
KTH EI1120 Elkretsanalys (CENMI), Tentamen 2016-03-22 kl 08–13

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . .

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Nathaniel Taylor (073 919 5883)

Del A. Likström

1) [4p] Bestäm effekterna som försörjs fr̊an
kretsen till de följande komponenterna:

a) [1p] motst̊andet R3

b) [12p] motst̊andet R2

c) [12p] motst̊andet R1

d) [1p] spänningskällan U2

e) [1p] strömkällan I2

+
−U1

+ −

U2

R
2

R1

I1

I2

R3

2) [4p]

Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att f̊a ut de mar-
kerade nodpotentialerna v1, v2, v3, v4.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste

inte lösa eller förenkla ekvationerna.

I

R1

R3

+ −

K2 v2 R4

K1 ix

+−

U

R2

ix

v1 v2

v3
v4
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3) [4p]

a) [3p] Bestäm Nortonekvivalenten av kretsen, med
avseende p̊a polerna ’x’ och ’y’. Rita upp ekvivalenten
inklusive polerna.

b) [1p] En spänningskälla U ansluts mellan kret-
sens poler x-y, med sin ‘+’ pol till kretsens pol
y. Vilket värde måste spänningen U ha, uttryckt
som en funktion av I och R, för att den maximala
möjliga effekten ska absorberas av källan fr̊an kretsen?

y

x

R I

R

R

R

I
I

Del B. Transient

4) [5p] Bestäm följande:

a) [2p] Vid t = 0−,
effekten levererad av strömkällan I,
strömmen ix.

b) [2p] Vid t = 0+,
strömmen ix,
spänningen ux över spolen.

c) [1p] Vid t → ∞,
energin lagrad i kondensatorn C,
effekten levererad av strömkällan I.

L

+− ux(t)

+
−U

R1 R3

IR2

ix(t)

C
t=0

5) [5p]

Bestäm i(t), för t > 0.

Obs: 1(t) är enhetsstegfunktionen.

L

i(t)

R1

R0

k i(t)
+−

(

1− 2·1(t)
)

· U

R2

Del C. Växelström

6) [5p]

a) [3p] Bestäm i(t) med villkoret Î = 0.
Tips: i s̊a fall kan en mycket förenklad krets analyseras.

b) [2p] Bestäm i(t) utan villkoret ovan.
B̊ada källor betraktas nu som aktiva.

L1 L2

+ −

U(t) = Û cos(ωt+ α)

i(t)

R1

C

I(t) = Î sin (ωt)

k
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7) [5p]

a) [2p] Bestäm kretsens nätverkfunktion,

H(ω) =
uo(ω)

ui(ω)
.

b) [1p] Visa att svaret till deltal ’a’ kan
skrivas i den följande formen,

H(ω) =
−jω/ω1

(1 + jω/ω2)(1 + jω/ω3)
.

−

+

R1
C1

R2
C2

+

−
uo

+

−

ui

c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Anta att 100ω1 = ω2, och att ω2 ≪ ω3. Markera viktiga punkter och lutningar.

8) [3p]

Värmeelementen R2 matas genom en l̊ang, tunn ledning
R1 fr̊an källan U ; dessa parametrar är fastställda. Bestäm
kvoten n av transformatorn, för att värmeeelementen ska
utveckla s̊a mycket värme som möjligt.

n : 1

+
− U

R1

R2

9) [5p]

Polerna a,b,c och x,y,z i kretsarna nedan visar anslutningar till trefas spänningskällor.
B̊ada källor har vinkelfrekvens ω och huvudspänning U (därför blir t.ex. |uab| = U och |uxy| = U).
Som vanligt kan antas: källorna är ideala och balanserade, och effektivvärdeskala används.

a

R1 L1

b

R1 L1

c

R1 L1

R2

L2

R
2

L
2

R2

L2
x

ix

y
iy

z
iz

R R

R

a) [2p] Kretsen till vänster modellerar en ∆-last (R2, L2) kopplad till källan genom en kabel som har
motst̊and R1 och induktans L1. Vilken effektfaktor (pf) matar källan, vid polera a,b,c?

b) [2p] Tre kondensatorer i ∆ anslutning ska kopplas till källans poler i den vänstra kretsen, för att
helt kompensera lasten och kabeln, s̊a källan matar pf= 1. Vilket värde C måste varje kondensator ha?

c) [1p] Kretsen till höger visar tre motst̊and R. De skulle kunna kopplas som en balanserad trefas
last, men de har felkopplats p̊a obalanserat sätt. Bestäm magnituden av den största av de markerade
linjeströmmarna (ix, iy eller iz).

