Tentan har 9 tal i 3 delar: tre tal i del A (12p), två i del B (10p) och fyra i del C (18p).

Hjälpmedel: Upp till tre A4-ark (sex sidor) med studentens egna anteckningar på valfritt sätt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek. De måste inte lämnas in.

För den intresserade: tre ark för att man kan välja att återanvända vad man hade till KS1 och KS2, samt att lägga till en ny för växelström.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av komponenter (t.ex. $R$ för ett motstånd, $U$ för en spänningskälla, $k$ för en beroende källa) antas vara kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motstånd eller spänningskälla) antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara svårare att tjäna poäng på: fastna inte på dessa. Det hjälper, ofta, att rita om ett diagram för olika tillstånd eller med ersättningar eller borttagning av delar som inte är relevanta för det sökta värdet. Då blir kretsen ofta mycket lättare att tänka på och lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: Låt $A, B$ och $C$ vara de maximala möjliga poängen från delarna $\mathrm{A}, \mathrm{B}$ och C i tentan, d.v.s. $A=12, B=10, C=18$. Låt $a, b$ och $c$ vara poängen man får i dessa respektive delar i tentan, och $a_{\mathrm{k}}$ vara poängen man fick från kontrollskrivning KS1, och $b_{\mathrm{k}}$ poängen från KS2, och $h$ bonuspoängen från hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

$$
\frac{\max \left(a, a_{\mathrm{k}}\right)}{A} \geq 0,4 \quad \& \quad \frac{\max \left(b, b_{\mathrm{k}}\right)}{B} \geq 0,4 \quad \& \quad \frac{c}{C} \geq 0,3 \quad \& \quad \frac{\max \left(a, a_{\mathrm{k}}\right)+\max \left(b, b_{\mathrm{k}}\right)+c+h}{A+B+C} \geq 0,5
$$

Betyget räknas också från summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser (\%) av $50(\mathrm{E}), 60(\mathrm{D}), 70(\mathrm{C}), 80(\mathrm{~B}), 90(\mathrm{~A})$. Om tentan blev underkänd med liten marginal, så kan betyget Fx registreras, med möjlighet att få betyget E om ett kompletteringsarbete är godkänt inom några veckor efter tentamen.

## Del A. Likström

1) $[4 p]$ Bestäm effekterna som försörjs från kretsen till följande motstånd:
a) $[1 \mathrm{p}] \quad R_{4}$.
b) $[1 \mathrm{p}] \quad R_{3}$.
c) $[2 \mathrm{p}] \quad R_{2}$.

2) $[4 p]$

Bestäm $u$ genom valfri metod; alternativt, använd nodanalys för att skriva ekvationer som skulle kunna lösas för att bestämma $u$.

Hela poäng erhålls vid korrekt lösning av $u$. Vid korrekta ekvationer utan hela lösningen av $u$ erhålls $0,5 \mathrm{p}$ mindre.
Observera att du kan börja med att använda nodanalys för att få ekvationerna, och sedan försöka lösa dessa för full poäng. Då får du en trygghet i att ekvationerna ger flest poäng även om du inte lyckas lösa dem.

3) $[4 p]$
a) [3p] Ett mostånd $R_{x}$ ska kopplas mellan polerna x-y i kretsen till höger. Vilket värde ska det ha för att få ut den maximala möjliga effekten från kretsen?
b) $[1 \mathrm{p}]$ Till skillnad från deltal 'a' ska en spänningskälla $U_{x}$, i stället för motståndet $R_{x}$, anslutas mellan x-y (med källans '+' pol till pol x). Vilket värde ska $U_{x}$ ha för att få ut maximaleffekt från kretsen?


## Short translations of Section-A questions to English:

1. Find the power delivered to each of: a) $R_{4}, \quad$ b) $R_{3}$, c) $R_{2}$.
2. Two alternative options: [for all 4 points] solve for $u$ completely, by any method you wish; or [for 3.5 points] use nodal analysis to write (but not have to solve) a set of equations that could be solved to find $u$.
3. A maximum power and two-terminal equivalent question.
a) A resistor $R_{x}$ is connected between x-y: what value should $R_{x}$ be in order to obtain the maximum possible power from the shown circuit?
b) A voltage source $U_{x}$ is connected at x-y (instead of the resistor $R_{x}$ from part 'a'); its direction is with ' + ' terminal connected to terminal x . What value should $U_{x}$ be in order to obtain maximum power from the shown circuit?

Del B. Transient
4) [5p] Bestäm följande:
a) $[1 \mathrm{p}] \operatorname{Vid} t=0^{-}$, effekten levererad av strömkällan $I_{1}$.
b) [3p] $\operatorname{Vid} t=0^{+}$, spänningen $u_{1}$ över $R_{1}$, energin lagrad i kondensatorn $C_{2}$, effekten absorberad i motståndet $R_{2}$.
c) [1p] Vid $t \rightarrow \infty$,

spänningen $u_{2}$ över kondensatorn $C_{2}$.

Obs: $\mathbf{1}(t)$ är enhetsstegfunktionen.
5) $[5 \mathrm{p}]$

Bestäm $i(t)$, för $t>0$.


## Short translations of Section-B questions to English:

4. Find the following quantities:
a) at $t=0^{-}$: power delivered by source $I_{1}$.
b) at $t=0^{+}$: voltage $u_{1}$, energy stored in $C_{2}$, power absorbed by $R_{2}$.
c) as $t \rightarrow \infty$ : voltage $u_{2}$.
5. Determine $i(t)$, for $t>0$.

## Del C. Växelström

## 6) $[4 p]$

Kretsen innehåller två kopplade spolar, med ömsesidiginduktans $M$. Spänningskällan beskrivs med tidsfunktionen $U(t)=\hat{U} \sin (\omega t)$.
a) [2p] Bestäm $i(t)$ med villkoret $M=0$.


