
KTH EI1110 Elkretsanalys (CELTE) TEN1 2016-12-19 kl 08–13

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . . Det behöver inte lämnas in.

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p). Godkänd kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b+ p

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen
man fick i dessa respektive sektioner i tentan, ak är poängen man fick fr̊an KS1 vilken motsvarar tentans
sektion A, och p är bonuspoäng fr̊an hemuppgifterna, motsvarande högst 5% (1,1p); funktionen max()
tar den högre av sina argument.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b+p
A+B .

Betygsgränserna är 50% (E), 60% (D), 70% (C), 80% (B), 90% (A).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara
kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller en
spänningskälla) antas vara okända storheter.

Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner.

Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte!

Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Lycka till! Nathaniel Taylor (073 949 8572)

Del A. Likström

1) [4p] Bestäm följande storheter:

a) [1p] Effekten absorberad av R1.

b) [1p] Effekten absorberad av källan I1.

c) [2p] Strömmen ix.

R
1

R2

+
−

K v

I1
R3

I2

+
− U

ix

v

1 / ?? KTH EI1110, Elkretsanalys för Elektro (CELTE), Omtenta, HT16, 2016-12-19



2) [4p]

Använd nodanalys för att skriva ekvatio-
ner som skulle kunna lösas för att f̊a ut de
markerade potentialerna v1, v2, v3, v4, v5.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste

inte lösa eller förenkla ekvationerna.
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3) [4p]

a) [2p] Bestäm Theveninekvivalenten, med
avseende p̊a polerna a-b, när brytaren är
öppen (t < 0).

b) [2p] Bestäm Nortonekvivalenten, med
avseende p̊a polerna a-b, när brytaren är
stängd (t > 0).

+
− U

t=0

R2

R1

I

a

b

Del B. Transient

4) [5p]

Bestäm följande storheter, vid de
angivna tiderna.

a) [1p] t = 0−

Effekten försörjd fr̊an källan I.

b) [2p] t = 0+

Energin lagrad i C1.
Effekten absorberad av R3.

c) [2p] t → ∞

Effekten absorberad av R1.
Energin lagrad i L2.

t=0

+−

U L2

C1

L1

R1

I
R2 R3

C2

5) [5p]

Nu analyseras en krets som best̊ar av en kondensator C kopplad mellan polerna a-b av kretsen som visas
i tal 3 (ovan). Kondensatorn var kopplad länge innan t = 0, s̊a jämvikt kan antas innan brytaren stängs.

Bestäm tidsfunktionen som beskriver strömmen genom kondensatorn, fr̊an pol a till b, vid tider efter
att brytaren stängs (t > 0).

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.

2 / ?? KTH EI1110, Elkretsanalys för Elektro (CELTE), Omtenta, HT16, 2016-12-19



Solutions (EI1110 TEN1 HT16, 2016-12-19)

Q1.

a) P
R1,in

= (I1 − I2)
2R1

KCL at node above R1 gives I1 − I2 as the current down through R1. Note that (I1 − I2)
2 = (I2 − I1)

2.

b) P
I1,in

= I1 (U − I1R1 + I2R1)
Power absorbed by the source is the product of its current I1 and the voltage across it (with positive
reference direction where the current is marked as going in). The voltage is found by KVL, around the
loop including R1 and U . The voltage across R2 is known by Ohm’s law and the known current from
part ‘a’.

c) [ix: see the end of the solution, below.]
This is a lot harder than the previous ones. If we can find the current in R3, or in R2, then KCL at the
top or bottom node will give a solution for ix, as the other currents at those nodes are already defined
by the current sources. As described in the earlier solutions, the voltage across R1 is v = R1(I1 − I2), so
the voltage of the dependent voltage source Kv is fixed as KR1(I1 − I2).

To use nodal analysis (with supernode and simplification methods), let us define the potential at the
left of R2 as vx. Taking KCL for the supernode comprising both sides of the dependent source Kv,

vx
R2

− I2 +
vx +KR1(I1 − I2)− U

R3
= 0

vx

(

1

R2
+

1

R3

)

= vx
R2 +R3

R2R3
= I2 +

U

R3
−

KR1(I1 − I2)

R3
.

vx =

(

I2 +
U
R3

−
KR1(I1−I2)

R3

)

R2R3

R2 +R3
=

(

I2R3 + U −KR1(I1 − I2)
)

R2

R2 +R3
.

By KCL in the bottom node, noting that the current downwards in R1 is I1 − I2,

ix =
vx
R2

+ I1 − I2.

Inserting the earlier solution of vx,

ix =
I2R3 + U −KR1(I1 − I2)

R2 +R3
+ I1 − I2.

which might (?) look more appealing if arranged as

ix =
U + I1(R2 +R3 −KR1) + I2(KR1 −R2)

R2 +R3
.

Q2.