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120, VT16, 2016-03-22)

Q1

Some re-drawing may be helpful. However – as usual – it is not obvious whether everyone will find
it worth taking the extra time to do this, particularly when it involves the risk of copying something
wrongly into the new diagram!

The powers delivered to (equivalently: ‘absorbed by’) the
listed components are found by the usual methods.

For a resistor R it is often easiest to find the magnitude
of voltage u across it, or current i through it, then to use
the relation P = i2R or P = u2/R.

For a source, find the quantity that the source doesn’t de-
termine (a voltage-sources’s current or a current-source’s
voltage) then multiply this with the source value, taking
care about the relative directions of current and voltage
definition.

+
− U2

+
− U1

R2

R1

I1

R3

I2

a) PR3 = I22R3.
This resistor R3 is series-connected to current-source I2, which therefore determines its current.

b) PR2 = (U1−U2)2

R2
note that (U1 − U2)

2 = (U2 − U1)
2.

This resistor R2 is parallel-connected to a voltage that is the difference between the source-voltages U1

and U2. If you don’t like this sort of argument based on “parallel-connected” and “rest of circuit is
irrelevant” and so on, then consider KVL around U1, U2 and R2.

c) PR1 = (I1 − I2)
2R1.

KCL above source I1 gives a current I1 − I2 flowing left to right through R1.
Only the magnitude of this current matters, since (I1 − I2)

2 = (I2 − I1)
2.

d) PU2 = U2

(

U1−U2
R2

+ I2 − I1

)

.

The current in source U2 can be found by KCL in three branches: R2, I1 and I2. This is probably most
obvious if KCL is done in the central node (to the right of U2). By force of habit, I’ve written KCL to
give the current out of the + terminal of U2; multiplied by U2 this would give the power supplied by
U2 instead of the requested power absorbed, so an extra negative sign is needed in order to describe the
power delivered to the source.

Pabsorbed = −U2

(

U2 − U1

R2
+ I1 − I2

)

= U2

(

U1 − U2

R2
+ I2 − I1

)

.

e) PI2 = I2
(

U1 − U2 + I1R1 − I2(R1 +R3)
)

.
Now we must find the voltage across source I2. Let’s define this voltage as uI2 , with the +-reference at
the bottom of the source (where the current-arrow starts) so that uI2I2 will be the power input to the
source. The most obvious loop for KVL is the entire outer loop of the circuit, which avoids other current
sources (unknown voltages). The voltage sources in this loop have voltages that are immediately known,
and the voltages across the two resistors are easily found by Ohm’s law as the currents in these resistors
are set by the current sources and KCL as already noted in the earlier solutions. The complete KVL is

0 = U2 − U1 − (I1 − I2)R1 + I2R3 + uI2 ,

yielding uI2 , from which the source’s absorbed power can be found as described above,

uI2 = U1 − U2 +R1I1 − (R1 +R3)I2.
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Q2

Extended nodal analysis (“the simple way”)

Let’s define the unknown currents in the voltage sources, with the positive direction going into the
source’s + terminal: iα in the independent voltage source U , and iβ in the dependent voltage source.

Write KCL (let’s take outgoing currents) at all nodes except ground:

KCL(1) : 0 =
v1
R1

+
v1 − v3
R3

− iα (1)

KCL(2) : 0 =
v2
R2

+
v2 − v4
R4

+ iα +K1ix (2)

KCL(3) : 0 = I +
v3 − v1
R3

+ iβ (3)

KCL(4) : 0 =
v4 − v2
R4

− iβ . (4)

The voltage sources introduced the problem of two extra unknowns in the above equations; they can
solve this problem by providing two extra equations without further unknowns:

v2 − v1 = U (5)

v3 − v4 = K2 v2. (6)

The controlling variables of the dependent sources need to be defined in terms of the other known or
unknown quantities. Our dependent voltage source’s controlling variable is the potential v2, which is an
unknown that we already introduced in the KCL equations: nothing more needs to be done for that.
Our dependent current source’s controlling variable is a current ix marked in R2. This can be described
as

ix = − v2
R2

. (7)

(8)

The above is a sufficient set of equations for a solution.

