
KTH EI1120 Elkretsanalys (CENMI) TEN1 2017-03-16 kl 08–13

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Upp till tre A4-ark (sex sidor) med studentens egna anteckningar p̊a valfritt sätt: hand-
skrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek. De måste inte lämnas in.

För den intresserade: tre ark för att man kan välja att återanvända vad man hade till KS1 och KS2, samt att

lägga till en ny för växelström.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av kom-
ponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända

storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Nathaniel Taylor (0739 498 572)

Del A. Likström

1) [4p] Bestäm effekterna som försörjs
fr̊an kretsen till följande motst̊and:

a) [1p] R4.

b) [1p] R3.

c) [2p] R2.

R1

+−

U1

R2 K ix

I2

R4

I1

R
3

ix
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2) [4p]

Bestäm u genom valfri metod; alternativt,
använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att bestämma u.

Hela poäng erh̊alls vid korrekt lösning av u.
Vid korrekta ekvationer utan hela lösningen
av u erh̊alls 0,5p mindre.

Observera att du kan börja med att använda
nodanalys för att f̊a ekvationerna, och sedan
försöka lösa dessa för full poäng. D̊a f̊ar du en
trygghet i att ekvationerna ger flest poäng även
om du inte lyckas lösa dem.

R3

+
− Ua

Ia

R1

R2

−

+

+
− Ub

R4

R5

Ib

+

−
u

3) [4p]

a) [3p] Ett most̊and Rx ska kopplas mellan polerna
x-y i kretsen till höger. Vilket värde ska det ha för att
f̊a ut den maximala möjliga effekten fr̊an kretsen?

b) [1p] Till skillnad fr̊an deltal ’a’ ska en
spänningskälla Ux, i stället för motst̊andet Rx,
anslutas mellan x-y (med källans ’+’ pol till pol x).
Vilket värde ska Ux ha för att f̊a ut maximaleffekt
fr̊an kretsen?

x y

R2

+ −

U2

I1

I2

+ −

U1

R1

Short translations of Section-A questions to English:

1. Find the power delivered to each of: a) R4, b) R3, c) R2.

2. Two alternative options: [for all 4 points] solve for u completely, by any method you wish; or [for 3.5 points]
use nodal analysis to write (but not have to solve) a set of equations that could be solved to find u.

3. A maximum power and two-terminal equivalent question.
a) A resistor Rx is connected between x-y: what value should Rx be in order to obtain the maximum possible
power from the shown circuit?
b) A voltage source Ux is connected at x-y (instead of the resistor Rx from part ‘a’); its direction is with ‘+’
terminal connected to terminal x. What value should Ux be in order to obtain maximum power from the shown
circuit?

2 / 19 KTH EI1120, Elkretsanalys för Energi och miljö (CENMI), Tentamen, VT17, 2017-03-16



Del B. Transient

4) [5p] Bestäm följande:

a) [1p] Vid t = 0−,
effekten levererad av strömkällan I1.

b) [3p] Vid t = 0+,
spänningen u1 över R1,
energin lagrad i kondensatorn C2,
effekten absorberad i motst̊andet R2.

c) [1p] Vid t → ∞,
spänningen u2 över kondensatorn C2.

Obs: 1(t) är enhetsstegfunktionen.

R1

+

−

u1

L1

C1

+ −
U

(1− 1(t)) · I1

R2

R3

L2

C2

+−
u2

R4

I2

5) [5p]

Bestäm i(t), för t > 0.

+
− K ux

R1

+
−U · 1(t)

R2

+− ux

i(t)

C

Short translations of Section-B questions to English:

4. Find the following quantities:
a) at t = 0−: power delivered by source I1.
b) at t = 0+: voltage u1, energy stored in C2, power absorbed by R2.
c) as t → ∞: voltage u2.

5. Determine i(t), for t > 0.
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Del C. Växelström

6) [4p]

Kretsen inneh̊aller tv̊a kopplade spolar, med
ömsesidiginduktans M . Spänningskällan beskrivs
med tidsfunktionen U(t) = Û sin(ωt).

a) [2p] Bestäm i(t) med villkoret M = 0.
Tips: i s̊a fall är spolarna inte kopplade: en mycket
förenklad krets kan analyseras.

L1 L2

i(t)

+
−U(t)

R1

C

M

b) [2p] Bestäm i(t) utan villkoret ovan (lösningen kommer nu att bero även p̊a M , L2 och C).

7) [5p]

a) [2p] Bestäm kretsens nätverksfunktion,

H(ω) =
uo(ω)

ui(ω)
.

b) [1p] Visa att svaret till deltal ’a’ kan
skrivas i den följande formen,

H(ω) =
−K (1 + jω/ωa)

(1 + jω/ωb)(1 + jω/ωc)
.

