
KTH EI1102 /EI1100 Elkretsanalys Omtenta 2016-10-28 kl 08–13

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . . Det behöver inte lämnas in.

Tentan har 6 tal i 2 delar: tre tal i del A (15p), tre i del B (15p).

Godkänd kräver minst 25% i del A, 25% i del B, och 50% i genomsnitt över A och B.
Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara
kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller en
spänningskälla) antas vara okända storheter.

Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner.

Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte!

Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Lycka till! Nathaniel Taylor (073 949 8572)

Del A. Likström och transient

1) [5p]

a) [1p] Vilken spänning har pol ’a’ relativ till pol ’b’ här?

b) [1p] Vilken ström passar fr̊an pol ’a’ till pol ’b’ om
dessa poler kortslutas?

c) [2p] Bestäm Nortonekvivalenten av kretsen, med av-
seende p̊a polerna a-b. (Lösningarna ovan kan hjälpa.)

d) [1p] Bestäm den största effekten som kan f̊as ut fr̊an
kretsen mellan polerna a-b.
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2) [5p]

Använd nodanalys för att skriva ekvatio-
ner som skulle kunna lösas för att f̊a ut de
markerade potentialerna v1, v2, v3, v4.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste

inte lösa eller förenkla ekvationerna.
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3) [5p]

Bestäm u(t) for t > 0.

Obs. 1( ) är enhetsstegfunktionen. I · 1(t) C

+

−

u(t)
+ −

U

R

Del B. Växelström

4) [5p]

a) [3p] Skissa Bode amplituddiagram av nätverksfunktionen

H(ω) =
jω/ω1

1 + jω/ω2
.

Antag att ω1 = ω2.
Använd dB-skalan, och markera viktiga punkter och lutningar.

I(ω) R

i(ω)

?

b) [2p] I kretsen ovan, är det en kondensator eller en spole som måste användas som komponenten
markerad med ? för att nätverksfunktionen i(ω)/I(ω) ska ha samma formen som H(ω) fr̊an deltal ’a’?
Visa tydlig motivering till svaret.

5) [5p]

En växelspänningskälla U(t) = Û sin
(

ωt+ π
4

)

matar kretsen.
Bestäm tidsfunktionen u(t), genom växelströmsanalys (’jω’-metoden). +

−U(t)

C

R

+

−

u(t)

6) [5p]

Källan är en växelspänningskälla med vinkelfrekvens ω
och amplitude Û (toppvärde). Vilken aktiveffekt och
skenbareffekt försörjs av källan?

+
−U(ω)

R1

R2 L

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1102 /EI1100 Omtenta HT16, 2016-10-28)

Q1.

a) With terminals a-b open-circuit, the current I passes through the resistors. KVL around the outer
loop gives uab = IR+ U + IR+ U . Simplified, uab = 2(U + IR).

b) With a-b short-circuited, the current iab between the terminals is the sum of the short-circuit
currents of the two branches, which is iab = I + 2U

2R . The short-circuit current is therefore iab = U
R + I.

c) To determine the Norton equivalent, we need to know the Norton resistance and current.

The Norton current is the same as the short-circuit current, which was found in the previous part-
question: I

N
= U

R + I.

The Norton resistance is the ratio of open-circuit voltage to short-circuit current. For terminals a-b in
the given circuit, those quantities have both been found in the previous part-questions.

R
N
=

uab
iab

=
2(U + IR)

U
R + I

=
2(U + IR)R

U + IR
= 2R.

I
N
= U

R + I R
T
= 2R

a

b

We could instead have found the Norton resistance for this circuit with no dependent sources, by simply
“setting the independent sources to zero” and simplifying the resulting circuit of resistors.

c) The maximum possible power out from the circuit occurs when the terminal voltage is half of its
open-circuit value. Equivalently, we can say it occurs when the current is half of its short-circuit value
(this is true precisely when the voltage is half of its open-circuit value).

Hence this maximum power is
uoc
2

·
isc
2

=
I
N

2
·
I
N
R

T

2
=

I2
N
R

T

4
.

Putting in the values for our circuit,

I2
N
R

T

4
=

(

U
R + I

)2
2R

4
=

(

U
R + I

)2
R

2
.

Q2.