Some double-checking is shown below, comparing a circuit simulator’s output with a solution of the
above equations.

% These equations can be solved in (e.g.) Matlab symbolic toolbox,

s = solve ( ...

’0 = v1/R1 + (v1-v3)/R3 - ia’, ...

’0 = v2/R2 + (v2-v4)/R4 + ia + K1*ix’, ...

’0 = I_ + (v3-v1)/R3 + ib’, ...

’0 = (v4-v2)/R4 - ib’, ...

’v2 - v1 = U’, ...

’v3 - v4 = K2*v2’, ...

’ix = -v2/R2’, ...

’v1, v2, v3, v4, ix, ia, ib’ )

% the symbolic results [rather long!] can be shown by this:

%for f=fields(s)’, disp(f{1}); disp( s.(f{1}) ); disp(’’); end

% now set some [arbitrary] numeric values, and substitute them

U=20, I_=0.1, K1=3, K2=0.5, R1=14, R2=68, R3=5, R4=9

for f=fields(s)’, fprintf(’ %s: %f\n’, f{1}, double(subs(s.(f{1}))) ); end

ia: -1.663571

ib: -2.593571

ix: -0.465000

v1: 11.620000
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v2: 31.620000

v3: 24.087857

v4: 8.277857

% For comparison, the following input into the SPICE program

% specifies the same circuit, with the numeric values as used

% in the above solution in Matlab,

EI1120_VT16_TEN

V1 2 1 DC 20.0

I1 3 0 DC 0.1

R1 1 0 14.0

R2 2 5 68.0

R3 3 1 5.0

R4 4 2 9.0

E1 3 4 2 0 0.5

V0 0 5 DC 0

F1 2 0 V0 3.0

.OP

.PRINT DC V(1) V(2) V(3) V(4)

.END

% and this results in the following solution of potentials etc,:

POTENTIALS

v1: 11.6200

v2: 31.6200

v3: 24.0879

v4: 8.2779

VSRC

i: -1.664 (’ia’)

VCVS

v: 15.810

i: -2.59 (’ib’)

CCCS

i: -1.39 (’K1 ix’)

Q3

It might help to draw this same circuit in a neater form. The following diagram is exactly the same as
the original one in the question.

x
R R R R

y

I I I

a) Find the Norton equivalent between terminals x and y: IN = 3
4I and RN = 4R.

One method: keeping the current sources

The following diagram is not exactly the same as the previous one, but it has the same
behaviour at the terminals x-y, which is what we’re ultimately interested in. The difference
is that the nodes where two resistors and current sources join have each been split into
two separate nodes. We can justify this step by noting that the nodes between the resistors
would not be affected by being connected to the current sources, since in each case there is
one current source putting current in, and another current source taking equal current out.
This conversion sometimes goes under the name of Blakesley’s current-source shift theorem.
Alternatively, we can appeal to symmetry: the same voltage is expected across each identical
series-connected component, so each separated pair of nodes still has the same potential, so
joining them would make no difference.
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x
R R R R

y

I I I

By simplifying each series set of identical components, the circuit can be reduced to a simpler
form as shown on the right.

The short-circuit current (from y to x) of this circuit is the
source current of its Norton equivalent. It can be found
by current division:

isc = IN = I
3R

R+ 3R
=

3

4
I.

x
R 3R

y

I

The source resistance can be found by zeroing the current source (open-circuit) and finding
the equivalent resistance, which is the circuit’s Norton or Thevenin resistance: RN = 4R.

From the above IN and RN , the Norton equivalent can be
drawn, taking care that the direction of the source with
respect to the marked terminals x and y gives the right
direction of current.

x y
3
4I

4R

Another method: source-transformations

By source-transforming each parallel I-R pair in the original circuit, a single series-connected
branch can be made, that has identical terminal-properties to the original circuit.

x
R

+−

IR
R

+−

IR
R

+−

IR
R

y

This easily simplifies to a single Thevenin source (left), or to its Norton equivalent (right)
by a further source-transformation.

x
4R

+−

3IR

y

.

x y
3
4I

4R

Retrospectively, this seems easier than the first method. Because we were looking for a Norton
equivalent, it seemed wise to keep the current sources and try to simplify them. However,
this second method rapidly simplified into a Thevenin equivalent, which was easily converted
to a Norton. (It also has the advantage of not needing to justify the step of disconnecting
the current-source nodes from the resistor nodes.)
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b) What value U should a voltage source have if connected y-x (with + terminal connected to y) and
wanting to extract maximum power from the circuit?