−

+

R0

C1

R1

R2
C2

+

−
uo

+

−

ui

c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Anta att: K = 0,1, 100ωa = ωb, och ωb < ωc.
Markera viktiga frekvenser (t.ex. ω1), niv̊aer (t.ex. x dB) och lutningar (t.ex. y dB/dekad).

8) [3p]

Källan är en växelspänningskälla med
vinkelfrekvens ω.

Motst̊andet R2 och komponenten ’X’
kan väljas; andra komponenter i kretsen
har fasta värden.

n : 1

+
− U

R1

C

X

R2

För att f̊a den maximala möjliga effekten (aktiv effekt) levererad till R2:

a) [1p] vilken komponenttyp (C, L, eller R) ska komponenten ‘X’ vara?

b) [1p] vilket värde ska den ha?

c) [1p] och vilket värde ska R2 ha?
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9) [6p]

Spänningskällorna utgör en
balanserad trefaskälla med
huvudspänning U och vinkel-
frekvens ω.

Komponenterna R∆ och L∆

modellerar faserna av en last,
och komponenterna R och L
modellerar fasledarna mellan
källan och lasten.

+− a
R L

+− b
R L

+− c
R L

R∆

L∆

R
∆

L
∆

R∆

L∆

vx
*

a) [2p] Bestäm lastens skenbara effekt |S| och effektfaktor pf, med antagandet R = 0 och L = 0.

Observera! Antagandet fr̊an deltal ’a’ ska inte användas härefter!

b) [2p] Bestäm potentialen vx, med antagandet att potentialen i nod ‘a’ har vinkeln noll, va = 0.

c) [2p] Ledaren i fas-a blir bruten (öppen krets) vid stjärntecknet ’*’: vad är |vx| nu?

Short translations of Section-C questions to English:

6. The circuit has two inductors, between which there is mutual inductance M .
The voltage-source is described by U(t) = Û sin(ωt).
a) assuming M = 0, determine i(t); notice that this assumption removes the effect of coupling between the coils,
making the solution much simpler.
b) determine i(t) without that assumption; the solution will now also depend on M , L2 and C.

7. An opamp-based filter.
a) determine the function H(ω) = uo(ω) / ui(ω).
b) show that the above function H(ω) can be written in the given form (see Swedish text).
c) Sketch a Bode amplitude-plot of the function from part ‘b’. Assume K = 0.1, 100ωa = ωb, ωb < ωc.
Indicate known values of frequencies (e.g. ω1), levels (e.g. x dB) and gradients (e.g. y dB/decade).

8. The source is an ac voltage-source with angular frequency ω.
Resistance R2 and the component ‘X’ can be chosen. Other component values are fixed.
The task is to obtain the maximum possible power (active power) into R2. To achieve this:
a) What component type (C, L or R) should component ‘X’ be?
b) What value should it have?
c) What value should R2 have?

9. The sources form a balanced three-phase source with line-voltage magnitude U and angular frequency ω.
Each RL branch represents one phase of a power line; each R

∆
L

∆
branch represents one phase of a load.

a) Find the apparent power |S| into the load, and the load’s power factor, assuming R = 0 and L = 0.
b) Find potential vx, assuming that the potential at node ‘a’ has zero angle, i.e. va = 0.
c) The conductor of phase-a in the line becomes broken (open) at the asterisk ‘*’: determine |vx|.

Slut . . . men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT17, 2017-03-16)

Q1

a) PR4 = I21R4

This resistor is series-connected to the current
source I1, so by KCL its current is also I1.

b) PR3 = (I1 − I2)
2R3

KCL at the bottom-right node determines the
current in R3 as the difference between I1 and
I2. The direction (I1 − I2, or I2 − I1) does not
matter, as the current is squared in order to
find the power.

R1

+−

U1

R2 K ix

I2

R4

I1

R
3

ix

c) PR2 =
1

R2
·
(

U1
R1

+ I2 +K(I1 − I2)
1
R1

+ 1
R2

)2

= R2

(

U1 +KI1R1 + (1−K)I2R1

R1 +R2

)2

This last question is more difficult.
KCL (nodal analysis) or source-transformation appear good methods.

Method 1: KCL, no simplification.

Define voltage u across R2, with + upwards. At the node above R2, KCL can be written as

u− U1

R1
+

u

R2
+Kix − ix − I1 = 0 =⇒ u

(

1

R1
+

1

R2

)

=
U1

R1
+ I1 − (K − 1)(I2 − I1)

from which

u =
R2

R1 +R2

(

U1 + (1−K)R1I2 +KR1I1

)

.

