RT =
U
T

I
N

= ui=0
iu=0

. This would be well
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suited to a circuit containing dependent sources, where the method used above (setting sources to zero)
is not sufficient.

To find the short-circuit current directly, we could remove the irrelevant I1 (parallel with voltage-source
U1), then short-circuit the terminals a and b, and solve for i.

This can be done by writing KCL for the node at the top (or the bottom) of source I2. In order to write
the currents in the resistor branches we could define a voltage across source I2 (or define the bottom
as earth and the top as a potential); then i can be calculated after finding this voltage or potential.
Alternatively, we can use the current i directly as the unknown, as the voltage across I2 can be expressed
as iR2 − U3:

0 = i− I2 +
(iR2 − U3)− U1 + U2

R1

whence

i = IN =
U1 + U3 − U2 + I2R1

R1 +R2
.

Alternative

Another possibility is to find an equation relating u and i, then to identify the source and resistance
values of a Thevenin or Norton equivalent.

A very similar KCL approach to the above could be used, but with the unknown voltage u in the
right-hand branch of the circuit,

i =
U1 + U3 − U2 + I2R1 − u

R1 +R2
=

2U − u

2R
.

For comparison, the equation for a Thevenin source (with the same directions of u and i as in our circuit)
is u = UT − iRT , and for a Norton source i = IN −

u
R

N
. The parameters UT , IN and R

(N|T)
can be found

by comparing these expressions with the circuit’s expression for i and u.

4)

Notice the distinction between the two circuits: a voltage source becoming zero is not the same as a
voltage source being disconnected. At times t < 0 both are equivalent. At times t > 0 the second circuit
(right) has three parallel branches, but the first circuit (left) has only two, since the top branch is open.

a) ua(0
−) = 0 and ib(0

−) = 0 .
The inductor L is in parallel with the branch containing the capacitor C, where ua and ib are marked.
In equilibrium, with constant source values, we assume the inductor will have zero voltage, as we expect
di
dt = 0. This means that the whole branch of C and R1 is connected to a short circuit: hence ua(0

−) = 0.
In equilibrium we also assume no current to flow in the capacitor, hence ib(0

−) = 0.

b) ia(0
+) = −U

R2
, and ib(0

+) = −U
R1+R2

.

This is the hardest part. At t = 0− the inductor carries a current U/R2 from left to right, and the
capacitor has zero voltage. By continuity, these states are still true at t = 0+. In the first circuit the
switch is open so the inductor’s current can only flow through the lower branch, where ia is marked. In
the second circuit, the inductor’s current can divide between the top and bottom branches. Remember:
current division is only valid for parallel resistors, not for cases where there’s something else like a voltage
source in series with one or both resistors . . . but in this case the voltage source has zero value, and the
capacitor is known to be behaving like a zero voltage source at this time t = 0+; thus, the source and
capacitor can both be represented as short-circuits, making the resistors be in parallel. If you didn’t feel
happy to apply current division, you could have used KVL and KCL directly – that’s how we derived
current division, after all! If you used current division and didn’t even think whether it was valid, then
be careful in the future, as it’s a common mistake to apply current division in cases where it’s not valid!
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c) ia(∞) = 0, and ub(∞) = 0.
Again (as in part ‘4a’), this is an equilibrium with constant sources, so the inductor has zero voltage. In
this case, we also know that there are no sources (except a zeroed source in the second circuit): as there
are resistors that will remove any stored energy in the capacitor or inductor we can also be confident
from energy considerations that currents and voltages in the circuit will decay to zero.

5)

Until t = 0 the switch is short-circuiting the capacitor and current-source: therefore u(0−) = 0, and by
continuity of the capacitor’s voltage, u(0+) = 0.

After the switch opens, KCL in the node above the capacitor gives

0 = C
du(t)

dt
− I +

u+ ku

R
=⇒

du(t)

dt
+

1 + k

RC
u =

I

C

This has a general solution of

u(t) =
IR

1 + k
+ U∆e

−

1+k

RC
t

where U∆ needs to be found to fit the initial conditions. Recall that we know the state at t = 0, i.e.
u(0+) = 0; at this time the expoential term is e0 = 1. Thus,

u(0) = 0 =
IR

1 + k
+ U∆ =⇒ U∆ = −

IR

1 + k
,

from which the specific equation for u(t) is

u(t) =
IR

1 + k

(

1− e−
1+k

RC
t
)

(t > 0).

Alternative

The other way to do it is to find a two-terminal equivalent, at the capacitor terminals, of everything
except the capacitor, for times t > 0.

I

R

+
−

ku

i

+

−

u

+
−

IR

1 + k

R

1 + k

i

+

−

u

If the equivalent (above right) has a stored charge of zero and is connected to a capacitor C at time
zero, the time-function u(t) will be the same as in our original question.

The final value is seen to be u(∞) = I R
1+k

.

The time-constant is R
1+k

C.
The initial value is determined by the capacitor’s initial charge: u(0+) = 0.

From these the same time-function of u(t) can be found as from the direct differential-equation method.

Notice that, if the dependent source had been the other way up, or if k were negative, it would be
possible for the circuit to exhibit a negative equivalent resistance, leading to an unstable voltage u
(never reaching steady state).
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