Maximum power output from the circuit is obtained when it is loaded to half of its short-circuit current
isc/2, or equivalently to half of its open-circuit voltage uoc/2, or by a resistance equal to its source-
resistance!

The source is connected so that U is in the same direction as the open-circuit voltage 3IR.
We need then U = uoc

2 = 3
2IR to obtain maximum power into this source.

Q4

a) At t = 0−, equilibrium with switch closed.

Power out of current-source I: PI(0
−) = 0.

The switch short-circuits the current source, so the voltage across this source is fixed to zero. Therefore,
no energy is given to or taken from the charge that passes through the source.

Marked current ix: ix(0
−) = UR3

R1R2+R2R3+R3R1
.

The equivalent resistance of R1, R2 and R3 is Req = R1 +
R2R3
R2+R3

.
The current out of the voltage source is found from U/Req.
This current divides between R2 and R3, so ix (in R2) is the fraction R3

R2+R3
of the total:

ix =
U

R1 +
R2R3
R2+R3

· R3

R2 +R3
=

UR3

R1R2 +R2R3 +R3R1
.

b) At t = 0+, switch newly opened.

Marked current ix: ix(0
+) = UR3

R1R2+R2R3+R3R1
.

This is the same as ix(0
−)! That’s because the capacitor’s voltage is a continuous variable, so it hasn’t

changed instantaneously when the switch was opened, and the current ix is in a resistor that is connected
in parallel with the capacitor and thus has the same voltage.

Marked voltage ux, across the inductor: ux(0
+) = 0.

The left branch (L,U ,R1) is connected in parallel with the capacitor C. This capacitor’s voltage is con-
tinuous, so the left branch is connected to this same voltage at t = 0− and at t = 0+, regardless of
the switch in the right part of the circuit having changed. There is therefore no reason for anything in
the left branch to change: the inductor’s voltage remains at the zero value we expect for an inductor’s
voltage in equilibrium.
If you want to do this more formally, then write the KVL equation for the loop of the left branch and
the capacitor: the capacitor’s voltage is ixR2, and the inductor’s current is U/Req (see subquestion ‘a’),
which passes through R1. Solve this for ux.
It might sound strange that nothing changes. Remember that this is only immediately after the switch
opens. The opening switch causes the current through R3 to change (unless it just happened that I was
chosen to be the same as the initial current in R3!); KCL above R2 requires this change of current to
flow in the capacitor, which will start changing its voltage. So gradually, the other quantities such as ix,
ux, etc, can change too.

c) As t → ∞, equilibrium with switch open.

For both of these questions it is helpful to calculate the voltage across the capacitor. It’s an equilibrium
situation again, so the capacitor is open-circuit and the inductor is short-circuit.

Let’s define the node below R2 as the earth node, and the node above R2 as potential v. By nodal
analysis on three branches,

v − U

R1
+

v

R2
+ I = 0 =⇒ v =

(U − IR1)R2

R1 +R2
.
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The stored energy in the capacitor is 1
2Cv2, which is EC = 1

2C
(

(U−IR1)R2

R1+R2

)2
.

The power out of current-source is (−v + IR3)I, which is PI =
(

(IR1−U)R2

R1+R2
+R3I

)

I.

To show this, the voltage across the current source is found: let’s call this u, with its positive reference
at the bottom of the source so that uI is the power delivered by the source.
By KVL, this voltage is u = −v + IR3.
If instead we define this voltage with positive reference at the top of the current source, then the value of
u is negated, but we also need to negate the expression uI (as it then gives the power in to the source),
so the final answer becomes the same.

Q5

Here we are looking for the current marked in the inductor: i(t) =
U

R1 + (1+k)R2

(

2 e−
R1+(1+k)R2

L
t − 1

)

.

Two approaches will be shown: each could in turn be split into several different choices.

By two-terminal equivalent and initial/final values.