This solution uses extended nodal analysis (“the simple way”).
Many variations of a valid solution are possible, ranging from four to many equations.

Let’s define the unknown current in the voltage source as iα into the + terminal.

Write KCL (let’s take outgoing currents) at all nodes except ground:

KCL(1) : 0 =
v1
R1

+
v1 − v4
R3

+ I2 − I1 (1)

KCL(2) : 0 =
v2
R2

+Gux − I2 (2)

KCL(3) : 0 = iα + I1 +
v3 − v4
R4

(3)

KCL(4) : 0 =
v4 − v1
R3

+
v4 − v3
R4

−Gux (4)
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The voltage source gives a further equation relating a pair of node potentials,

v3 = U. (5)

The dependent source has a ‘controlling variable’ ux, which is defined in the circuit diagram as a
marked voltage across resistor R2, with positive reference side on the earth node. We have to define this
controlling variable as an equation,

ux = 0− v2. (6)

Now there are 6 independent equations, in 6 unknown quantities.

The above equation-system is sufficient for a solution.

Q3.

Here is the circuit, with some further marked quantities. For t ≥ 0 the current source has value I.

I · 1(t) C

+

−

u(t)

i(t)

+ −

U

R

i
R
(t)

By KCL, the currents in the capacitor and resistor are related by

i(t) = I − i
R
(t).

The resistor’s current can also be expressed in terms of KVL and Ohm’s law, as

i
R
(t) =

U + u(t)

R
.

Putting these together,

i(t) = I −
U

R
−

u(t)

R
.

The relation of current and voltage in the capacitor is i(t) = C du(t)
dt ; note that these quantities have

been defined according to the ‘passive convention’, so a negative sign is not needed. This relation can be
inserted into the earlier equation to make a differential equation in the continuous variable u(t) alone,

C
du(t)

dt
= I −

U

R
−

u(t)

R
,

which can be written in the form

du(t)

dt
+

1

RC
u(t) =

I − U/R

C
,

having the general solution
u(t) = IR− U + k e−t/RC .

The value of k needs to be found from other knowledge: in this case the circuit gives enough information
to find an initial condition. For t < 0 the current source has zero value, so it behaves as an open circuit.
The equilibrium value of the resulting circuit is that u(0−) = −U . By continuity (as the capacitor’s
voltage is its continuous variable, i.e. the energy-related one, that doesn’t change instantaneously), this
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is also the voltage just after the current-source has a step change: u(0+) = u(0−) = −U . Inserting this,
at the time t = 0 just after the step, noting that e0 = 1,

u(0+) = −U = IR− U + k =⇒ k = −IR

.

Now the specific solution can be written,

u(t) = IR− U − IR e−t/RC = −U + IR
(

1− e−t/RC
)

.

Checks:
Dimensionally this is ok, as RC is a time, and IR a voltage.
It gives a final value (t → ∞) of IR − U , which makes sense given that all the current I passes down
through R in equilibrium (capacitor is open-circuit).
It gives an initial value −U , as has already been determined.

Another method that could have been used would be to reduce the circuit other than the capacitor to
a Thevenin (or Norton) equivalent, then solve the resulting circuit of a Thevenin voltage source and
resistance when connected to a capacitor of known intitial conditions. This solution could be found by
fitting an exponential function to a calculated initial value, final value and time-constant.

Q4.

a) This is a high-pass type of response.
A plot is shown below, for the case where ω1 = ω2 = 2π · 1 kHz.
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The main features to mark are the frequency ω1 (and/or ω2), the slopes (it’s not essential to mark the
zero slope), and the 0 dB level at ω ≫ ω1. As long as these details are marked, the numeric scales are
not necessary: the frequency is arbitrarily chosen here. The classic asymptotic Bode plot shows straight
lines, but it would be acceptable to show either the straight-line approximation or the actual, curved
transition between the asymptotes.

b) If the component ‘?’ is an inductor, the network function i(ω)/I(ω) becomes as requested.
Let’s be inventive by calling the inductor L: its impedance is then jωL.
Current division gives

i(ω) = I(ω)
jωL

R+ jωL
,

in which we can divide the top and bottom both by R, and divide both sides by I(ω), to get the desired
form.

i(ω)

I(ω)
=

jωL/R

R/R+ jωL/R
=

jω/(R/L)

1 + jω/(R/L)
.