The power in R2 can be found as PR2 = u2/R2, which simplifies to the solution for PR2 given above.

Method 2: Transformations.

Some simplification of the right-hand half of the circuit may be helpful:

K ix

I2

R4

I1

R
3

ix K (I2 − I1)

−I2

(K−1)I2 −KI1

Then, by a source-transformation on the Thevenin-type source at the left, the voltage u across R2 can
be found from the total current passing through the parallel combination of the two resistances:

R1

+−

U1

R2 (K−1)I2 −KI1
U1

R1
R1 R2

−

+

u (K−1)I2 −KI1
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Here,

u =

(

U1

R1
− ( (K−1)I2 −KI1)

)

R1R2

R1 +R2
=

R2

R1 +R2

(

U1 + (1−K)R1I2 +KR1I1)

)

which is – as it should be – the same as by the direct KCL method shown earlier.

Q2

This question was allowed to be treated like the traditional question of “write equations based on nodal
analysis, that could be solved, but you don’t need to solve them”, in which case it would be limited to
0.5p less than the full 4p.

For the full points, a complete solution was needed for the single marked quantity u. This solution could
be obtained from an equation system, or could be found by any other method. Starting from nodal-
analysis based equations seems a wise choice, in order to get some points even if not managing to solve
all the way. We show several possible methods here.

Method 1.

Let’s start by a direct method for getting
a full solution of u. We’ll describe it in a
way loosely based on nodal analysis, using
supernodes and other simplifications to re-
duce the number of equations we need to
handle.

If we find the opamp’s output potential, vo,
then the marked voltage u is easily found
by KCL and KVL in the branch of R5 and
Ib, as

u = vo − IbR5.

R3
+
− Ua

Ia

R1

R2

−

+

+
− Ub

R4

R5

Ib

+

−
u

vf

vo

At the non-inverting input, voltage division gives the potential as R2
R1+R2

Ua. Voltage division is valid
because we know that no current flows in the opamp’s input: so R1 and R2 can be treated as series
connected. The potential we’ve found is independent of other parts of the circuit, as the voltage source
Ua fixes the potential across R1 and R2 regardless of Ia.

The negative feedback around the ideal opamp ensures that the output voltage will be whatever is
needed to hold the inverting input to the same potential as the non-inverting input,

vf =
R2

R1 +R2
Ua.

By KCL in the node marked vf ,

vf
R3

− Ia +
vf − vo − Ub

R4
= 0 =⇒ vo =

(

1 +
R4

R3

)

vf − IaR4 − Ub.

By taking the above three equations for u, vf and vo, and eliminating vf and vo, the solution is

u =
R3 +R4

R3
· R2

R1 +R2
Ua − Ub − IaR4 − IbR5.
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Method 2.

Now we will try nodal analysis, based on super-
nodes but without any other simplifications
such as the voltage-division step used in the
above method.

We assign potentials to all the nodes, using
already-defined quantities where possible: the
potential above the source Ib already has a na-
me, u.

Within a supernode, potentials are expressed
relative to one of the nodes in that supernode,
so that new variables aren’t needed.

Here, the node above source Ua is part of the
earth supernode, so it can be defined as 0+Ua.

R3

+
− Ua

Ia

R1

R2

−

+

+
− Ub

R4

R5

Ib

+

−
u

vf

vn

Ua
vo

vo+Ub

u

The node above the opamp output is vo + Ub. This is also part of the earth supernode, as we see the
opamp output as being a voltage source whose other terminal connects to the earth node. (However,
we do not directly know this source’s voltage, so we get an unknown potential vo. The extra knowledge
that the opamp’s inputs have the same potential is what gives us enough equations to be able to solve
for the potentials.)

The nodes at the opamp inputs can be marked with unknown potentials vf and vn. We know these are
the same potential, but we can start out with different names to make it clearer where the equations
came from.

Now we write KCL for any [super]node that is not the earth [super]node. In our circuit, this is just three
nodes, since both supernodes are connected with the earth node.

KCL(vn)(out) : 0 =
vn − Ua

R1
+

vn
R2

(1)

KCL(vf)(out) : 0 =
vf
R3

+
vf − vo − Ub

R4
− Ia (2)

KCL(u)(out) : 0 = Ib +
u− vo
R5

. (3)

In this system we have 4 unknowns and 3 equations, but we know also that

vf = vn. (4)

We can include this as a fourth equation, or just substitute it into equation (1) to eliminate vn.

Then, for this particular circuit, the equations can be solved conveniently, eliminating one variable at a
time, without needing a simultaneous solution. In fact, this process is the same algebra as what we did
in ‘Method 1’ when we started with equations from voltage division, KCL and KVL.

Method 3.

