
KTH EI1102 /EI1100 Elkretsanalys Omtenta 2016-03-22 kl 08–13

Tentan har 6 tal i 2 delar: tre tal i del A (15p), tre i del B (15p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . .

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av delar som
inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och lösa. Kontrollera svarens
rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Godkänd tenta kräver minst 25% i del A, 25% i del B, och 50% i genomsnitt (b̊ada delar). Betyget räknas fr̊an
summan över b̊ada delar, med gränser (%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

Nathaniel Taylor (073 919 5883)

Del A. Likström och Transient

1) [5p] Bestäm effekterna absorberade av
de följande komponenterna:

a) [1p] motst̊andet R3

b) [1p] motst̊andet R2

c) [1p] motst̊andet R1

d) [2p] spänningskällan U2

+
−U1

+ −

U2

R
2

R1

I1

I2

R3

2) [5p]

Använd nodanalys för att skriva ekva-
tioner som skulle kunna lösas för att f̊a
ut de markerade nodpotentialerna v1, v2, v3.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste inte

lösa eller förenkla ekvationerna.

I

R1

R3

R4

K ix

+−

U

R2

ix

v1 v2

v3

3) [5p]

Bestäm i(t), för t > 0. L

i(t)
R2

t = 0
R1

+
−U
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Del B. Växelström

4) [5p]

Bestäm i(t).

B̊ada källor har samma toppvärde Û .

Ledning: det kanske hjälper att börja med en likströms

krets med tv̊a källor och tre motst̊and, och sedan att

byta dessa till fasvektorer och impedanser.

+−

U2(t) = Û sin(ωt)
L

+−

U1(t) = Û cos(ωt)
R

C

i(t)

5) [5p]

a) [2p] Bestäm kretsens nätverkfunktion,

H(ω) =
uo(ω)

ui(ω)
.

b) [3p] Svaret till deltal ’a’ kan skrivas i den
följande formen,

H(ω) =
−jω/ω1

(1 + jω/ω2)(1 + jω/ω3)
.

−

+

R1
C1

R2
C2

+

−
uo

+

−

ui

Skissa ett Bode amplituddiagram av funktionen H(ω).
Använd funktionen i formen ovan, oavsett vad du fick i deltal ’a’.
Anta att ω1 ≪ ω2 ≪ ω3. Markera viktiga punkter och lutningar.

6) [5p]

Strömkällan har vinkelfrekvens ω,
och effektivvärde I.

Kretsen till höger om polerna a-b kan

betraktas som en last, och kretsen

till vänster kan betraktas som en

Nortonkälla.

I

a

R1 C

b

R2L

a) [3p] Vilka värde av R2 och C gör att den största möjliga effekten utvecklas i R2?
Uttryck dessa värde som funktioner av andra komponentvärden.

b) [2p] Vilken effekt levereras till R2 när komponentvärderna är enligt deltal ’a’.
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Solutions (EI1102/EI1100, VT16, 2016-03-22)

Q1

The powers into (absorbed by, or supplied to) the listed
components are found by the usual methods:

For a resistor R it is often easiest to find the magnitude
of voltage or current, then to use the relation P = i2R or
P = u2/R.

For a source, find the quantity that the source doesn’t de-
termine (a voltage-sources’s current or a current-source’s
voltage) then multiply this with the source value, taking
care about the relative directions of current and voltage
definition.

+
− U2

i2

+
− U1

R2

R1

I1

R3

I2

a) P
R3

= I22R3.
This resistor R3 is series-connected to current-source I2, which therefore determines its current.

b) P
R2

= (U1+U2)2

R2
.

This resistor R2 is parallel-connected to a voltage that is the sum of U1 and U2.
For a more formal justification, consider KVL around the loop of U1, U2 and R2, then Ohm’s law in R2.

c) P
R1

= (I1 + I2)
2R1.

KCL above source I1 gives a current I1 + I2 flowing left to right through R1.
The choice of direction doesn’t actually matter, as since (I1 + I2)

2 = (−I2 − I1)
2.

d) P
U2

= −U2i2 = −U2

(

U1+U2

R2
+ I1 + I2

)

.

The current in source U2 (marked as i2, above) can be found by KCL in three branches: R2, I1 and I2.
This is probably most obvious if KCL is done in the bottom node. We have here defined the current out
of the + terminal of U2,

i2 =
U2 + U1

R2
+ I1 + I2,

so if this is multiplied by U2 it will give the power supplied by U2. We were asked to find the power
absorbed by source U2, so a negative sign is included in the final answer,

Pabsorbed = −U2

(

U2 + U1

R2
+ I1 + I2

)

Q2

Extended nodal analysis (“the simple way”)

Let’s define the unknown current in the voltage sources as iα, with its positive direction defined into the
source’s + terminal.