Tips: i så fall är spolarna inte kopplade: en mycket förenklad krets kan analyseras.
b) [2p] Bestäm $i(t)$ utan villkoret ovan (lösningen kommer nu att bero även på $M, L_{2}$ och $C$ ).
7) $[5 \mathrm{p}]$
a) [2p] Bestäm kretsens nätverksfunktion,

$$
H(\omega)=\frac{u_{\mathrm{o}}(\omega)}{u_{\mathrm{i}}(\omega)} .
$$

b) [1p] Visa att svaret till deltal 'a' kan skrivas i den följande formen,

$$
H(\omega)=\frac{-K\left(1+\mathrm{j} \omega / \omega_{a}\right)}{\left(1+\mathrm{j} \omega / \omega_{b}\right)\left(1+\mathrm{j} \omega / \omega_{c}\right)} .
$$


c) [2p] Skissa ett Bode amplituddiagram av funktionen $H(\omega)$ från deltal 'b'.

Anta att: $K=0,1, \quad 100 \omega_{a}=\omega_{b}$, och $\omega_{b}<\omega_{c}$.
Markera viktiga frekvenser (t.ex. $\omega_{1}$ ), nivåer (t.ex. $x \mathrm{~dB}$ ) och lutningar (t.ex. $y \mathrm{~dB} /$ dekad).

## 8) $[3 \mathrm{p}]$

Källan är en växelspänningskälla med vinkelfrekvens $\omega$.

Motståndet $R_{2}$ och komponenten ' X '
 kan väljas; andra komponenter i kretsen har fasta värden.

För att få den maximala möjliga effekten (aktiv effekt) levererad till $R_{2}$ :
a) $[1 \mathrm{p}]$ vilken komponenttyp $(C, L$, eller $R$ ) ska komponenten ' X ' vara?
b) $[1 \mathrm{p}]$ vilket värde ska den ha?
c) [1p] och vilket värde ska $R_{2}$ ha?
9) $[6 \mathrm{p}]$

Spänningskällorna utgör en balanserad trefaskälla med huvudspänning $U$ och vinkelfrekvens $\omega$.

Komponenterna $R_{\Delta}$ och $L_{\Delta}$ modellerar faserna av en last, och komponenterna $R$ och $L$ modellerar fasledarna mellan källan och lasten.

a) [2p] Bestäm lastens skenbara effekt $|S|$ och effektfaktor PF, med antagandet $R=0$ och $L=0$.

Observera! Antagandet från deltal 'a' ska inte användas härefter!
b) $[2 \mathrm{p}]$ Bestäm potentialen $v_{x}$, med antagandet att potentialen i nod 'a' har vinkeln noll, $\mu_{a}=0$.
c) [2p] Ledaren i fas-a blir bruten (öppen krets) vid stjärntecknet '*': vad är $\left|v_{x}\right|$ nu?

## Short translations of Section-C questions to English:

6. The circuit has two inductors, between which there is mutual inductance $M$.

The voltage-source is described by $U(t)=\hat{U} \sin (\omega t)$.
a) assuming $M=0$, determine $i(t)$; notice that this assumption removes the effect of coupling between the coils, making the solution much simpler.
b) determine $i(t)$ without that assumption; the solution will now also depend on $M, L_{2}$ and $C$.
7. An opamp-based filter.
a) determine the function $H(\omega)=u_{o}(\omega) / u_{\mathrm{i}}(\omega)$.
b) show that the above function $H(\omega)$ can be written in the given form (see Swedish text).
c) Sketch a Bode amplitude-plot of the function from part ' $\mathfrak{b}$ '. Assume $K=0.1, \quad 100 \omega_{a}=\omega_{b}, \quad \omega_{b}<\omega_{c}$. Indicate known values of frequencies (e.g. $\omega_{1}$ ), levels (e.g. $x \mathrm{~dB}$ ) and gradients (e.g. $y \mathrm{~dB} /$ decade).
8. The source is an ac voltage-source with angular frequency $\omega$.

Resistance $R_{2}$ and the component ' $X$ ' can be chosen. Other component values are fixed.
The task is to obtain the maximum possible power (active power) into $R_{2}$. To achieve this:
a) What component type ( $C, L$ or $R$ ) should component ' $X$ ' be?
b) What value should it have?
c) What value should $R_{2}$ have?
9. The sources form a balanced three-phase source with line-voltage magnitude $U$ and angular frequency $\omega$. Each $R L$ branch represents one phase of a power line; each $R_{\Delta} L_{\Delta}$ branch represents one phase of a load.
a) Find the apparent power $|S|$ into the load, and the load's power factor, assuming $R=0$ and $L=0$.
b) Find potential $v_{x}$, assuming that the potential at node 'a' has zero angle, i.e. $\nu_{a}=0$.
c) The conductor of phase-a in the line becomes broken (open) at the asterisk '*': determine $\left|v_{x}\right|$.

Slut ... men slösa inte eventuell återstående tid: kolla och dubbelkolla svaren!

## Solutions (EI1120 TEN1 VT17, 2017-03-16)

## Q1

a) $\quad P_{\mathrm{R} 4}=I_{1}^{2} R_{4}$

This resistor is series-connected to the current source $I_{1}$, so by KCL its current is also $I_{1}$.
b) $P_{\mathrm{R} 3}=\left(I_{1}-I_{2}\right)^{2} R_{3}$

KCL at the bottom-right node determines the current in $R_{3}$ as the difference between $I_{1}$ and $I_{2}$. The direction $\left(I_{1}-I_{2}\right.$, or $\left.I_{2}-I_{1}\right)$ does not matter, as the current is squared in order to
 find the power.
c) $P_{\mathrm{R} 2}=\frac{1}{R_{2}} \cdot\left(\frac{\frac{U_{1}}{R_{1}}+I_{2}+K\left(I_{1}-I_{2}\right)}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right)^{2}=R_{2}\left(\frac{U_{1}+K I_{1} R_{1}+(1-K) I_{2} R_{1}}{R_{1}+R_{2}}\right)^{2}$

This last question is more difficult.
KCL (nodal analysis) or source-transformation appear good methods.