It would also be acceptable use the ‘extended nodal analysis’ method without any supernode simplifica-
tions. One would define every node potential and a current in every voltage source (including the opamp
output), and then write the 6 KCL equations for all nodes except the earth node, along with 3 further
equations for the voltage sources. This is in the style of answers to ‘Q2’ of this course’s exam in several
previous years. The method involves more writing but less careful thinking. The equations it produces
would require more work for solving to find u.
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Q3

a) Rx =
R1R2

R1 +R2
.

The maximum power is obtained when the connected resistor has the same resistance as the source-
resistance (Thevenin or Norton resistance) of the circuit that the power is coming from.

We were only asked what resistance should be chosen in order to obtain the maximum power; we do
not need to find how big this maximum power is. So we only need to find the source resistance of the
circuit, not its Thevenin voltage or Norton current.

For this circuit with no dependent sources, it’s easiest simply to “set all the [independent] sources to
zero” and simplify the remaining resistors to find the equivalent resistance. This results in R1 and R2

in parallel, between terminals x-y, leading to the above expression for Rx.

b) Ux =
U1R2 + U2R1 + (I2 − I1)R1R2

2 (R1 +R2)
.

In the situation where maximum power is transferred from a linear two-terminal circuit, the terminal
voltage is half of its open-circuit value.

The open-circuit voltage between x-y can be found several ways; here we use nodal analysis with a single
non-earth supernode (just one KCL).

Define node ‘y’ as the earth node. We get two supernodes, that include all the nodes in the circuit. At
the supernode that includes node ‘x’, KCL gives

vx − U2

R2
+ I1 − I2 −

vx − U1

R1
= 0,

from which

vx

(

1

R1
+

1

R2

)

=
U1

R1
+

U2

R2
+ I2 − I1,

giving

vx =
U1R2 + U2R1 + (I2 − I1)R1R2

R1 +R2
.

We defined node ‘y’ as the reference, so this potential vx is also the open-circuit voltage between x-y.
Maximum power output of the circuit implies that the ‘thing’ that we connect to take power from ter-
minals x-y should bring the voltage down to half of the open-circuit value. As we are considering the
‘thing’ being a voltage source, we need it to have a voltage of vx/2 in the same direction as vx relative
to the marked terminals.
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Q4

a) This time is just before the step function changes: the left current source still has a value of I1.

The circuit is in equilibrium, as it has been unchanged over all previous time (and the circuit is assumed
to be stable).

From the assumption of equilibrium, we expect zero voltage across inductors, and zero current in ca-
pacitors. The currents and voltages in the circuit at this time can therefore be found by analysing the
simplified diagram shown below.

The unknown voltages across capacitors and currents in inductors have also been marked in the diagram:
these are not needed for the Q4a solution, but they are useful for Q4b.

R1

(L1)

(C1)

+ −

U

I1

−

+

uα

R2

R3

(L2)

(C2)

R4

I2

By finding the voltage uα across the current source I1, we can find the power delivered by that source.
KVL around the leftmost complete loop (I1, R2, R1, U) determines this voltage:

uα = U + I1(R1 +R2).

The relative directions of I1 and uα follow the ‘active convention’, so the power delivered by source I1 is

PI1(0
−) = uαI1 = I1

(

U + I1(R1 +R2)
)

= UI1 + I21 (R1 +R2)

b) At this time, t = 0+, a change has newly occurred: the current from the left current source has
changed from I1 to 0, because of the step function.

In order to solve for this new state we cannot still assume the capacitors and inductors to be open- and
short-circuits: their currents and voltages (respectively) could have changed instantaneously when the
current from the source changed.

Instead, we take advantage of continuity. The capacitors’ voltages and the inductors’ currents cannot
change instantaneously, so we can calculate what they were before the change, by analysing the circuit
from part ‘a’. Then we can put suitable sources into the circuit for part ‘b’ (below) that have these
values, and solve for t = 0+.

The following shows the circuit at t = 0− (as in Q4a) but with the continuous quantities defined: iL1 ,
iL2 , uC1 , uC2 .
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R1

iL1

−

+

uC1

+ −

U

I1

R2

R3

iL2

+− uC2

R4

I2

These continuous quantities of capacitors and inductors can be found by basic KCL/KVL/Ohm. The
hardest is uC2 , which is found from KVL around the loop of L2 (a short circuit, as the circuit is in equili-
brium), R3 (also no voltage, seen by Ohm’s law as it has no current), U , R1, L1 (short circuit as for L2)
and R2. It could have been nicer to swap the direction in which uC2 is defined, to avoid the negative signs.

The circuit below is valid for t = 0+. Inductors and capacitors are replaced with the appropriate sources
(current and voltage respectively), with values equal to the continuous quantities found from the circuit
above.