Then KCL (let’s take outgoing currents) at all nodes except ground gives:

KCL(1) : 0 =
v1
R1

+
v1 − v3
R3

− iα (1)

KCL(2) : 0 =
v2
R2

+
v2 − v3
R4

+ iα +Kix (2)

KCL(3) : 0 = I +
v3 − v1
R3

+
v3 − v2
R4

(3)

(4)
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The voltage-source introduced the problem of an extra unknown in the KCL equations; it can solve this
problem by providing an extra equation without further unknowns:

v2 − v1 = U (5)

The controlling variable of the dependent source needs to be defined in terms of the other known or
unknown quantities. Our dependent current-source’s controlling variable is a current ix marked in R2.
This can be described as

ix = − v2
R2

. (6)

(7)

The above is a sufficient set of equations for a solution.

Lots of other ways of writing the equations are possible, such as eliminating ix before writing the equa-
tions, avoiding iα by writing just KCL at nodes 1 and 2 together (‘supernode’), etc. In many cases the
above equations can easily be manipulated into that same form by some subsitutions.

Q3

It’s constant: i(t) = U
R1

. This can be shown by a methodical way or a quick way! It’s nice if you’ve seen
the quick way and had the confidence to claim it: that’s shows a good ‘conceptual feel’. But there’s no
deduction for going through a general method, if it is applied correctly.

The quick way is to note that the same voltage exists across the branch of R1,L at all times, so the
switch does not affect this current!

“Long ago”, before t = 0, an equilibrium can be assumed for the inductor’s current, where it has reached
a steady value. The inductor’s voltage is then zero, because this voltage is Ldi(t)

dt and di(t)
dt = 0 is the

assumption in equilibrium. At the time of the switch opening, the inductor’s current, by KVL around
the outer loop, is therefore i(0) = U/R1.

When the switch opens, the voltage source supplies less current, but the branch with the inductor is not
affected: it has the same fixed voltage always applied to it.

Hence, i(t) = U
R1

describes the inductor’s current for all times after t = 0 and in fact it also is true for a
long time before that too (if we assume that the circuit was assembled at ‘−∞’).

One longer way is to form an ODE and use the initial condition to solve it.

With the switch open, KVL gives Ldi(t)
dt +R1i(t) = U , which has the general solution i(t) = U

R1
+Ae−tR1/L.

The initial condition is also found by KVL, as i(0+) = i(0−) = U
R1

. This allows the constant A to be

determined, by requiring our solution to have this value U/R1 at the initial time: U
R1

= i(0) = U
R1

+Ae0

implies that A = 0.

Another way is to find the initial and final values and the time-constant, perhaps by a Thevenin equi-
valent: after the switch opens the inductor is connected to a circuit that is already a Thevenin source of
U and R1.

The initial and final values are the same, i(0) = i(∞) = U/R1, as KVL in the outer loop gives the
same result regardless of the switch. Then, for a first-order circuit, i(t) = i(∞) + (i(0)− i(∞)) · e−t/τ =
i(∞) = U/R1. The time-constant is τ = L/R1, but this is irrelevant as the coefficient for the e−t/τ term
is zero.

4 / 7 KTH EI1102/EI1100 (Electric circuit analyis) Exam SOLUTIONS, 2016-03-22



Q4

Both sources have the same magnitude and frequency of sinusoidal voltage; they differ only in phase.
Let’s take the upper source as the reference angle, i.e. let’s use a cosine reference. We’ll use the peak
values as the phasor magnitudes. The voltage sources are then represented as the following phasors,

U1(ω) = Û 0 = Û , and U2(ω) = Û − π/2 = −jÛ .

The total impedance of the loop is

Z = R+ jωL+
1

jωC
= R+ j

(

ωL− 1

ωC

)

.

The current phasor is found by “ac Ohm’s law”,

i(ω) =
U1(ω)− U2(ω)

Z
=

Û (1− j)

R+ j
(

ωL− 1
ωC

) .

In polar form this is

i(ω) =

√
2Û −45°

√

R2 +
(

ωL− 1
ωC

)2
tan−1 ωL− 1

ωC

R

=

√
2Û

√

R2 +
(

ωL− 1
ωC

)2
− π/4 − tan−1 ωL− 1

ωC

R

This phasor can now be converted back to a time-function: the same choice of peak value and cosine
reference must be used as when we converted from time to phasors,

i(t) =

√
2Û

√

R2 +
(

ωL− 1
ωC

)2
cos

(

ωt− π/4 − tan−1 ωL− 1
ωC

R

)

.