Example Method i) Extended nodal analysis (“the simple way to write”)

Let’s define the unknown currents in the voltage sources: iα and iβ into the + terminals of sources U1

and U2 respectively; and iγ into the output terminal of the opamp. (Yes – don’t forget the opamp output,
if planning to write KCL at that node!)
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Write KCL (let’s take outgoing currents) at all nodes except the earth node:

KCL(1) : 0 =
v1 − v3
R1

+
v1 − v2
R3

+
v1
R2

+ iα (1)

KCL(2) : 0 =
v2 − v1
R3

+ I (2)

KCL(3) : 0 =
v3 − v1
R1

+
v3 − v4
R4

(3)

KCL(4) : 0 =
v4 − v3
R4

− iβ (4)

KCL(5) : 0 =
v5
R5

+ iβ + io (5)

Each voltage source relates a pair of node potentials. The simple independent sources are easy.

v1 = U1 (6)

v5 − v4 = U2 (7)

The opamp gives us the knowledge that v+ = v
−

(i.e. v3 = v3 in this circuit) on the assumption of
negative feedback (which we see through R4) and an ideal opamp (which we assume because everything’s
ideal unless claimed otherwise!).

v2 = v3 (8)

The above equation-system is sufficient for a solution.

Example Method ii) Simplifications (including supernodes) to reduce the equations

There are three voltage-sources in the circuit: two independent sources, and the opamp (which we treat
as a dependent voltage source between earth and output). We note that U1 and the opamp each have one
side connected to the earth node (the opamp’s connection is hidden in the diagram), and U2 connects
to the opamp output.

Thus, we can treat nodes 1, 5 and 4 as one supernode, which is an earth supernode: KCL is only needed
on nodes 2 and 3. One potential in the supernode is immediately determined: v1 = U1. The other parts
have an unknown: source U2 gives the equation v4 = v5 − U2, but the opamp’s output voltage will be
determined later by solving the equation system with the extra equation of v+ = v

−
. So we’ll choose

the node 4 or 5 potential (let’s take v5) as a further unknown in the equations. Using only these three
unknowns (v2, v3, v5), substituting other ones with known quantities, KCL gives:

KCL(2) : 0 =
v2 − U1

R3
+ I (1)

KCL(3) : 0 =
v3 − U1

R1
+

v3 − v5 + U2

R4
(2)

The extra information due to the opamp is essential in order to let the three unknowns in the above two
equations be solved:

v2 = v3 (3)

The above three equations are sufficient to find the three unknowns (v2, v3, v5) but in order to “solve
for all 5 potentials” we should clearly show the other two equations we’ve already mentioned in the text:

v1 = U1 (4)

v4 = v5 − U2 (5)

4 / ?? KTH EI1110 (Electric circuit analyis) Omtenta SOLUTIONS, 2016-12-19



The above equation-system is also sufficient for a solution!

Q3.

Note that the switch is the only time-dependent thing in this circuit: there is no capacitor or inductor
that slows the changes. So, each quantity in the circuit has a constant value over all time t < 0, and
a (possibly different) constant value over all time t > 0. The subquestions ‘a)’ and ‘b)’ can be seen as
being about equivalents of two different circuits, formed by having the switch open or closed.

a) At t < 0, the circuit (left) and its Thevenin equivalent (right) are:

+
− U R2

R1

I

a

b

+
−U

T
= IR2

R
T
= R2

a

b

b) At t > 0, the circuit (left) its and Norton equivalent (right) are:

+
− U R2

R1

I

a

b

I
N
= U

R1
+ I

a

b

R
N
= R1R2

R1+R2

The above results can be seen by considering open-circuit conditions (in part a) or short-circuit condi-
tions (in part b) to obtain the equivalent source values U

T
and I

N
respectively; the equivalent resistances

are found by setting the (independent) sources to zero and simplifying the resulting resistor-network.

Q4.

a) Equilibrium, t = 0−.

+−

U
(L2)

(C1)

(L1)

R1

I
R2 R3

(C2)

The power supplied from the current source is found by multiplying its current I by the voltage it,
choosing suitable directions or signs so that the power out from the source into the circuit is found. Only
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the source and the three resistors need be considered: all other components are irrelevant by being in
broken branches or by behaving as open or short circuits when in equilibrium.

P
I
= I2

(

R1 +
R2R3

R2 +R3

)

.

b) Immediately after disturbance of equilibrium (switch), t = 0+.

The energy stored in C1 is determined by the voltage across C1; as this is continuous, it is the same as
in the equilibrium at t = 0−. Looking at the diagram used in solution ‘a’, we see that C1 is in parallel
with R1, and that all of the current I must pass through R1. The voltage across C1 is therefore IR1, so
the stored energy in C1 is

W
C1

=
1

2
C1(IR1)

2.

The power absorbed by R3 can be found by the voltage across it. This resistor is connected in parallel
with C2, so they have the same voltage. Capacitor voltages are continuous quantities, so this voltage at
t = 0+ is the same as in the equilibrium at t = 0−,

P
R3

=
u(0+)2

R3

R3
=

u(0+)2
R3

R3
=

(

I R2R3

R2+R3

)2

R3
= I2R3

(

R2

R2 +R3

)2

.