R1

+

−

u1

iL1 = I1

+
− uC1 = I1R1

+ −

U

R2

R3

iL2 = I2

+−

u2 = uC2 = −U − I1(R1 +R2)

R4

I2

Then u1 can be found directly by KCL/Ohm, as this resistor is in series with a current source.

u1(0
+) = iL1R1 = I1R1.

The energy WC2 can be written directly from the standard formula for energy in a capacitor,

WC2(0
+) =

1

2
C2 u

2
C2

=
1

2
C2 (U + I1(R1+R2))

2 .

The power PR2 can be found from the current through or voltage across R2. We can take KVL around
a loop of resistors and voltage sources: U , uC1 , R2, uC2 , R4, R3. KCL dictates that R2 and R3 have
the same current. Notice that in the nodes that R4 connects to, iL2 and I2 cancel each other (equal,
opposite): so the current in R4 equals the current in R3 and R2. Defining this unknown current as i,
clockwise, KVL becomes

U + (I1R1)− iR2 + (−U − I1(R1+R2))− iR4 − iR3 = 0 =⇒ i =
−I1R2

R2 +R3 +R4
.
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PR2(0
+) = i2R2 =

(

I1R2

R2 +R3 +R4

)2

R2 =
I21R

3
2

(R2 +R3 +R4)2
.

c) This is again an equilibrium. Its difference from the previous case (part ‘a’ at t = 0−) is that the
left current source now has zero current, due to the 1− 1(t) function.

R1

+

−

u1

(L1)

(C1)

+ −

U

R2

R3

(L2)

(C2)

+− u2

R4

I2

In this circuit, with C2 being an open circuit in the equilibrium, and therefore blocking any current
around the loop with R3, there can be no voltage across R2 (Ohm’s law if there’s no current there) and
no current passes through the voltage source or the resistors R1 and R2. All of the current I2 will pass
through the short-circuit of L2.

By KVL around the loop of C2 (unknown), L2 (short), R3 (no current), U , R1 (no current), L1 (short),
R2 (no current), we find u2 = 0 + 0− U + 0 + 0 + 0 = −U , so

u2(∞) = −U

Q5

Method 1: direct ODE. Define the voltage across the capacitor as u, in passive convention relative to
i. At times t > 0 the source at the right has value U . KCL at the node above the capacitor gives

i(t) +
u(t)−Kux(t)

R1
+

u(t)− U

R2
= 0.

Substituting ux(t) = U − u(t), and i(t) = C du(t)
dt , this becomes an ODE in u(t),

C
du(t)

dt
+

u(t)−K(U − u(t))

R1
+

u(t)− U

R2
= 0

which in ‘standard’ form is

du(t)

dt
+

(

R1 + (1 +K)R2

R1R2C

)

u(t) =
R1 +KR2

R1R2C
U.

This has the general solution

u(t) =
R1 +KR2

R1R2
U +A e

−
R1+(1+K)R2

R1R2C
t
,

where the constant A needs to be determined by knowledge of u(t) at some specific time. In our case,
u(0−) can be found as an equilibrium solution, then u(0+) will be the same, because the capacitor’s
voltage is a continuous quantity. (Be careful: if we were working with another quantity, such as the
capacitor’s current, there might be a discontinuity [jump] between 0− and 0+. What we actually want
is the value at the start of the ‘new’ state of the circuit, after the step function: this is 0+.)
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At t = 0−, the only independent source in the circuit has a value of zero. From this, we can argue that
“with nothing to drive the circuit, all values will be zero”: so u(0−) = 0. (To be stricter about this, we
might want to check whether the circuit is stable, i.e. whether the Thevenin source seen by the capacitor
has positive resistance. This could depend on the actual value of K and other components.)

Putting in this known value of u(0+) = u(0−) = 0,

u(0) = 0 =
R1 +KR2

R1R2
U +A e0 =⇒ A = −R1 +KR2

R1R2
U.

from which the complete solution for t > 0 is

u(t) =
R1 +KR2

R1 + (1+K)R2
U

(

1− e
−t
/

CR1R2
R1+(1+K)R2

)

.

We found u(t) because it is the continuous variable, so its initial condition is therefore easily found from
the equilibrium before the step.

But it was i(t) that we were supposed to find! We have two equations (above) that relate u(t) and i(t):
one is the first KCL we wrote, and the other is the capacitor-equation that we used to eliminate i(t)
from the KCL in order to get a simple ODE.

It’s probably simplest to use the capacitor equation to find the current:

i(t) = C
d

dt
u(t) = C

−(R1 +KR2)

R1 + (1+K)R2
U

(

−R1 + (1+K)R2

CR1R2

)

e
−t
/

CR1R2
R1+(1+K)R2 (t > 0).