## Method 1: KCL, no simplification.

Define voltage $u$ across $R_{2}$, with + upwards. At the node above $R_{2}$, KCL can be written as

$$
\frac{u-U_{1}}{R_{1}}+\frac{u}{R_{2}}+K i_{x}-i_{x}-I_{1}=0 \quad \Longrightarrow \quad u\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{U_{1}}{R_{1}}+I_{1}-(K-1)\left(I_{2}-I_{1}\right)
$$

from which

$$
u=\frac{R_{2}}{R_{1}+R_{2}}\left(U_{1}+(1-K) R_{1} I_{2}+K R_{1} I_{1}\right)
$$

The power in $R_{2}$ can be found as $P_{\mathrm{R} 2}=u^{2} / R_{2}$, which simplifies to the solution for $P_{\mathrm{R} 2}$ given above.
Method 2: Transformations.
Some simplification of the right-hand half of the circuit may be helpful:


Then, by a source-transformation on the Thevenin-type source at the left, the voltage $u$ across $R_{2}$ can be found from the total current passing through the parallel combination of the two resistances:


Here,

$$
\left.u=\left(\frac{U_{1}}{R_{1}}-\left((K-1) I_{2}-K I_{1}\right)\right) \frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{R_{2}}{R_{1}+R_{2}}\left(U_{1}+(1-K) R_{1} I_{2}+K R_{1} I_{1}\right)\right)
$$

which is - as it should be - the same as by the direct KCL method shown earlier.

## Q2

This question was allowed to be treated like the traditional question of "write equations based on nodal analysis, that could be solved, but you don't need to solve them", in which case it would be limited to 0.5 p less than the full 4 p .

For the full points, a complete solution was needed for the single marked quantity $u$. This solution could be obtained from an equation system, or could be found by any other method. Starting from nodalanalysis based equations seems a wise choice, in order to get some points even if not managing to solve all the way. We show several possible methods here.

## Method 1.

Let's start by a direct method for getting a full solution of $u$. We'll describe it in a way loosely based on nodal analysis, using supernodes and other simplifications to reduce the number of equations we need to handle.

If we find the opamp's output potential, $v_{\mathrm{o}}$, then the marked voltage $u$ is easily found by KCL and KVL in the branch of $R_{5}$ and $I_{b}$, as

$$
u=v_{\mathrm{o}}-I_{b} R_{5} .
$$



At the non-inverting input, voltage division gives the potential as $\frac{R_{2}}{R_{1}+R_{2}} U_{a}$. Voltage division is valid because we know that no current flows in the opamp's input: so $R_{1}$ and $R_{2}$ can be treated as series connected. The potential we've found is independent of other parts of the circuit, as the voltage source $U_{a}$ fixes the potential across $R_{1}$ and $R_{2}$ regardless of $I_{a}$.
The negative feedback around the ideal opamp ensures that the output voltage will be whatever is needed to hold the inverting input to the same potential as the non-inverting input,

$$
v_{\mathrm{f}}=\frac{R_{2}}{R_{1}+R_{2}} U_{a} .
$$

By KCL in the node marked $v_{\mathrm{f}}$,

$$
\frac{v_{\mathrm{f}}}{R_{3}}-I_{a}+\frac{v_{\mathrm{f}}-v_{\mathrm{o}}-U_{b}}{R_{4}}=0 \quad \Longrightarrow \quad v_{\mathrm{o}}=\left(1+\frac{R_{4}}{R_{3}}\right) v_{\mathrm{f}}-I_{a} R_{4}-U_{b}
$$

By taking the above three equations for $u, v_{\mathrm{f}}$ and $v_{\mathrm{o}}$, and eliminating $v_{\mathrm{f}}$ and $v_{\mathrm{o}}$, the solution is

$$
u=\frac{R_{3}+R_{4}}{R_{3}} \cdot \frac{R_{2}}{R_{1}+R_{2}} U_{a}-U_{b}-I_{a} R_{4}-I_{b} R_{5} .
$$

## Method 2.

Now we will try nodal analysis, based on supernodes but without any other simplifications such as the voltage-division step used in the above method.

We assign potentials to all the nodes, using already-defined quantities where possible: the potential above the source $I_{b}$ already has a name, $u$.

Within a supernode, potentials are expressed relative to one of the nodes in that supernode, so that new variables aren't needed.

Here, the node above source $U_{a}$ is part of the
 earth supernode, so it can be defined as $0+U_{a}$.

The node above the opamp output is $v_{\mathrm{o}}+U_{b}$. This is also part of the earth supernode, as we see the opamp output as being a voltage source whose other terminal connects to the earth node. (However, we do not directly know this source's voltage, so we get an unknown potential $v_{\mathrm{o}}$. The extra knowledge that the opamp's inputs have the same potential is what gives us enough equations to be able to solve for the potentials.)

The nodes at the opamp inputs can be marked with unknown potentials $v_{\mathrm{f}}$ and $v_{\mathrm{n}}$. We know these are the same potential, but we can start out with different names to make it clearer where the equations came from.

Now we write KCL for any [super]node that is not the earth [super]node. In our circuit, this is just three nodes, since both supernodes are connected with the earth node.

$$
\begin{align*}
& \operatorname{KCL}\left(v_{\mathrm{n}}\right)_{(\text {out })}: 0  \tag{1}\\
& \operatorname{KCL}\left(v_{\mathrm{f}}\right)_{(\text {out })}: 0  \tag{2}\\
& \operatorname{KCL}(u)_{(\text {out })}: 0=\frac{v_{\mathrm{n}}-U_{a}}{R_{1}}+\frac{v_{\mathrm{n}}}{R_{2}}  \tag{3}\\
& R_{3}+\frac{v_{\mathrm{f}}-v_{\mathrm{o}}-U_{b}}{R_{4}}-I_{a} \\
& I_{b}+\frac{u-v_{\mathrm{o}}}{R_{5}}
\end{align*}
$$

In this system we have 4 unknowns and 3 equations, but we know also that

$$
\begin{equation*}
v_{\mathrm{f}}=v_{\mathrm{n}} \tag{4}
\end{equation*}
$$

We can include this as a fourth equation, or just substitute it into equation (1) to eliminate $v_{n}$.
Then, for this particular circuit, the equations can be solved conveniently, eliminating one variable at a time, without needing a simultaneous solution. In fact, this process is the same algebra as what we did in 'Method 1 ' when we started with equations from voltage division, KCL and KVL.

## Method 3.

It would also be acceptable use the 'extended nodal analysis' method without any supernode simplifications. One would define every node potential and a current in every voltage source (including the opamp output), and then write the 6 KCL equations for all nodes except the earth node, along with 3 further equations for the voltage sources. This is in the style of answers to 'Q2' of this course's exam in several previous years. The method involves more writing but less careful thinking. The equations it produces would require more work for solving to find $u$.