Removing the inductor, a ‘dc’ circuit (static: no ‘state’ that remembers the past) remains. This can
be converted to a Thevenin (or Norton) equivalent. The diagrams below show the original circuit (left)
and equivalent (right). When drawing the original circuit, the irrelevant resistor R0 has been omitted,
and the voltage source (which actually changes its value at t = 0) has been replaced with a source Ux.
The Thevenin equivalent of the circuit either at t > 0 or t < 0 can then be found by setting Ux to the
appropriate value.

+

−
u(t)

i(t)

R1

k i(t)

+
−Ux

R2
+

−
u(t)

i(t)

+
−UT

RT

The circuit has three parallel branches. The currents in two of them are already marked as i and ki.
The current in R2 can be found by KVL around the outer loop. KCL can then be written for the three
currents,

i+ ki+
u+ iR1 − Ux

R2
= 0,

from which the relation between the two unknowns u and i can be found, and compared to the relation
for a Thevenin source,

u = Ux − (R1 + (1+k)R2) i c.f. u = UT −RTi

which shows the Thevenin voltage to be equal to the voltage-source Ux, and the Thevenin resistance to
be R1 + (1+k)R2.

At t < 0, the step function (1− 2 · 1(t))U in the original circuit’s voltage source had a value of U . The
Thevenin equivalent of the circuit for t < 0 is therefore with Ux = U . An inductor connected to this
equivalent should have the same current and voltage as in the original circuit.

In equilibrium an inductor is like a short-circuit, so the equilibrium current i(0−) is the same as the
short-circuit current. By continuity this is also the inductor’s current just after the step change.

i(0+) = i(0−) =
UT

RT

=
U

R1 + (1+k)R2
.
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After the step, t > 0, the voltage source’s value becomes −U , so the Thevenin equivalent is with
Ux = −U . The equilibrium value of the inductor’s current is then

i(∞) =
UT

RT

=
−U

R1 + (1+k)R2
.

The time-constant is

τ =
L

RT

=
L

R1 + (1+k)R2
.

By the relation i(t) = i(∞) + (i(0)− i(∞)) e−t/τ , the time-function is found as

i(t) =
U

R1 + (1+k)R2

(

2 e−
R1+(1+k)R2

L
t − 1

)

(t ≥ 0)

The short-circuit and open-circuit method could alternatively have been used to find the Thevenin equi-
valent, but this is probably more work than just writing the expression relating i and u.

By direct differential-equation solution.

The circuit has three parallel branches. The inductor’s current i(t) is already marked; let’s define its
voltage as u(t) with positive reference at the upper side. At t > 0, the voltage source’s value is −U . By
KCL,

i(t) + ki(t) +
u(t) +R1i(t)− (−U)

R2
= 0.

This expression used KVL around the outer loop to find the current in the resistor R2.

Now substitute the relation between u(t) and i(t) given by the equation of an inductor: u(t) = Ldi(t)
dt , so

that there’s only one unknown in the resulting differential equation. (We’d like to eliminate u(t) instead
of i(t) because it’s not the continuous variable, so it’s not so directly obvious how to handle the initial
condition.)

di(t)

dt
+

R1 + (1 + k)R2

L
i(t) =

−U

L

This has a general solution of

i(t) =
−U

R1 + (1 + k)R2
+Ae−

R1+(1+k)R2
L

t,

where A must be found from knowledge of the solution at a particular time: in our case, the initial value
i(0) can be found by equilibrium and continuity.

This is not trivial. The equilibrium at t = 0− allows the current to be found by assuming the inductor
to have zero voltage due to di(t)

dt = 0; continuity then equates this to the current at t = 0+.

Using the KCL equation above, with di(t)
dt = 0 and a source-voltage +U instead of −U (because of the

source having a different value before t = 0), we find the initial current is

i(0+) = i(0−) =
U

R1 + (1 + k)R2
,

from which A is found in order to make

i(0+) =
U

R1 + (1 + k)R2
=

−U

R1 + (1 + k)R2
+Ae0,

which requires

A = 2
U

R1 + (1 + k)R2
,

leading to the solution that has already been shown.
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Q6

Here, two inductors have mutual coupling.
The coupling coefficient is shown as k, from which mutual inductance can be found as M = k

√
L1L2.

a) Find i(t) given the simplification that Î = 0.