After tidying, we can answer with

i(t) =
R1 +KR2

R1R2
U e

−t
/

CR1R2
R1+(1+K)R2 (t > 0).

Method 2: Initial, Final, Time-constant.

In this circuit, the topology doesn’t change: only the value of the independent source changes.
If we start with KCL (as in Method 1), for t > 0,

i(t) +
u(t)−Kux(t)

R1
+

u(t)− U

R2
= 0.

but don’t eliminate i(t), we get the i, u relation at the terminals of the capacitor:

i(t) +
u(t)−K(U − u(t))

R1
+

u(t)− U

R2
= 0.

A Thevenin or Norton equivalent of the circuit (other than the capacitor) must also have this i, u relation.
Now we group the u(t) and U terms,

i(t) =
R1 +KR2

R1R2
U − R1 +KR2

R1R2
u(t)

and compare to the i, u relation for a two-terminal equivalent (for example a Norton source, i = IN− u
R

N
)

in order to identify the equivalent-source quantities,

RN =
R1R2

R1 +KR2
, IN =

R1 +KR2

R1R2
U, UT = INRN = U.

The above equivalent is valid for t ≥ 0. For t < 0 the only difference is that we have 0 instead of U in
this equation. This means that the Norton (or Thevenin) resistance is the same as above (RN), but the
source has zero value. The equivalent circuit is therefore just a resistor of RN .
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We could use this equivalent to find u(t) and then derive i(t) from that. Or we can try finding i(t)
directly: as this is not a continuous quantiy we must be careful to choose the initial value as i(0+), not
i(0−).

Let’s find i(t) directly, from the initial value, final value and time-constant.

The final value is i(∞) = 0, as as capacitor in an equilibrium state behaves as an open circuit.

At t = 0− the equivalent source is just a resistor: the capacitor’s voltage is u(0−) = 0 as this is the
equilibrium state of a capacitor connected to a resistor. By continuity, u(0+) = u(0−) = 0. The initial
current i(0+) is therefore the short-circuit current of the equivalent source, i(0+) = R1+KR2

R1R2
U , since the

source at that time has a zero voltage (the capacitor) at its terminals.

The time-constant is τ = CRN = CR1R2
R1+KR2

.

Putting all the above together,

i(t) = i(∞) +
(

i(0+)− i(∞)
)

e−t/τ =
R1 +KR2

R1R2
U e

−t
/

CR1R2
R1+(1+K)R2 (t > 0).

Q6

Let’s use peak-value and sine reference: time-function U(t) = Û sin (ωt) becomes phasor U(ω) = Û 0.
We will work with phasors (frequency-domain) until expressing the final answers in time-function form.

a) With M = 0, KVL around the left loop gives

U(ω) = Ri(ω) + jωL1i(ω),

so

i(ω) =
U(ω)

R+ jωL1
.

Converting this back to a time-function, using the same choice of reference as when converting from
time to frequency,

i(t) =
Û

√

R2 + ω2L2
1

sin

(

ωt− tan−1 ωL1

R

)

.

b) With M 6= 0, it’s more complicated! Writing
the whole mutual-inductor equation, and defining
a current and voltage on the right-hand side of the
inductors,

left loop: U = Ri+ jωL1i+ jωMi2

right loop: u2 = jωL2i2 + jωMi.

L1 L2

i(ω)

+
−U(ω)

R1

C

+

−
u2(ω)

i2(ω)

M

These are two equations in three unknowns: we need to substitute the relation of current and voltage
for the capacitor, which in view of the directions of i2 and u2 is u2 =

−i2
jωC ; this gives

U = Ri+ jωL1i+ jωMi2
−i2
jωC

= jωL2i2 + jωMi.

Rearranging the second equation in terms of i2 gives

−i2
jωC

= jωL2i2 + jωMi =⇒ i2
ωC

= ωL2i2 + ωMi =⇒ i2 =
ωM

1
ωC − ωL2

i

which we substitute into the first equation to give

U = (R+ jωL1) i+ jωM
ωM

1
ωC − ωL2

i
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This gives the sought i as

i =
U

R+ jω
(

L1 +
ωM2

1
ωC

−ωL2

)

from which the time-function can be found as in part ‘a’, but with a less elegant imaginary part!

i =
U

√

R2 +
(

ωL1 +
ω2M2

1
ωC

−ωL2

)2
sin



ωt− tan−1
ωL1 +

ω2M2

1
ωC

−ωL2

R



 .