## Q3

a) $\quad R_{x}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.

The maximum power is obtained when the connected resistor has the same resistance as the sourceresistance (Thevenin or Norton resistance) of the circuit that the power is coming from.
We were only asked what resistance should be chosen in order to obtain the maximum power; we do not need to find how big this maximum power is. So we only need to find the source resistance of the circuit, not its Thevenin voltage or Norton current.
For this circuit with no dependent sources, it's easiest simply to "set all the [independent] sources to zero" and simplify the remaining resistors to find the equivalent resistance. This results in $R_{1}$ and $R_{2}$ in parallel, between terminals $\mathrm{x}-\mathrm{y}$, leading to the above expression for $R_{x}$.
b) $U_{x}=\frac{U_{1} R_{2}+U_{2} R_{1}+\left(I_{2}-I_{1}\right) R_{1} R_{2}}{2\left(R_{1}+R_{2}\right)}$.

In the situation where maximum power is transferred from a linear two-terminal circuit, the terminal voltage is half of its open-circuit value.

The open-circuit voltage between $x$ - $y$ can be found several ways; here we use nodal analysis with a single non-earth supernode (just one KCL).

Define node ' $y$ ' as the earth node. We get two supernodes, that include all the nodes in the circuit. At the supernode that includes node ' $x$ ', KCL gives

$$
\frac{v_{x}-U_{2}}{R_{2}}+I_{1}-I_{2}-\frac{v_{x}-U_{1}}{R_{1}}=0,
$$

from which

$$
v_{x}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{U_{1}}{R_{1}}+\frac{U_{2}}{R_{2}}+I_{2}-I_{1},
$$

giving

$$
v_{x}=\frac{U_{1} R_{2}+U_{2} R_{1}+\left(I_{2}-I_{1}\right) R_{1} R_{2}}{R_{1}+R_{2}} .
$$

We defined node ' $y$ ' as the reference, so this potential $v_{x}$ is also the open-circuit voltage between x - y . Maximum power output of the circuit implies that the 'thing' that we connect to take power from terminals x-y should bring the voltage down to half of the open-circuit value. As we are considering the 'thing' being a voltage source, we need it to have a voltage of $v_{x} / 2$ in the same direction as $v_{x}$ relative to the marked terminals.

## Q4

a) This time is just before the step function changes: the left current source still has a value of $I_{1}$.

The circuit is in equilibrium, as it has been unchanged over all previous time (and the circuit is assumed to be stable).
From the assumption of equilibrium, we expect zero voltage across inductors, and zero current in capacitors. The currents and voltages in the circuit at this time can therefore be found by analysing the simplified diagram shown below.
The unknown voltages across capacitors and currents in inductors have also been marked in the diagram: these are not needed for the Q4a solution, but they are useful for Q4b.


By finding the voltage $u_{\alpha}$ across the current source $I_{1}$, we can find the power delivered by that source. KVL around the leftmost complete loop $\left(I_{1}, R_{2}, R_{1}, U\right)$ determines this voltage:

$$
u_{\alpha}=U+I_{1}\left(R_{1}+R_{2}\right) .
$$

The relative directions of $I_{1}$ and $u_{\alpha}$ follow the 'active convention', so the power delivered by source $I_{1}$ is

$$
P_{\mathrm{I} 1}\left(0^{-}\right)=u_{\alpha} I_{1}=I_{1}\left(U+I_{1}\left(R_{1}+R_{2}\right)\right)=U I_{1}+I_{1}^{2}\left(R_{1}+R_{2}\right)
$$

b) At this time, $t=0^{+}$, a change has newly occurred: the current from the left current source has changed from $I_{1}$ to 0 , because of the step function.

In order to solve for this new state we cannot still assume the capacitors and inductors to be open- and short-circuits: their currents and voltages (respectively) could have changed instantaneously when the current from the source changed.

Instead, we take advantage of continuity. The capacitors' voltages and the inductors' currents cannot change instantaneously, so we can calculate what they were before the change, by analysing the circuit from part ' $a$ '. Then we can put suitable sources into the circuit for part ' $b$ ' (below) that have these values, and solve for $t=0^{+}$.

The following shows the circuit at $t=0^{-}$(as in Q4a) but with the continuous quantities defined: $i_{\mathrm{L} 1}$, $i_{\mathrm{L} 2}, u_{\mathrm{C} 1}, u_{\mathrm{C} 2}$.


These continuous quantities of capacitors and inductors can be found by basic KCL/KVL/Ohm. The hardest is $u_{\mathrm{C} 2}$, which is found from KVL around the loop of $L_{2}$ (a short circuit, as the circuit is in equilibrium), $R_{3}$ (also no voltage, seen by Ohm's law as it has no current), $U, R_{1}, L_{1}$ (short circuit as for $L_{2}$ ) and $R_{2}$. It could have been nicer to swap the direction in which $u_{\mathrm{C} 2}$ is defined, to avoid the negative signs.

The circuit below is valid for $t=0^{+}$. Inductors and capacitors are replaced with the appropriate sources (current and voltage respectively), with values equal to the continuous quantities found from the circuit above.


Then $u_{1}$ can be found directly by KCL/Ohm, as this resistor is in series with a current source.

$$
u_{1}\left(0^{+}\right)=i_{\mathrm{L} 1} R_{1}=I_{1} R_{1}
$$

The energy $W_{\mathrm{C} 2}$ can be written directly from the standard formula for energy in a capacitor,

$$
W_{\mathrm{C} 2}\left(0^{+}\right)=\frac{1}{2} C_{2} u_{\mathrm{C} 2}^{2}=\frac{1}{2} C_{2}\left(U+I_{1}\left(R_{1}+R_{2}\right)\right)^{2}
$$

The power $P_{\mathrm{R} 2}$ can be found from the current through or voltage across $R_{2}$. We can take KVL around a loop of resistors and voltage sources: $U, u_{\mathrm{C} 1}, R_{2}, u_{\mathrm{C} 2}, R_{4}, R_{3}$. KCL dictates that $R_{2}$ and $R_{3}$ have the same current. Notice that in the nodes that $R_{4}$ connects to, $i_{\mathrm{L} 2}$ and $I_{2}$ cancel each other (equal, opposite): so the current in $R_{4}$ equals the current in $R_{3}$ and $R_{2}$. Defining this unknown current as $i$, clockwise, KVL becomes

$$
U+\left(I_{1} R_{1}\right)-i R_{2}+\left(-U-I_{1}\left(R_{1}+R_{2}\right)\right)-i R_{4}-i R_{3}=0 \quad \Longrightarrow \quad i=\frac{-I_{1} R_{2}}{R_{2}+R_{3}+R_{4}}
$$

$$
P_{\mathrm{R} 2}\left(0^{+}\right)=i^{2} R_{2}=\left(\frac{I_{1} R_{2}}{R_{2}+R_{3}+R_{4}}\right)^{2} R_{2}=\frac{I_{1}^{2} R_{2}^{3}}{\left(R_{2}+R_{3}+R_{4}\right)^{2}} .
$$

c) This is again an equilibrium. Its difference from the previous case (part 'a' at $t=0^{-}$) is that the left current source now has zero current, due to the $1-\mathbf{1}(t)$ function.


