
KTH EI1120 Elkretsanalys (CENMI) Omtenta 2017-06-08 kl 14–19

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Upp till tre A4-ark (sex sidor) med studentens egna anteckningar p̊a valfritt sätt: hand-
skrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek. De måste inte lämnas in.

För den intresserade: tre ark för att man kan välja att återanvända vad man hade till KS1 och KS2, samt att

lägga till en ny för växelström.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av kom-
ponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända

storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Nathaniel Taylor (0739 498 572)

Del A. Likström

1) [4p] Bestäm följande:

a) [1p] Effekten absorberad av R1.

b) [1p] Effekten levererad av källan I.

c) [1p] Effekten absorberad av R3.

d) [1p] Effekten levererad av operationsförstärkaren.

−

+

I

R3

+
−U

R2

R1
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2) [4p]

Bestäm v1 genom valfri metod; alternativt,
använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att bestämma v1.

Hela poäng erh̊alls vid korrekt lösning av v1.
Vid korrekta ekvationer utan hela lösningen
av v1 erh̊alls 0,5p mindre.

Observera att du kan börja med att använda
nodanalys för att f̊a ekvationerna, och sedan
försöka lösa dessa för full poäng. D̊a f̊ar du en
trygghet i att ekvationerna ger flest poäng även
om du inte lyckas lösa dem.

I R4

i4

R1 Gv2

+
−

+
−

R2 U

H i4 R3

v1

v2 v3

3) [4p]

a) [3p] Vilket värde av motst̊and måste kopplas
mellan kretsens poler x-y, om den maximala möjliga
effekten ska dras fr̊an kretsen?

b) [1p] Hur mycket är den maximala effekten som
kretsen kan leverera?

För dessa svar (3a, 3b) krävs inte att man förenklar
uttrycken: de kan vara sv̊ara att förenkla, beroende p̊a
vilken lösningssätt som man använt. Visa tydligt din
lösningsmetod.

R3

+ −

U2

R2

R1
i

+

−

u
+−

U1

K i

x

y

Short translations of Section-A questions to English:

1. Find: a) power into R1, b) power from I, c) power into R3, d) power from opamp.

2. Two alternative options: [for all 4 points] solve for v1 completely, by any method you wish; or [for 3.5 points]
use nodal analysis to write (but not have to solve) a set of equations that could be solved to find v1.

3. A maximum power and two-terminal equivalent question.
a) A resistor Rx is connected at the terminals x-y: what value should Rx be in order to obtain the maximum
possible power from the shown circuit?
b) How much is this maximum power that the circuit can deliver?
(Don’t worry about simplifying your answers. Just show the method.)
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Del B. Transient

4) [5p] Bestäm följande:

a) [2p] Vid t = 0−:
energin lagrad i kondensatorn C1,
effekten levererad av spänningskällan U .

b) [2p] Vid t = 0+:
spänningen u över strömkällan,
effekten absorberad i motst̊andet R3.

c) [1p] Vid t → ∞:
effekten levererad av strömkällan I.

R1

C1

L1

I

+ −
u

+
−U

L2

R2

t = 0

R3

5) [5p]

Bestäm v(t), för t > 0.

Obs: 1(t) är enhetsstegfunktionen.
−

+I · 1(t)

R

C

v(t)

Short translations of Section-B questions to English:

4. Find the following quantities:
a) at t = 0−: energy stored in C1, power out of source U .
b) at t = 0+: voltage u, power into R3.
c) as t → ∞: power out of source I.

5. Determine v(t), for t > 0.
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Del C. Växelström

6) [4p]

Kretsen inneh̊aller tv̊a kopplade spolar, med
ömsesidig induktans M .

Bestäm u(t).