The zero current source means that no current can flow in the loop on the right-hand side. The voltage
across L1 is therefore L1

di(t)
dt + 0M . This means that the mutual inductance can be ignored when

calculating what happens in the loop at the left-hand side: the inductor L1 behaves like a plain “self-
inductor”.

The voltage source can be represented as a phasor,

U(ω) = Û α,

using a cosine as the angle reference, and peak value as the phasor magnitude.

By KVL, U(ω) = R1i(ω) + jωL1i(ω).

For people who like rectangular form and conjugates,

i(ω) =
Û α

R1 + jωL1
=

Û α · (R1 − jωL1)

R2
1 + ω2L2

1

.

And for people who like polar form,

i(ω) =
Û

√

R2
1 + ω2L2

1

α− tan−1 ωL1
R1

.

Translated back to a time-function (careful to keep the same choice of peak value and cosine-reference),

i(t) =
Û

√

R2
1 + ω2L2

1

cos

(

ωt+ α− tan−1 ωL1

R1

)

.

b) Find i(t) for the general case where Î 6= 0.

We’re still quite lucky.1 The current source forces a current in the right-hand side, independently of
what happens at the left-hand side. Therefore, calculation of the current i(t) at the left hand side can

be done as it was in subquestion ‘a’, but with one extra voltage source representing the voltage M di2(t)
dt

that is induced in L1 by the current in L2.

Now convert the sinusoidal time-functions to phasors. Let’s represent the voltage source in the same way
as before. The current source has the same frequency, so we can find a phasor for this using the same
reference (cosine, peak value) and calculate using both together.

U(ω) = Û α, and I(ω) = Î −π
2 = −jÎ .

Taking care about the directions and the dots, KVL in the left-hand side loop gives

U(ω) = R1i(ω) + jωL1i(ω) + jωM (−I(ω)) = i(ω) (R1 + jωL1) + jωM(−(−jÎ)),

into which the expression for M is substituted, and the multiple negatives and imaginary units are
simplified,

Û α = i(ω) (R1 + jωL1)− ωk
√

L1L2Î .

1Lucky?? Well, . . . if the right-hand side had its current source replaced by a voltage source, it would have been harder,
as the current at the right-hand side would depend on the circuit at the left-hand side.
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The sought current, as a phasor, is then

i(ω) =
Û α+ ωk

√
L1L2Î

R1 + jωL1
=

Û cosα+ ωk
√
L1L2Î + jÛ sinα

R1 + jωL1
.

We need to get this into polar form in order to write the time-function.

i(ω) =

√

√

√

√

(

Û cosα+ ωk
√
L1L2Î

)2
+
(

Û sinα
)2

R2
1 + ω2L2

1

tan−1 Û sinα
Û cosα+ωk

√
L1L2Î

− tan−1 ωL1
R1

(We’d need to add an extra π to the angle if α is such that Û cosα+ ωk
√
L1L2Î < 0. Well done if you

considered this. We won’t take off points for ignoring it in this particular case.)

The time-function is hardly necessary to write, since it comes directly from the above.
But let’s copy-and-paste it anyway, for completeness:

i(t) =

√

√

√

√

(

Û cosα+ ωk
√
L1L2Î

)2
+
(

Û sinα
)2

R2
1 + ω2L2

1

cos

(

ωt+ tan−1 Û sinα

Û cosα+ ωk
√
L1L2Î

− tan−1 ωL1

R1

)

Q7

a) Find the network function H(ω) = uo(ω)
ui(ω)

.

This is a classic configuration of an inverting amplifier.
If we call the input and feedback impedances Zi and Zf , then H = −Zf

Zi
.

In our case, Zi = R1 +
1

jωC1
(series), and Zf =

R2
1

jωC2

R2+
1

jωC2

(parallel).

From the above expressions, or from direct application of KCL at the inverting input, we find

H(ω) =

−
R2

1
jωC2

R2+
1

jωC2

R1 +
1

jωC1

=
−R2

1
jωC2

(

R1 +
1

jωC1

)(

R2 +
1

jωC2

) =
−jωC1R2

(1 + jωC1R1) (1 + jωC2R2)
.

b) Show that the function from subquestion ‘a’ can be written as H(ω) = −jω/ω1

(1+jω/ω2)(1+jω/ω3)
.