In this circuit, with $C_{2}$ being an open circuit in the equilibrium, and therefore blocking any current around the loop with $R_{3}$, there can be no voltage across $R_{2}$ (Ohm's law if there's no current there) and no current passes through the voltage source or the resistors $R_{1}$ and $R_{2}$. All of the current $I_{2}$ will pass through the short-circuit of $L_{2}$.

By KVL around the loop of $C_{2}$ (unknown), $L_{2}$ (short), $R_{3}$ (no current), $U, R_{1}$ (no current), $L_{1}$ (short), $R_{2}$ (no current), we find $u_{2}=0+0-U+0+0+0=-U$, so

$$
u_{2}(\infty)=-U
$$

## Q5

Method 1: direct ODE. Define the voltage across the capacitor as $u$, in passive convention relative to $i$. At times $t>0$ the source at the right has value $U$. KCL at the node above the capacitor gives

$$
i(t)+\frac{u(t)-K u_{x}(t)}{R_{1}}+\frac{u(t)-U}{R_{2}}=0 .
$$

Substituting $u_{x}(t)=U-u(t)$, and $i(t)=C \frac{\mathrm{~d} u(t)}{\mathrm{d} t}$, this becomes an ODE in $u(t)$,

$$
C \frac{\mathrm{~d} u(t)}{\mathrm{d} t}+\frac{u(t)-K(U-u(t))}{R_{1}}+\frac{u(t)-U}{R_{2}}=0
$$

which in 'standard' form is

$$
\frac{\mathrm{d} u(t)}{\mathrm{d} t}+\left(\frac{R_{1}+(1+K) R_{2}}{R_{1} R_{2} C}\right) u(t)=\frac{R_{1}+K R_{2}}{R_{1} R_{2} C} U .
$$

This has the general solution

$$
u(t)=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U+A \mathrm{e}^{-\frac{R_{1}+(1+K) R_{2}}{R_{1} R_{2} C}} t,
$$

where the constant $A$ needs to be determined by knowledge of $u(t)$ at some specific time. In our case, $u\left(0^{-}\right)$can be found as an equilibrium solution, then $u\left(0^{+}\right)$will be the same, because the capacitor's voltage is a continuous quantity. (Be careful: if we were working with another quantity, such as the capacitor's current, there might be a discontinuity [jump] between $0^{-}$and $0^{+}$. What we actually want is the value at the start of the 'new' state of the circuit, after the step function: this is $0^{+}$.)

At $t=0^{-}$, the only independent source in the circuit has a value of zero. From this, we can argue that "with nothing to drive the circuit, all values will be zero": so $u\left(0^{-}\right)=0$. (To be stricter about this, we might want to check whether the circuit is stable, i.e. whether the Thevenin source seen by the capacitor has positive resistance. This could depend on the actual value of $K$ and other components.)

Putting in this known value of $u\left(0^{+}\right)=u\left(0^{-}\right)=0$,

$$
u(0)=0=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U+A \mathrm{e}^{0} \quad \Longrightarrow \quad A=-\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U
$$

from which the complete solution for $t>0$ is

$$
u(t)=\frac{R_{1}+K R_{2}}{R_{1}+(1+K) R_{2}} U\left(1-\mathrm{e}^{-t / \frac{C R_{1} R_{2}}{R_{1}+(1+K) R_{2}}}\right) .
$$

We found $u(t)$ because it is the continuous variable, so its initial condition is therefore easily found from the equilibrium before the step.

But it was $i(t)$ that we were supposed to find! We have two equations (above) that relate $u(t)$ and $i(t)$ : one is the first KCL we wrote, and the other is the capacitor-equation that we used to eliminate $i(t)$ from the KCL in order to get a simple ODE.

It's probably simplest to use the capacitor equation to find the current:

$$
i(t)=C \frac{\mathrm{~d}}{\mathrm{~d} t} u(t)=C \frac{-\left(R_{1}+K R_{2}\right)}{R_{1}+(1+K) R_{2}} U\left(-\frac{R_{1}+(1+K) R_{2}}{C R_{1} R_{2}}\right) \mathrm{e}^{-t / \frac{C R_{1} R_{2}}{R_{1}+(1+K) R_{2}}} \quad(t>0)
$$

After tidying, we can answer with

$$
i(t)=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U \mathrm{e}^{-t / \frac{C R_{1} R_{2}}{R_{1}+(1+K) R_{2}}} \quad(t>0)
$$

## Method 2: Initial, Final, Time-constant.

In this circuit, the topology doesn't change: only the value of the independent source changes. If we start with KCL (as in Method 1), for $t>0$,

$$
i(t)+\frac{u(t)-K u_{x}(t)}{R_{1}}+\frac{u(t)-U}{R_{2}}=0 .
$$

but don't eliminate $i(t)$, we get the $i, u$ relation at the terminals of the capacitor:

$$
i(t)+\frac{u(t)-K(U-u(t))}{R_{1}}+\frac{u(t)-U}{R_{2}}=0
$$

A Thevenin or Norton equivalent of the circuit (other than the capacitor) must also have this $i, u$ relation. Now we group the $u(t)$ and $U$ terms,

$$
i(t)=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U-\frac{R_{1}+K R_{2}}{R_{1} R_{2}} u(t)
$$

and compare to the $i, u$ relation for a two-terminal equivalent (for example a Norton source, $i=I_{\mathrm{N}}-\frac{u}{R_{\mathrm{N}}}$ ) in order to identify the equivalent-source quantities,

$$
R_{\mathrm{N}}=\frac{R_{1} R_{2}}{R_{1}+K R_{2}}, \quad I_{\mathrm{N}}=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U, \quad U_{\mathrm{T}}=I_{\mathrm{N}} R_{\mathrm{N}}=U
$$

The above equivalent is valid for $t \geq 0$. For $t<0$ the only difference is that we have 0 instead of $U$ in this equation. This means that the Norton (or Thevenin) resistance is the same as above $\left(R_{\mathrm{N}}\right)$, but the source has zero value. The equivalent circuit is therefore just a resistor of $R_{\mathrm{N}}$.