L1 L2

+
−Û sinωt R

−

+

u(t)

M

7) [5p]

a) [2p] Bestäm kretsens nätverksfunktion,

H(ω) =
uo(ω)

ui(ω)
.

b) [1p]

Visa att svaret till deltal ’a’ kan skrivas i den
följande formen,

H(ω) =
k jω/ωa

(1 + jω/ωa) (1 + jω/ωb)
.

+
−ui

R1

L

+

−

ux

Gux

C

R2

+

−

uo

c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Anta att ωb = 1000ωa, och k = 10.
Markera kända frekvenser (t.ex. ω1), niv̊aer (t.ex. x dB) och lutningar (t.ex. y dB/dekad).

8) [3p]

Källan är en växelspänningskälla med vinkelfrekvens ω.
Värden U , ω, R, L och n är fastställda, kända storhe-
ter. Kondensatorn och motst̊andet p̊a transformatorns
högersida har värden som är anpassad för att maximera
den effekt som levereras till detta motst̊and (p̊a höger
sidan). Bestäm denna effekt.

n : 1

+
− U

R L
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9) [6p]

Spänningskällorna utgör en
balanserad trefaskälla med
huvudspänning U och vinkel-
frekvens ω.

Komponenterna R∆ och C∆

modellerar faserna av en last,
och komponenterna R och L
modellerar fasledarna mellan
källan och lasten.

+−

va
R L

+−

vb
R L

+−

vc
R L

C∆

C∆ C∆

R∆

R∆

R∆vx

a) [2p] Bestäm den aktiva effekten försörjd av den trefas källan.

b) [2p] Vilket värde ska C∆ ha för att den trefas källan matar med ‘perfekt’ effektfaktor (pf = 1).
Uttrycka värdet i förh̊allande till de andra komponentvärden.

c) [2p] Bestäm potentialen vx. Obs: inte bara en magnitud, utan ett komplext värde (fasvektor).
Anta att va = 0 och fasföljden (‘phase-rotation’) är abc.

Short translations of Section-C questions to English:

6. The circuit has two inductors, between which there is mutual inductance M .
Determine u(t).

7. Two first-order filters, cascaded via a dependent source.
a) determine the function H(ω) = uo(ω) / ui(ω).

b) show that the above function can be written as H(ω) = k jω/ωa

(1+jω/ωa) (1+jω/ωb)
.

c) Sketch a Bode amplitude-plot of the function from part ‘b’.
Assume 1000ωa = ωb and k = 10.
Indicate known values of frequencies (e.g. ω1), levels (e.g. x dB) and gradients (e.g. y dB/decade).

8. The source is an ac voltage-source with angular frequency ω.
The marked component-values are fixed. The values of the capacitor and resistor on the right of the transformer
have been chosen to obtain maximum power transfer into that resistor (on the right). Determine this power (into
the resistor on the right).

9. The sources form a balanced three-phase source with line-voltage magnitude U and angular frequency ω.

Each RL branch represents one phase of a power line; each R∆ C∆ branch represents one phase of a load.

a) Find the active power delivered by the three-phase source.

b) What value should C∆ have in order that the three-phase source supplies power at a unity power-factor

(pf= 1)? (Suggestion: write an equation for it in relation to the other component values, e.g. L.)

c) Find potential vx (as a phasor, not just a magnitude), assuming that va = 0 and phase-rotation is abc.

Slut . . . men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT17, 2017-06-08)

Q1

We can start by defining some of the unknown quantities, for use in the solutions.

−

+

I

R3

+
−U

R2

io

R1

vo vx

a) PR1 = I2R1.
No current flows in the ideal opamp inputs, so KCL requires that all the current I passes through R1.

b) PI = 0.
The current source is connected between the nodes to which the opamp inputs are connected. The (ide-
al) opamp, with negative feedback, has equal potential at its two inputs. There is therefore no voltage
across the current source I, so it delivers or consumes no power.

c) PR3 = (IR1−U)2

R3
.