By setting ω1 = ω2 = R/L this agrees with the form in part ‘a)’.
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Q5.

We’ll first convert the sinusoidal time-function of the source to a phasor. For convenience, let’s choose
a reference where a function sin(ωt + π/2) is represented by zero angle of the phasor, and the phasor’s
magnitude represents the peak value. By those choices, U(ω) = Û 0.

The capacitor’s impedance is Zc =
1

jωC . (The resistor’s is just R.)

By voltage division,

u(ω) =
R

R+ Zc
U =

R

R+ 1
jωC

Û =
jωCR

1 + jωCR
Û.

The final expression here would be good for plotting Bode diagrams. What we want, however, is an
expression that easily can be converted into expressions for magnitude and angle of u(ω). For that
purpose, the following is probably a little easier

u(ω) =
R

R+ Zc
U =

R

R− j 1
ωC

Û .

The magnitude of this phasor u(ω) is

|u(ω)| =
ÛR

√

R2 + (ωC)−2

and the argument (phase), given that the top part of the above expression is purely real, is

u(ω) = 1
R−j 1

ωC

= − R− j 1
ωC = − tan−1

(

−1/(ωC)

R

)

= tan−1 1

ωCR
.

Now that we have expressed this phasor’s magnitude and phase, we can write these as time-functions,
using the same reference as before. Our reference was that a phasor of 1 0 would become sin (ωt+ π/4).
Using the actual values,

u(t) =
ÛR

√

R2 +
(

1
ωC

)2
sin

(

ωt+ π/4 + tan−1 1

ωCR

)

.

Q6.

If we define a current i(ω) out of the source’s +-reference terminal (active convention), then the complex
power supplied by the source is

S =
1

2
· U(ω) · i(ω)∗.

The factor 2 is needed if the phasors of source voltage U(ω) and current i(ω) are peak values rather
than rms (effective) values.1

Active power is the real part, P = ℜ{S}. Apparent power (skenbareffekt) is the magnitude |S|.

If we know the total impedance Z connected to the source, we can write the above as

S =
1

2
· U(ω) ·

(

U(ω)

Z

)

∗

=
|U(ω)|2

2Z∗
=

Û2

2Z∗
.

The difficulty lies only in doing the calculation of impedance, and finding the real part and magnitude
from the complex expressions.

1The question simply told us that the peak value of the voltage is Û , so we could choose to define U(ω) as a phasor
based on the rms value, i.e. Û/

√

2. But we’ll assume that we choose U(ω) to have a magnitude equal to the peak value of
the sinusoidal time-waveform.
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The impedance of the circuit driven by the source is

Z = R1 +
jωLR2

R2 + jωL
=

R1(R2 + jωL) + jωLR2

R2 + jωL
=

R1R2 + jωL (R1+R2)

R2 + jωL
.

From the above, we can write an expression for the complex power,

S =
Û2

2Z∗
=

Û2

2
·

R2 − jωL

R1R2 − jωL (R1+R2)
.

Let’s find the apparent power first, by finding the magnitude:

|S| =
Û2

2
·

|R2 − jωL|

|R1R2 − jωL (R1+R2)|
=

Û2

2
·

√

R2
2 + ω2L2

R2
1R

2
2 + ω2L2 (R1+R2)

2 .

Now the active power, by finding the real part.
This takes a little more work to separate the real and imaginary parts.

S = P + jQ · · ·

=
Û2

2
·

R2 − jωL

R1R2 − jωL (R1+R2)

=
Û2

2
·
(R2 − jωL) (R1R2 + jωL (R1+R2))

R2
1R

2
2 + ω2L2 (R1+R2)

2 (multiply by complex conjugate of denominator)

=
Û2

2
·
R1R

2
2 + ω2L2 (R1+R2) + jωLR2

2

R2
1R

2
2 + ω2L2 (R1+R2)

2 (expand numerator, re-group it)

Now it’s easy to take the real part alone:

P = ℜ{S} =
Û2

2
·
R1R

2
2 + ω2L2 (R1+R2)

R2
1R

2
2 + ω2L2 (R1+R2)

2 .

The algebra was quite lengthy for such a simple-looking circuit.
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