We could use this equivalent to find $u(t)$ and then derive $i(t)$ from that. Or we can try finding $i(t)$ directly: as this is not a continuous quantiy we must be careful to choose the initial value as $i\left(0^{+}\right)$, not $i(0-)$.
Let's find $i(t)$ directly, from the initial value, final value and time-constant.
The final value is $i(\infty)=0$, as as capacitor in an equilibrium state behaves as an open circuit.
At $t=0^{-}$the equivalent source is just a resistor: the capacitor's voltage is $u\left(0^{-}\right)=0$ as this is the equilibrium state of a capacitor connected to a resistor. By continuity, $u\left(0^{+}\right)=u\left(0^{-}\right)=0$. The initial current $i\left(0^{+}\right)$is therefore the short-circuit current of the equivalent source, $i\left(0^{+}\right)=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U$, since the source at that time has a zero voltage (the capacitor) at its terminals.
The time-constant is $\tau=C R_{\mathrm{N}}=\frac{C R_{1} R_{2}}{R_{1}+K R_{2}}$.
Putting all the above together,

$$
i(t)=i(\infty)+\left(i\left(0^{+}\right)-i(\infty)\right) \mathrm{e}^{-t / \tau}=\frac{R_{1}+K R_{2}}{R_{1} R_{2}} U \mathrm{e}^{-t / \frac{C R_{1} R_{2}}{R_{1}+(1+K) R_{2}}} \quad(t>0)
$$

## Q6

Let's use peak-value and sine reference: time-function $U(t)=\hat{U} \sin (\omega t)$ becomes phasor $U(\omega)=\hat{U} \angle 0$.
We will work with phasors (frequency-domain) until expressing the final answers in time-function form.
a) With $M=0$, KVL around the left loop gives

$$
U(\omega)=\operatorname{Ri}(\omega)+\mathrm{j} \omega L_{1} i(\omega),
$$

SO

$$
i(\omega)=\frac{U(\omega)}{R+\mathrm{j} \omega L_{1}} .
$$

Converting this back to a time-function, using the same choice of reference as when converting from time to frequency,

$$
i(t)=\frac{\hat{U}}{\sqrt{R^{2}+\omega^{2} L_{1}^{2}}} \sin \left(\omega t-\tan ^{-1} \frac{\omega L_{1}}{R}\right) .
$$

b) With $M \neq 0$, it's more complicated! Writing the whole mutual-inductor equation, and defining a current and voltage on the right-hand side of the inductors,

$$
\begin{aligned}
\text { left loop: } \quad U & =R i+\mathrm{j} \omega L_{1} i+\mathrm{j} \omega M i_{2} \\
\text { right loop: } u_{2} & =\mathrm{j} \omega L_{2} i_{2}+\mathrm{j} \omega M i .
\end{aligned}
$$



These are two equations in three unknowns: we need to substitute the relation of current and voltage for the capacitor, which in view of the directions of $i_{2}$ and $u_{2}$ is $u_{2}=\frac{-i_{2}}{\mathrm{j} \omega \mathrm{C}}$; this gives

$$
\begin{aligned}
U & =R i+\mathrm{j} \omega L_{1} i+\mathrm{j} \omega M i_{2} \\
\frac{-i_{2}}{\mathrm{j} \omega C} & =\mathrm{j} \omega L_{2} i_{2}+\mathrm{j} \omega M i .
\end{aligned}
$$

Rearranging the second equation in terms of $i_{2}$ gives

$$
\frac{-i_{2}}{\mathrm{j} \omega C}=\mathrm{j} \omega L_{2} i_{2}+\mathrm{j} \omega M i \quad \Longrightarrow \quad \frac{i_{2}}{\omega C}=\omega L_{2} i_{2}+\omega M i \quad \Longrightarrow \quad i_{2}=\frac{\omega M}{\frac{1}{\omega C}-\omega L_{2}} i
$$

which we substitute into the first equation to give

$$
U=\left(R+\mathrm{j} \omega L_{1}\right) i+\mathrm{j} \omega M \frac{\omega M}{\frac{1}{\omega C}-\omega L_{2}} i
$$

This gives the sought $i$ as

$$
i=\frac{U}{R+\mathrm{j} \omega\left(L_{1}+\frac{\omega M^{2}}{\frac{1}{\omega C}-\omega L_{2}}\right)}
$$

from which the time-function can be found as in part 'a', but with a less elegant imaginary part!

$$
i=\frac{U}{\sqrt{R^{2}+\left(\omega L_{1}+\frac{\omega^{2} M^{2}}{\frac{1}{\omega C}-\omega L_{2}}\right)^{2}}} \sin \left(\omega t-\tan ^{-1} \frac{\omega L_{1}+\frac{\omega^{2} M^{2}}{\frac{1}{\omega C}-\omega L_{2}}}{R}\right) .
$$

## Q7

a) This circuit is a basic inverting amplifier, except that the two impedances (in the input and in the feedback path) are each made up of several components. Based on the usual result from KCL, for an inverting amplifier,

$$
H(\omega)=-\frac{Z_{\text {feedback }}}{Z_{\text {input }}}=-\frac{\frac{R_{2} \frac{1}{\mathrm{j} \omega C_{2}}}{R_{2}+\frac{1}{\mathrm{j} \omega C_{2}}}}{R_{0}+\frac{R_{1} \frac{1}{\mathrm{j} \omega C_{1}}}{R_{1}+\frac{1}{\mathrm{j} \omega C_{1}}}}=-\frac{\frac{R_{2}}{1+\mathrm{j} \omega C_{2} R_{2}}}{R_{0}+\frac{R_{1}}{1+\mathrm{j} \omega C_{1} R_{1}}}=-\frac{\frac{R_{2}}{1+\mathrm{j} \omega C_{2} R_{2}}}{\frac{R_{0}\left(1+\mathrm{j} \omega C_{1} R_{1}\right)+R_{1}}{1+\mathrm{j} \omega C_{1} R_{1}}}
$$