By KVL, vx = 0 + IR1. This follows from comments in the previous two subquestions: the inverting
input’s potential is zero, and the current I flows in R1. The voltage across R3 is vx−U , which is IR1−U .
Power into a resistor R with voltage u across it is u2/R, so in this case the power into R3 is (IR1−U)2/R3.

d) Pop = I
(

I + IR1−U
R3

)

R1 +
(

I + IR1−U
R3

)2
R2.

This is the product of the marked output potential and current, vo and io. (Remember that we see the
opamp as being a voltage source connected between the zero node and the output.)
From the earlier subquestions we know the current in R1 and can calculate the current in R3; KCL then
gives the current in R2, which is the opamp’s output current, io = I + IR1−U

R3
.

By Ohm’s law and KVL, vo = vx + ioR2 = IR1 +
(

I + IR1−U
R3

)

R2.

Thus, Pop = voio = I
(

I + IR1−U
R3

)

R1 +
(

I + IR1−U
R3

)2
R2.
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Q2

Method 1: extended nodal analysis.

Define currents iα and iβ in the two voltage sources (the dependent and independent voltage sources,
respectively), into the + terminals. Then write KCL at each node except the reference (zero / ground /
earth) node.

KCL(1) : 0 =
v1 − v2
R1

+ iα +
v1 − v3
R3

−Gv2 (1)

KCL(2) : 0 = I +
v2 − v1
R1

− iα +
v2
R2

(2)

KCL(3) : 0 = −iβ +
v3 − v1
R3

+Gv2 +
v3
R4

(3)

The voltage sources provide further relations, as well as the further unknowns.

source U : v3 = −U (4)

source H i4 : v1 − v2 = H i4 (5)

We must define the marked quantities that are used as ‘controlling variables’. In this circuit one of the
dependent sources is controlled by a potential (v2) that is already being used in the equations, so we do
not need to define that.

i4 =
v3
R4

(6)

Method 2: nodal analysis with supernodes etc.

There are four nodes. They can be treated as two supernodes: the nodes marked v1 and v2 are connected
by the dependent voltage source, and the node marked v3 is connected by the independent voltaage
source to the reference node.
We do not need a KCL for the reference node or for any part of a supernode that contains it. So we only
need one KCL equation, for the supernode of nodes 1 and 2.

When writing this, we can try to make substitutions to avoid getting extra unknown variables beyond
v1 into the equation.
The potential v3 is seen to be −U .
Instead of H i4, we can substitute H −U

R4
.

Instead of v2, we write v1 −H i4, which becomes v1 +
H
R4

U .

KCL(1,2) : 0 = I +
v1 + U

R3
+

(

v1 +
H

R4
U

)(

1

R2
−G

)

This could alternatively have been found by substituting the above set of equations for the extended
nodal analysis method into each other to eliminate all unknowns except v1.

Rearranging to obtain v1,

v1 =

(

HG
R4

− H
R2R4

− 1
R3

)

U − I

1
R2

+ 1
R3

−G
.
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Q3

The two subquestions can be answered easily if we know the Thevenin (or Norton) equivalent of the
circuit. If the Thevenin equivalent is an open circuit voltage UT and resistance RT , then:

a) Maximum power to load Rx requires Rx = RT .

b) Power transferred to load in this case is Pmax = RT

(

U
T

2R
T

)2
=

U2
T

4R
T
.

How to find UT and RT is the more difficult part. Two methods are presented below. If there had not
been a dependent source, the equivalent resistance could quickly have been found by setting all the
sources to zero and simplifying the resulting resistor-network.

One method: short-circuit current and open-circuit voltage

The open-circuit value of terminal voltage u is relatively easily found. In open-circuit conditions, i = 0,
so the dependent current source K i also has zero current. Voltage division around the right-most loop
gives the voltage across R2. Then KVL around U1, R2, R1 gives

u(oc) = U1 + U2
R2

R2 +R3
.