Q5

a) Find the network function H(ω) = uo(ω)
ui(ω)

.

This is a classic configuration of an inverting amplifier.
If we call the input and feedback impedances Zi and Zf , then H = −Zf

Zi
.

In our case, Zi = R1 +
1

jωC1
(series), and Zf =

R2
1

jωC2

R2+
1

jωC2

(parallel).

From the above expressions, or from direct application of KCL at the inverting input, we find

H(ω) =

−
R2

1
jωC2

R2+
1

jωC2

R1 +
1

jωC1

=
−R2

1
jωC2

(

R1 +
1

jωC1

)(

R2 +
1

jωC2

) =
−jωC1R2

(1 + jωC1R1) (1 + jωC2R2)
.

b) Sketch a Bode amplitude plot of the function

H(ω) =
−jω/ω1

(1 + jω/ω2)(1 + jω/ω3)
.

Assume 100ω1 = ω2, and ω2 ≪ ω3.

This is shown below: the frequency is in arbitrary units, and the ratio of ω3/ω2 has been chosen as 100.
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The main features that should be marked are the 40 dB level of the pass-band, the intercept of 0 dB at
ω = ω1, the the changes of gradient at ω2 and ω3, and the gradients of ±20 dB/decade.

Marking the 0 dB/decade gradient in the pass-band is nice but not necessary, as it’s obvious for a flat
line! The classic asymptotic Bode amplitude plot has just the straight lines; the further curve shows the
actual function plotted numerically.

Note: The negative sign in H(ω) arises because of this being an inverting amplifier. It has no effect on
the amplitude plot, as it simply changes the sign of the function, not the magnitude: |H(ω)| ≡ |−H(ω)|.
To see how the given H(ω) can be the same as H(ω) that was found in subquestion ‘a’, we can set

ω1 =
1

C1R2
, ω2|3 =

1

C1R1
, ω3|2 =

1

C2R2
.

There is nothing to say whether C1R1 should correspond to ω2 or ω3: the ‘2|3’ subscript indicates that
either choice could be used, as long as the opposite choice is made for ω3|2.

Q6

This is a classic maximum power situation. It is based on Norton-type sources and parallel components
instead of the perhaps more familiar series configuration. We are told that we are free to choose the load
resistance and the source reactance, instead of the more conventional situation of choosing just the load
properties.

a) To the left of the terminals we have a Norton source with current I and admittance

Y1 =
1

R1
+ jωC.

The right is a load, with admittance

Y2 =
1

R2
+

1

jωL
=

1

R2
− j

1

ωL
.
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Maximum power transfer to the load requires that Y1 = Y ∗
2 . This will result in the reactive components

‘cancelling’ each other. The result could be seen as parallel resonance, ensuring that no source current
is wasted in the reactive components. Or it could be seen as reactive power compensation.

Notice that if we’d worked out impedances instead, the maximum power condition is still Z1 = Z∗
2 , but

the impedances would be nastier expressions: with parallel connection of, admittance is easier to handle,
as the real and imaginary parts contain respectively the R and the C or L value, and not the other.

The maximum power condition requires:

Y1 = Y ∗
2 =⇒ 1

R1
+ jωC =

1

R2
+ j

1

ωL
,

from which comparison of real parts tells us R2,

R2 = R1,

and comparison of imaginary parts tells us C,

C =
1

ω2L
.

b) With the above choice of components R2 and C, we expect maximum power transfer, implying
a parallel resonance of L and C. These two components can therefore be ignored for calculating the
power to the resistors: in resonance a parallel L-C circuit has zero admittance, and therefore no current.
Alternatively, you can analyse the complete circuit, and substitute C = 1

ω2L
, in which case the above

result should emerge from the algebra.

The current I is then equally split between the source and load resistors, since these have equal value.
The current through the load resistor R2 is therefore I/2. By the familiar “power = |i|2R”, the power
into the load resistor is

P
R2

=

( |I|
2

)2

R2 =
|I|2R2

4
=

|I|2R1

4
.

The answer can be given in terms of R1 or R2, since they are equal, and neither was explicitly stated to
be the known or the unknown.

We could assume I to represent just the rms magnitude of the source, in which case the absolute-value
symbols (|I|) aren’t needed; if instead I is a phasor then we need to take its magnitude. Either choice
is acceptable since this was not explicitly described in the question.
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