Q7

a) This circuit is a basic inverting amplifier, except that the two impedances (in the input and in the
feedback path) are each made up of several components. Based on the usual result from KCL, for an
inverting amplifier,

H(ω) = −Zfeedback

Zinput
= −

R2
1

jωC2

R2+
1

jωC2

R0 +
R1

1
jωC1

R1+
1

jωC1

= −
R2

1+jωC2R2

R0 +
R1

1+jωC1R1

= −
R2

1+jωC2R2

R0(1+jωC1R1)+R1

1+jωC1R1

Collecting the terms into a single numerator and denominator,

H(ω) = − R2(1 + jωC1R1)

(R0(1 + jωC1R1) +R1)(1 + jωC2R2)
= − R2(1 + jωC1R1)

(R0+R1 + jωC1R0R1)(1 + jωC2R2)

which can then be put in a more ‘canonical’ (standard) form,

H(ω) =
−R2(1 + jωC1R1)

(R0+R1)(1 + jωC1
R0R1
R0+R1

)(1 + jωC2R2)
.

b) The above result for H(ω) can be expressed in the requested form,

H(ω) =
−K (1 + jω/ωa)

(1 + jω/ωb)(1 + jω/ωc)
,

if we choose to define: K = R2
R0+R1

, ωa = 1
C1R1

, ωb =
1

C2R2
, ωc =

R0+R1
C1R0R1

.
(The choice of ωb and ωc can be swapped, as the terms containing this parameters are interchangeable
in the requested form of the equation.)

Part ‘a’ could have been answered with an expression of very different structure from the one shown in
our solution; in that case, further rearrangement may be necessary in order to see how the parameters
ωa etc relate to the circuit components’ values.

c) The plot of |H(ω)| is shown below. As a Bode-plot was requested, the vertical scale should be in dB,
and the horizontal scale of frequency should be logarithmic. The straight black lines in this plot show
the usual ‘asymptotic approximation’, and the dashed blue line shows the actual function.

The chosen numbers on the frequency scale are arbitrary units, but note that the question did require
that ωb = 100ωa.

We have also chosen ωc = 100ωb, although the only requirement was ωc => ωb. If we chose ωc = 10ωb,
then the flat part at the top would be only half as long, and the blue curve (the actual function instead
of the asymptotic approximation) would hardly show any flatness.

At ω ≪ ωa, we have just |H(ω)| = K.
The question specifies that K = 0.1, so the level is 20 log10 0.1 dB, which is −20 dB.
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When ωa < ω < ωb, the magnitude of the (1 + jω/ωa) term rises at 20 dB/decade, but the other two
terms still have magnitude of 0 dB. From this, we know that when ωb is reached (which is two decades
higher, because ωb = 100ωa) the level is −20 dB + 2 · (20 dB) = +20 dB.

When ω exceeds ωb, the
1

1+jω/ωb
term decreases in magnitude at −20 dB/decade, cancelling the change

that the (1 + jω/ωa) would cause, so the plot stays flat.

Above ωc, there is an additional decreasing magnitude from 1
1+jω/ωc

, so the function decreases.
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Q8

a) It should be an inductor. (No explanation was demanded: this was an ‘easy point’.)
When a maximum power is to be obtained, by connecting a load impedance Zl to a source with some
impedance Zs, the ac maximum power criterion Zl = Z∗

s tells us that the reactive part in one of these
impedances (a capacitor in the source in our case) requires that the opposite type of reactive component
in the other impedance (an inductor in the load in our case). One could alternatively show this from
the equations that are derived in Q8b.

b) L =
C

n2

R2
1
+ n2ω2C2

=
CR2

1

n2
(

1 + ω2C2R2
1

) .

The criterion is Zl = Z∗
s , as mentioned above. We have some flexibility in defining our load and source!

Clearly R2 is part of the load, since this is where we want our ‘maximum power’ to be transferred to.
We could define all the other components as the source. Or we could include X as part of the load, as
was implied in our answer to Q8a. Or we could include X and the transformer as the load, etc! All these
options will give the same result.

Let’s consider the load to be R2 and X: we define Zl = R2+Zx, where Zx is the impedance of component
X. The source is then the remaining part of the circuit. We do not need to find the power, but just the
condition on Zl to obtain maximum power at the load. Thus, only the source’s impedance is needed,
not its Thevenin voltage or Norton current. Seen at the right-hand-side terminals of the transformer,
the source impedance is the parallel combination of R1 and C, scaled by 1/n2,

Zs =
R1

1
jωC

R1 +
1

jωC

· 1

n2
=

R1/n
2

1 + jωCR1
=

R1 (1− jωCR1)

n2
(

1 + ω2C2R2
1

)
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Using the above results, and the condition for ac maximum power,

Zl = R2 + Zx = Z∗
s =

R1 (1 + jωCR1)

n2
(

1 + ω2C2R2
1

) ,

from which ‘equating the imaginary parts’, assuming Zx to be purely imaginary, shows that

Zx =
jωCR2

1

n2
(

1 + ω2C2R2
1

) .