The short-circuit value of terminal current i needs a bit more work. One method is nodal analysis,
taking KCL on the node above R2 (treating the node below R2 as the reference). With the terminals
short-circuited, there are four parallel branches. We can define a potential v at the node above R2, and
then substitute v = iR1 − U1; or we can do that substitution at the start, so that the equation can be
written immediately in terms of i. The result is

i(sc) =
U1

(

1
R2

+ 1
R3

)

+ U2
1
R3

1 +K + R1
R2

+ R1
R3

By the usual relations of Thevenin parameters and open/short circuit values,

UT = u(oc) and RT =
u(oc)

i(sc)
.

Another method: Derive the voltage/current relation

Direct expression for the u,i relation. This is quite similar to how the short-circuit current was derived,
but now we take the case where neither u nor i is known. From KCL above R2, with the voltage across
R2 defined as v,

v − u+ U1

R1
+K i+

v

R2
+

v − U2

R3
= 0.

Substituting i = v−u+U1
R1

, which is from KVL in the left branch,

(1 +K) i+
iR1 + u− U1

R2
+

iR1 + u− U1 − U2

R3
= 0

This equation is in terms of just u and i. We expect two unknowns for the one equation, as the system
isn’t fully defined: we haven’t declared what is connected to the terminals.
Rearranging into the form u = UT − iRT ,

u =

U1
R2

+ U1
R3

+ U2
R3

− i
(

1 +K + R1
R2

+ R1
R3

)

(

1
R2

+ 1
R3

)

.
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Q4

a) WC1(0
−) = 1

2C1U
2, PU(0

−) = −UI.

At t = 0− the circuit can be redrawn in the following way. The switch is open, so its branch including R3

does not affect the rest of the circuit. Capacitors and inductors are replaced by open- and short-circuits
respectively, corresponding to their behaviour in the equilibrium state that is assumed before the switch
changes the circuit.

+
−UR1 iL1

I

+ −
u

iL2

− +uC1
R2

The energy stored in the capacitor is 1
2C1u

2
C1
.

By KVL around the inductors (short-circuit) and voltage source, this is uC1(0
−) = U .

So WC1 = 1
2C1U

2.

The power delivered by source U is the product of its voltage and the current out of its + terminal.
By KCL at one of the nodes between the current source and voltage source, this current is −I.
This gives PU = −UI.

b) u(0+) = −U , PR3(0
+) =

(

U
1+

R1R2
(R1+R2)R3

)2/

R3.

The capacitor voltages and inductor currents have been defined in the above circuit, so that their values
can be used in later equilibrium calculations.

By continuity, uC1(0
+) = uC1(0

−) = U .
The capacitor and current source are in parallel: by KVL, u(0+) = −uC1(0

+)− U .

Finding the power in R3 at t = 0+ is more difficult. The main step is to find the voltage across, or
current through, the resistor R3. This requires solution of a circuit with several branches.

First, we should draw the circuit in its state at t = 0+, replacing the capacitor by a voltage source and
the inductors by current sources.

The capacitor voltage was already found, for the solution of u(0+), above.
The inductor currents are iL1(0

+) = iL1(0
−) = I and similarly iL2(0

+) = iL2(0
−) = I. (This can

be deduced from the diagram at t = 0−, above. In the equilibrium the resistors in parallel with the
inductors do not carry any current, because the inductors in the equilibrium state are like short-circuits
and so have no voltage across them. The capacitor is an open circuit, so all the current from source I
has to pass through the inductors.)
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+
−UR1 iL1 = I

I

+ −
u

iL2 = I

+−

uC1 = U
R2

R3

g

a

bv

Nodal analysis. One way to solve the circuit to find the voltage across R3, is nodal analysis without
any further simplifications. The four nodes have been marked with letters. Let’s define node g as the
reference (ground). Then the voltage across R3 is v.