It might interest you to notice that just after the switch closes (t = 0+) the only quantities that change
in the circuit are the switch voltage (stepping to zero) and the inductor voltage (making the opposite
step to the switch voltage). The inductor’s continuity (strömtröghet) prevents the rest of the circuit
being initially affected: it still behaves as an open circuit. The voltage newly across it causes a current to
build up, which will gradually change other quantities in the circuit. However, even if the inductor had
been replaced by a short-circuit (so the switch would have immediately connected the voltage source in
parallel with the current source) the two solutions in this part ‘b’ would have been the same, as they
depended on the continuity of the capacitors in this circuit.

c) Equilibrium, t → ∞.

This is quite a similar circuit to the equilibrium at t = 0−, except that now the voltage source and
current source appear in parallel, so the rest of the circuit sees them as a voltage source only.

+−

U
(L2)

(C1)

(L1)

R1

I
R2 R3

(C2)

The power absorbed by R1 is found by first determining the current around the loop,

P
R1

= i2
R1
R1 =

(

U

R1 +
R2R3

R2+R3

)2

R1 = U2R1

(

R2 +R3

R1R2 +R2R3 +R3R1

)2

.

The energy stored in L2 depends on the current in it. This current, by KCL, is the difference between
the current up R1 and the current I.

W
L2

=
1

2
L2 (iR1

− I)2 =
1

2
L2

(

U

R1 +
R2R3

R2+R3

− I

)2

.
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Q5.

In the time-period of interest, t > 0, the switch is closed and the circuit behaves like the Norton equivalent
from Q3-b connected at terminals a-b to a capacitor C. The time-constant of this circuit is

τ = CR
N
=

CR1R2

R1 +R2
.

Before this period starts, t = 0−, there is an equilibrium; so the capacitor has no current. In that case,
the voltage across the capacitor is the open-circuit voltage of the circuit. The final state is another
equilibrium. The voltage across the capacitor is the open-circuit voltage of the new circuit (switch
closed). From the equivalents in Q3-a and Q3-b, these open-circuit voltages are

uoc(t<0) = U
T
= IR2 and uoc(t>0) = I

N
R

N
=

UR2 + IR1R2

R1 +R2
.

Example Method i) Work with the continuous quantity.

The continuous quantity in this circuit is the capacitor’s voltage; let’s call this u, defined as terminal
‘a’ relative to terminal ‘b’. From the paragraphs above, we know the time-constant, the final value of u,
and the initial value of u (by continuity from the equilibrium at t = 0−).

As this is a first-order circuit (one capacitor or inductor), we expect an exponentially decaying transition
from the initial to the final value,

u(t) = u(∞) +
(

u(0)− u(∞)
)

e−t/τ =
UR2 + IR1R2

R1 +R2
+

(

IR2 −
UR2 + IR1R2

R1 +R2

)

e
−t

R1+R2
R1R2C

u(t) =
UR2 + IR1R2

R1 +R2
+

IR2
2 − UR2

R1 +R2
e
−t

R1+R2
R1R2C =

U + IR1 + (IR2 − U) e
−t

R1+R2
R1R2C

(R1 +R2)/R2
(t > 0).

It was in fact the current through the capacitor (from ‘a’ to ‘b’) that we were supposed to find. This can

be calculated from the voltage by i(t) = C du(t)
dt ; note that if either i or u were defined in the opposite

direction, a negative sign would be needed in the expression.

i(t) = C
du(t)

dt
= C ·

−(R1 +R2)

R1R2C
·

IR2 − U

(R1 +R2)/R2
e
−t

R1+R2
R1R2C =

U − IR2

R1
e
−t

R1+R2
R1R2C (t > 0).

Example Method ii) Work directly with the sought quantity.

Instead of finding u(t) then obtaining i(t) from this, we could have used initial and final values of i(t)
directly. The potential trap with this is that i is not a continuous quantity: in this circuit it will have a
step when the switch closes. We have to be careful to use i(0+), not i(0−), as the initial value.

At the time t = 0+, the capacitor behaves like a voltage source of IR2, and the rest of the circuit behaves
like the Norton equivalent shown in Q3-b. We can find the current i(0+) in the capacitor by analysing
the parallel connection of I

N
, R

N
, and a voltage-source IR2. The voltage source determines the current

down the Norton resistor; by KCL between this current and the Norton source current, the voltage in
the voltage source (capacitor) is found:

i(0+) = I
N
−

IR2

R
N

=
U

R1
+ I − IR2

R1 +R2

R1R2
=

U

R1
− I

R2

R1
.

Then the initial/final/time method can be applied directly to current, bearing in mind that the final
current is zero, as required for a capacitor current in equilibrium,

i(t) = i(∞) + (i(0)− i(∞)) e−t/τ = 0 +

(

U

R1
− I

R2

R1
− 0

)

e−t/τ =
U − IR2

R1
e
−t

R1+R2
R1R2C (t > 0).

Lots of other methods can of course be chosen, including ones that don’t take advantage of the Thevenin
or Norton equivalents derived in Question 3.
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