Collecting the terms into a single numerator and denominator,

$$
H(\omega)=-\frac{R_{2}\left(1+\mathrm{j} \omega C_{1} R_{1}\right)}{\left(R_{0}\left(1+\mathrm{j} \omega C_{1} R_{1}\right)+R_{1}\right)\left(1+\mathrm{j} \omega C_{2} R_{2}\right)}=-\frac{R_{2}\left(1+\mathrm{j} \omega C_{1} R_{1}\right)}{\left(R_{0}+R_{1}+\mathrm{j} \omega C_{1} R_{0} R_{1}\right)\left(1+\mathrm{j} \omega C_{2} R_{2}\right)}
$$

which can then be put in a more 'canonical' (standard) form,

$$
H(\omega)=\frac{-R_{2}\left(1+\mathrm{j} \omega C_{1} R_{1}\right)}{\left(R_{0}+R_{1}\right)\left(1+\mathrm{j} \omega C_{1} \frac{R_{0} R_{1}}{R_{0}+R_{1}}\right)\left(1+\mathrm{j} \omega C_{2} R_{2}\right)}
$$

b) The above result for $H(\omega)$ can be expressed in the requested form,

$$
H(\omega)=\frac{-K\left(1+\mathrm{j} \omega / \omega_{a}\right)}{\left(1+\mathrm{j} \omega / \omega_{b}\right)\left(1+\mathrm{j} \omega / \omega_{c}\right)}
$$

if we choose to define: $\quad K=\frac{R_{2}}{R_{0}+R_{1}}, \quad \omega_{a}=\frac{1}{C_{1} R_{1}}, \quad \omega_{b}=\frac{1}{C_{2} R_{2}}, \quad \omega_{c}=\frac{R_{0}+R_{1}}{C_{1} R_{0} R_{1}}$.
(The choice of $\omega_{b}$ and $\omega_{c}$ can be swapped, as the terms containing this parameters are interchangeable in the requested form of the equation.)
Part 'a' could have been answered with an expression of very different structure from the one shown in our solution; in that case, further rearrangement may be necessary in order to see how the parameters $\omega_{a}$ etc relate to the circuit components' values.
c) The plot of $|H(\omega)|$ is shown below. As a Bode-plot was requested, the vertical scale should be in dB, and the horizontal scale of frequency should be logarithmic. The straight black lines in this plot show the usual 'asymptotic approximation', and the dashed blue line shows the actual function.

The chosen numbers on the frequency scale are arbitrary units, but note that the question did require that $\omega_{b}=100 \omega_{a}$.

We have also chosen $\omega_{c}=100 \omega_{b}$, although the only requirement was $\omega_{c}=>\omega_{b}$. If we chose $\omega_{c}=10 \omega_{b}$, then the flat part at the top would be only half as long, and the blue curve (the actual function instead of the asymptotic approximation) would hardly show any flatness.

At $\omega \ll \omega_{a}$, we have just $|H(\omega)|=K$.
The question specifies that $K=0.1$, so the level is $20 \log _{10} 0.1 \mathrm{~dB}$, which is -20 dB .

When $\omega_{a}<\omega<\omega_{b}$, the magnitude of the $\left(1+\mathrm{j} \omega / \omega_{a}\right)$ term rises at $20 \mathrm{~dB} /$ decade, but the other two terms still have magnitude of 0 dB . From this, we know that when $\omega_{b}$ is reached (which is two decades higher, because $\left.\omega_{b}=100 \omega_{a}\right)$ the level is $-20 \mathrm{~dB}+2 \cdot(20 \mathrm{~dB})=+20 \mathrm{~dB}$.
When $\omega$ exceeds $\omega_{b}$, the $\frac{1}{1+\mathrm{j} \omega / \omega_{b}}$ term decreases in magnitude at $-20 \mathrm{~dB} /$ decade, cancelling the change that the $\left(1+\mathrm{j} \omega / \omega_{a}\right)$ would cause, so the plot stays flat.
Above $\omega_{c}$, there is an additional decreasing magnitude from $\frac{1}{1+j \omega / \omega_{c}}$, so the function decreases.


Q8
a) It should be an inductor.
(No explanation was demanded: this was an 'easy point'.) When a maximum power is to be obtained, by connecting a load impedance $Z_{1}$ to a source with some impedance $Z_{\mathrm{s}}$, the ac maximum power criterion $Z_{1}=Z_{\mathrm{s}}^{*}$ tells us that the reactive part in one of these impedances (a capacitor in the source in our case) requires that the opposite type of reactive component in the other impedance (an inductor in the load in our case). One could alternatively show this from the equations that are derived in Q8b.
b) $L=\frac{C}{\frac{n^{2}}{R_{1}^{2}}+n^{2} \omega^{2} C^{2}}=\frac{C R_{1}^{2}}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}$.

The criterion is $Z_{l}=Z_{\mathrm{s}}^{*}$, as mentioned above. We have some flexibility in defining our load and source! Clearly $R_{2}$ is part of the load, since this is where we want our 'maximum power' to be transferred to. We could define all the other components as the source. Or we could include $X$ as part of the load, as was implied in our answer to Q8a. Or we could include $X$ and the transformer as the load, etc! All these options will give the same result.