It’s convenient to show this by expressing each of the new parameters (ω1,2,3) in terms of the given
values of subquestion ‘a’. By setting

ω1 =
1

C1R2
, ω2|3 =

1

C1R1
, ω3|2 =

1

C2R2
,

the desired form of H(ω) becomes equivalent to the solution of subquestion ‘a’.
There is nothing to say whether C1R1 should correspond to ω2 or ω3: the ‘2|3’ subscript indicates that
either choice could be used, as long as the opposite choice is made for ω3|2.
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c) Sketch a Bode amplitude plot of H(ω).
Assume 100ω1 = ω2, and ω2 ≪ ω3.

This is shown on the right: the frequency
is in arbitrary units, and the ratio of ω3/ω2

has been chosen as 100.

The main features that should be marked
are the 40 dB level of the pass-band, the in-
tercept of 0 dB at ω = ω1, the the changes
of gradient at ω2 and ω3, and the gradients
of ±20 dB/decade.

Including the 0 dB/decade gradient in the
pass-band is nice but not necessary, as it’s
obvious for a flat line! The classic asymp-
totic Bode amplitude plot has just the
straight lines; the further curve shows the
actual function plotted numerically.
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The negative sign in H(ω) arises because of this being an inverting amplifier. It has no effect on the
amplitude plot, as it changes the function’s phase, not its magnitude: |H(ω)| ≡ | −H(ω)|.

Q8

The transformer ratio to maximise power transfer to the load resistor R2 is n =
√

R1/R2.

The transformer has the same power going in as coming out (it is an ideal transformer), so maximising
the power in to the left side of the transformer is equivalent to maximising the power in to the resistance
R2.

The equivalent resistance that the Thevenin source (U , R1) sees at the transformer’s input is n2R2.
For maximum power transfer from the Thevenin source, this needs to be made equal to the Thevenin
resistance:

n2R2 = R1 =⇒ n =

√

R1

R2
.

Punctilious people properly perceive the point that this solution could have a positive or negative value:
the positive one is intended.2

We can assume this is an ac source, as the question comes in the Växelström part of the exam. However,
out of kindness there are no inductances or capacitances shown, so the maximum power condition is
just as simple as in a dc circuit. Some would argue that the presence of a transformer shows it’s an ac
situation. That’s true in the practical sense: the voltage needn’t be sinusoidal ac, but it should change
sign frequently. A transformer won’t play happily with a voltage source that has a significantly non-zero
mean: the flux in the core would need to keep changing in the same direction in order to oppose the
applied voltage; in practice, the resistance of the coil and other wires would end up limiting the current.
On the other hand, we tend not to worry about practical things in this course . . . an ideal transformer
works fine in a dc system, where its “infinite inductance” avoids the build-up of large fluxes . . . but
that’s thoroughly unrealistic of real components.

2Positive or negative n: the positive one is all that we’re asking for, but the negative one would also be true if we
interpret a negative ratio as being that the “dots” are reversed. We didn’t even show dots, as the direction of current
definition doesn’t matter: the resistance absorbs power from the current, depending only on current magnitude.
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Q9

a) Power-factor (pf) supplied at the source-terminals (a,b,c).

By ∆-Y conversion, and considering a single-phase equivalent, we get the following seen in one phase:

+−

U/
√
3

R1 L1 R2/3 L2/3

The power factor seen by the source is then found by the ratio of the resistive part of this impedance to
the total impedance. One way to reason this is that for a given current i passing through this series set
of components, the total active power is the product of |i|2 and the resistances, and the total reactive
power is the product of |i|2 and the inductive reactances (minus any capacitive reactances). The exercises
for the ac power topic give practice at this, for series and parallel connections of components.

pf =
P

|S| =
R1 +R2/3

√

(R1 +R2/3)
2 + (ωL1 + ωL2/3)

2
=

3R1 +R2
√

(3R1 +R2)
2 + ω2 (3L1 + L2)

2

Given a balanced load and source, we expect the same ratio of active to apparent power in each phase,
so the above is the power factor seen by the source.

b) Find the value C that is needed for each of three ∆-connected capacitors connected at the source,
to make the source supply unity power-factor (pf= 1). In other words, this three-phase capacitor should
compensate fully for the reactive power supplied to the inductive load and line that were considered in
subquestion ‘a’.