The single component that has a positive, imaginary impedance is an inductor. If we treat X as an
inductor, L, and substitute Zx = jωL, the required value is

L =
CR2

1

n2
(

1 + ω2C2R2
1

) .

Question: why did we assume that Zx was purely imaginary? The question says that it must be one of
a capacitor, inductor or resistor. If it is a resistor, then we cannot fulfill the maximum power transfer
condition, as we can only make the load have a real value of impedance. (Also, adding resistance outside
the component where maximum power is wanted is not helpful; it just reduces the current in the circuit.)
So we assume a capacitor or inductor, either of which is a purely imaginary impedance.

c) R2 =
R1

n2
(

1 + ω2C2R2
1

) .

This can be found from the expression for Zl in Q8b, by equating the real parts, again with the assump-
tion that Zx is purely imaginary.

Q9

+−

Ua
R L

+−

Ub
R L

+−

Uc
R L

R∆

L∆

R
∆

L
∆

R∆

L∆

vx
*

a) With R = 0 and L = 0, the source is directly connected to the load, so we know that the line-voltage
at the load-terminals is U .

Using the standard result for complex power into a balanced ∆-connected impedance load with balanced
supply of line-voltage U ,

S =
3U2

(R∆ + jωL∆)
∗
.

It was the apparent power that we were supposed to find:

|S| = 3U2

|R∆ + jωL∆ |
=

3U2

√

R2
∆
+ ω2L2

∆

.
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The power factor is pf= P/|S|. We already have found apparent power |S|. To find active power P ,

S = P + jQ =
3U2

(R∆ + jωL∆)
∗
= 3U2 R∆ + jωL∆

R2
∆
+ ω2L2

∆

=⇒ P =
3U2R∆

R2
∆
+ ω2L2

∆

,

giving

pf =

3U2R
∆

R2
∆
+ω2L2

∆

3U2
√

R2
∆
+ω2L2

∆

=
R∆

√

R2
∆
+ ω2L2

∆

If you remember the first exercises from topic 11 (ac power: calculating pf, S, etc for series and parallel
components with voltage or current sources feeding them), you might have reached this expression for
the power factor without using intermediate steps of P , 3U etc. In fact, we can calculate it by looking
just at the R and ωL values of the series branches. This is most easily seen if defining a particular
current through the branch: then the active power is |i|2R∆ , and the apparent power is |i|2|R∆ + jωL∆ |.

b) A single-phase equivalent of this balanced circuit is the following. The source represents one phase
of a Y-connected source, so it has magnitude of 1/

√
3 of the line-voltage.

+−

U 0√
3

R L vx
R∆/3 L∆/3

Here, the choice of zero phase at the source means that it fits with what the question stated about phase
a: its potential has been defined as having zero phase. By voltage divison between the line and load
impedances, we find the phasor vx.

vx =
U√
3
· R∆/3 + jωL∆/3

R+R∆/3 + jω(L+ L∆/3)
=

U√
3
· R∆ + jωL∆

3R+R∆ + jω(3L+ L∆)

This could arguably be improved by multiplying up and down by the complex conjugate of the denomi-
nator, to get it in purely ℜ+ jℑ form . . . but then again, that could arguably be considered messy!

c) |vx| =
U

2
√
3
.

The break (open-circuit) disconnects source ‘Ua’.

+−

Uc
R L

+−

Ub
R L

R∆

L∆

R∆ L∆

R∆
L∆

vx

This could look a bit complicated . . . it has two parallel branches, and we want to find the potential at
the middle of one of them.

A ∆-Y transform of the load helps make it clearer.
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+−
Uc

R L
+−

Ub
R L

R
∆/3

L
∆/3

R∆
/3

L∆
/3

L
∆/3 R

∆/3

vx

There is no current through the branch at the far right, so by Ohm’s law the potential at the star-point
(centre of the Y-load) is the same as vx. Thus, by KCL at the star-point,

Ub − vx
R+jωL+ R

∆/3+L
∆/3

+
Uc − vx

R+jωL+ R
∆/3+L

∆/3
= 0 =⇒ vx =

Ub + Uc

2
.

Putting in the known values of the source voltages,

vx =
U

2
√
3

(

1 − 2π/3 + 1 + 2π/3

)

=
−U

2
√
3
=

U

2
√
3
π.

Only the magnitude was required by the question. Notice that if one is very confident with phasor
diagrams and voltage division, this result might be convincing enough without the algebra, by taking
the mid-point of a line drawn between the Ub and Uc phasors.
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