Let's consider the load to be $R_{2}$ and X : we define $Z_{1}=R_{2}+Z_{\mathrm{x}}$, where $Z_{\mathrm{x}}$ is the impedance of component $X$. The source is then the remaining part of the circuit. We do not need to find the power, but just the condition on $Z_{1}$ to obtain maximum power at the load. Thus, only the source's impedance is needed, not its Thevenin voltage or Norton current. Seen at the right-hand-side terminals of the transformer, the source impedance is the parallel combination of $R_{1}$ and $C$, scaled by $1 / \mathrm{n}^{2}$,

$$
Z_{\mathrm{s}}=\frac{R_{1} \frac{1}{\mathrm{j} \omega C}}{R_{1}+\frac{1}{\mathrm{j} \omega C}} \cdot \frac{1}{n^{2}}=\frac{R_{1} / n^{2}}{1+\mathrm{j} \omega C R_{1}}=\frac{R_{1}\left(1-\mathrm{j} \omega C R_{1}\right)}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}
$$

Using the above results, and the condition for ac maximum power,

$$
Z_{1}=R_{2}+Z_{\times}=Z_{\mathrm{s}}^{*}=\frac{R_{1}\left(1+\mathrm{j} \omega C R_{1}\right)}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}
$$

from which 'equating the imaginary parts', assuming $Z_{\times}$to be purely imaginary, shows that

$$
Z_{\times}=\frac{\mathrm{j} \omega C R_{1}^{2}}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}
$$

The single component that has a positive, imaginary impedance is an inductor. If we treat $X$ as an inductor, $L$, and substitute $Z_{\times}=\mathrm{j} \omega L$, the required value is

$$
L=\frac{C R_{1}^{2}}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}
$$

Question: why did we assume that $Z_{x}$ was purely imaginary? The question says that it must be one of a capacitor, inductor or resistor. If it is a resistor, then we cannot fulfill the maximum power transfer condition, as we can only make the load have a real value of impedance. (Also, adding resistance outside the component where maximum power is wanted is not helpful; it just reduces the current in the circuit.) So we assume a capacitor or inductor, either of which is a purely imaginary impedance.
c) $\quad R_{2}=\frac{R_{1}}{n^{2}\left(1+\omega^{2} C^{2} R_{1}^{2}\right)}$.

This can be found from the expression for $Z_{1}$ in Q8b, by equating the real parts, again with the assumption that $Z_{\times}$is purely imaginary.

Q9

a) With $R=0$ and $L=0$, the source is directly connected to the load, so we know that the line-voltage at the load-terminals is $U$.

Using the standard result for complex power into a balanced $\Delta$-connected impedance load with balanced supply of line-voltage $U$,

$$
S=\frac{3 U^{2}}{\left(R_{\Delta}+\mathrm{j} \omega L_{\Delta}\right)^{*}} .
$$

It was the apparent power that we were supposed to find:

$$
|S|=\frac{3 U^{2}}{\left|R_{\Delta}+\mathrm{j} \omega L_{\Delta}\right|}=\frac{3 U^{2}}{\sqrt{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}}}
$$

The power factor is $\mathrm{PF}=P /|S|$. We already have found apparent power $|S|$. To find active power $P$,

$$
S=P+\mathrm{j} Q=\frac{3 U^{2}}{\left(R_{\Delta}+\mathrm{j} \omega L_{\Delta}\right)^{*}}=3 U^{2} \frac{R_{\Delta}+\mathrm{j} \omega L_{\Delta}}{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}} \quad \Longrightarrow \quad P=\frac{3 U^{2} R_{\Delta}}{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}},
$$

giving

$$
\mathrm{PF}=\frac{\frac{3 U^{2} R_{\Delta}}{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}}}{\frac{3 U^{2}}{\sqrt{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}}}}=\frac{R_{\Delta}}{\sqrt{R_{\Delta}^{2}+\omega^{2} L_{\Delta}^{2}}}
$$

If you remember the first exercises from topic 11 (ac power: calculating PF, $S$, etc for series and parallel components with voltage or current sources feeding them), you might have reached this expression for the power factor without using intermediate steps of $P, 3 U$ etc. In fact, we can calculate it by looking just at the $R$ and $\omega L$ values of the series branches. This is most easily seen if defining a particular current through the branch: then the active power is $|i|^{2} R_{\Delta}$, and the apparent power is $|i|^{2}\left|R_{\Delta}+\mathrm{j} \omega L_{\Delta}\right|$.
b) A single-phase equivalent of this balanced circuit is the following. The source represents one phase of a Y -connected source, so it has magnitude of $1 / \sqrt{3}$ of the line-voltage.


Here, the choice of zero phase at the source means that it fits with what the question stated about phase a: its potential has been defined as having zero phase. By voltage divison between the line and load impedances, we find the phasor $v_{x}$.

$$
v_{x}=\frac{U}{\sqrt{3}} \cdot \frac{R_{\Delta} / 3+\mathrm{j} \omega L_{\Delta} / 3}{R+R_{\Delta} / 3+\mathrm{j} \omega\left(L+L_{\Delta} / 3\right)}=\frac{U}{\sqrt{3}} \cdot \frac{R_{\Delta}+\mathrm{j} \omega L_{\Delta}}{3 R+R_{\Delta}+\mathrm{j} \omega\left(3 L+L_{\Delta}\right)}
$$

This could arguably be improved by multiplying up and down by the complex conjugate of the denominator, to get it in purely $\Re+\mathrm{j} \Im$ form $\ldots$ but then again, that could arguably be considered messy!
c) $\left|v_{x}\right|=\frac{U}{2 \sqrt{3}}$.

The break (open-circuit) disconnects source ' $U_{a}$ '.


This could look a bit complicated ... it has two parallel branches, and we want to find the potential at the middle of one of them.

A $\Delta-Y$ transform of the load helps make it clearer.


There is no current through the branch at the far right, so by Ohm's law the potential at the star-point (centre of the Y -load) is the same as $v_{x}$. Thus, by KCL at the star-point,

$$
\frac{U_{b}-v_{x}}{R+\mathrm{j} \omega L+R_{\Delta} / 3+L_{\Delta} / 3}+\frac{U_{c}-v_{x}}{R+\mathrm{j} \omega L+R_{\Delta} / 3+L_{\Delta} / 3}=0 \quad \Longrightarrow \quad v_{x}=\frac{U_{b}+U_{c}}{2} .
$$

Putting in the known values of the source voltages,

$$
v_{x}=\frac{U}{2 \sqrt{3}}(1 \angle-2 \pi / 3+1 \angle+2 \pi / 3)=\frac{-U}{2 \sqrt{3}}=\frac{U}{2 \sqrt{3}} \angle \pi .
$$

Only the magnitude was required by the question. Notice that if one is very confident with phasor diagrams and voltage division, this result might be convincing enough without the algebra, by taking the mid-point of a line drawn between the $U_{b}$ and $U_{c}$ phasors.