Using the single-phase equivalent from subquestion ‘a’, we find that the total reactive power (the ima-
ginary part ℑ{} of complex power) supplied to the line and load is

Q = ℑ
{

3
|Uphase|2

Z∗

}

= ℑ











3
(

U√
3

)2

(R1 +R2/3)− jω(L1 + L2/3)











= ℑ
{

U2

(R1 +R2/3)− jω(L1 + L2/3)

}

,

Q =
U2ω(L1 + L2/3)

(R1 +R2/3)2 + ω2(L1 + L2/3)2
.

The total reactive power consumed by a delta-connected set of capacitors C to line-voltage U is

Qc = ℑ







3
U2

(

1
jωC

)∗







= −3U2ωC,

or in other words, the reactive power generated by the capacitors is 3U2ωC.

To obtain the required compensation, we need these reactive powers to cancel:

Q+Qc = 0 =⇒ 3U2ωC =
U2ω(L1 + L2/3)

(R1 +R2/3)2 + ω2(L1 + L2/3)2
,

which determines the necessary C as

C =
L1 + L2/3

3(R1 +R2/3)2 + 3ω2(L1 + L2/3)2
.
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c) For the unbalanced resistive load (in the right-hand diagram), find the magnitude of the largest of
the line-currents.

The largest is i2, with magnitude |i2| =
√
7U
R .

Between each pair of lines there is a voltage of magnitude U . The current magnitude in line 1 is therefore
|i1| = 2U

R , and in line 3 is |i3| = U
R . The current magnitude in line 2 is the magnitude of the phasor sum

of these currents: i2 = −i1 − i3, which follows from KCL (i1 + i2 + i3 = 0).

From the way the load resistances are connected it is probably clear “by inspection” that the middle line
(2) carries the highest current. Perhaps you’re not satisfied with that claim: it’s sensible to be careful
at double-checking. We should take a warning from the fact that if the currents i1 and i3 had a phase-
difference approaching 180° then their sum would be less than the larger of these values: we’d find that
i1 was the biggest magnitude. It’s important to check the phase-angle between these two currents!

Writing the full equations or drawing a phasor diagram is useful. If you’re getting quite experienced
with three-phase calculations, you’ll be familiar with the idea of the three line-voltages (defined e.g. as
u12, u23 and u31) being phasors that sum to zero and that can be drawn end-to-end as an equilateral
triangle in the complex plane; its corners correspond to the potentials of the terminals relative to the
mean potential of the three terminals. Each resistor is connected across one of the line voltages, so we
could write

i2 = −i1 − i3 = − u12
R/2

− u32
R

=
2u21
R

+
u23
R

=
2U φ

R
+

U φ− π/3

R
,

where φ is some arbitrary angle depending on what we choose as the angle reference: setting φ = 0 would
be sensible unless we care about the phase of i2 relative to some special reference. Only the magnitude
is needed, so φ can be ignored as it shifts all parts of the solution by the same amount.

|i2| =
2U

R
+

U − π/3

R
= U

R

√

(

2 + 1 cos −π
3

)2
+
(

1 sin −π
3

)2
= U

R

√

(

5
2

)2
+
(√

3
2

)2
=

√
7
U

R
.

Here are some further comments about making sense of three-phase circuits where there’s nothing said
about a neutral point of the source:

This question doesn’t tell us that the source has a neutral point: we only know about the voltages between the
three terminals of the source.

However, to simplify our analysis (to be more like the familiar Y-connected source) we can define for ourselves a
zero potential between the potentials of the three terminals of the source: i.e. their mean value. In practice, such a
reference point could be created by a Y-connected set of identical impedances connected to the source terminals;
then a voltage measurement between this point and some other point in the circuit would give the potential of
that other point.

We might choose to define the potential of terminal 1 as the zero angle, if that’s what we’re used to handling:
choices of potential and angle reference should fundamentally not affect actual physical statements like the power
or the magnitude of current or voltage (difference in potential). Then we’d find that, assuming 1,2,3 phase-rotation,
the line-voltage u12 is a phasor at 30°, etc.

Alternatively, we could be confident and just start by defining one of the line-voltages as the angle reference,
without bothering about any concept of potentials. Our circuit has connections only to the three line-conductors
between which the voltages are known, so there’s no need to consider hypothetical reference-points: it just some-
times helps us draw a more familiar diagram.
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