Extended nodal analysis would give three KCL equations. If instead we use the concept of supernodes,
we get just one equation: nodes a and v become a supernode as they are joined by the voltage source
that represents the capacitor; node b is joined to g by the voltage source so it becomes part of the ground
supernode, where KCL is not needed.

KCL(a,v)out
v − U

R1
− I +

v

R3
+ I +

v − U

R2
= 0.

Rearranging to find v,

v

(

1

R1
+

1

R2
+

1

R3

)

= U

(

1

R1
+

1

R2

)

v = U
1
R1

+ 1
R2

1
R1

+ 1
R2

+ 1
R3

= U
R1+R2
R1R2

R1R2+R2R3+R3R1
R1R2R3

= U
(R1 +R2)R3

R1R2 + (R1 +R2)R3
=

U

1 + R1R2
(R1+R2)R3

.

Since v is the voltage across resistor R3, it is easily used to find PR3 = v2/R3.

The above is a sufficient solution.

The simplification reached at the right in the above equation isn’t required: the first form of the expres-
sion for v is acceptable.

We now look briefly at some other solution methods. In conclusion, however, the supernode nodal
analysis used above seems the simplest!

Source transformations. The circuit has two places where a current source and resistor are in paral-
lel. By source-transforming these, we move towards a simpler three-branch circuit. The current source
parallel with a voltage source can be ignored (for solution of quantities in the rest of the circuit outside
this pair), leaving just three paths for KCL at node v. Try solving it!

R3+
−IR1

R1

+−

U
I

+−

IR2
R2

+
−U

v

R3

+
− U+IR1

R1

+
−U−IR2

R2

v
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Source transformation and simplify current-sources. A quite similar simplification can be done using
just one source transformation, if one realises that node ‘a’ in the original circuit has current sources
putting equal currents in and out; their total current is therefore zero, so they do not affect the node.
These sources can then be separated as shown below, and simplified into one.

R3
I

I

+
−U

R1

+−

IR2
R2

+
−U

v

R3I

+
−U

R1

+
−U−IR2

R2

v

( This simplification of current sources is one of many ‘theorems’ for circuits.
It is an example of the current-source version of Blakesley’s source-shift theorem from 1894, which focused on
voltage sources, http://iopscience.iop.org/1478-7814/13/1/307 )

Immediate removal of current sources. We can take it further by noticing in the original circuit that
node v also has equal current sources putting current in and out. This ‘chain’ of three current sources
just moves current from node g to node b without actually affecting a or v! Nodes b and g are not affected
in their potentials by this current, as they are linked by a voltage source. If we saw this at the start, we
could have solved a much simpler circuit, like the second one in the ‘Source transformations’ method,
but with both voltage sources being just U .

Superposition. Superposition is another approach that could be tried. If the current sources have al-
ready been removed (see previous method), then there are only two superposition states to consider.

c) PI(∞) = UI.

The voltage across the current source is the same when t → ∞ as at t = 0−. This can be seen from KVL
around the voltage source, inductors (short-circuit) and current source.

The power coming out of the current source is requested: this is −uI.
As u = −U the result is simply UI.

Q5

At times t ≥ 0, the capacitor is connected across the marked
terminals of the circuit shown here on the right. The voltage
and current at the terminals are marked as u and i.

The opamp’s non-inverting input is at zero potential, so the
inverting input is assumed also to be held to zero potential by
the feedback: hence u = v.

The current through the feedback resistor is then u/R by
Ohm’s law, but also must be −I − i by KCL, as no current
goes into the opamp input. Therefore, i = −I − u/R.

Putting these relations together,

v(t) = u(t) = −IR− i(t)R (t > 0).

−

+I

R

+− u(t)

i(t)

v(t)
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Method 1: ODE solution.

The above expression for v(t) has two unknowns: v and i. In our case, we know that a capacitor
is connected. Looking at the directions of v and i (passive convention) we can write the capacitor’s

equation i(t) = C dv(t)
dt and substitute this for i(t) to get an ODE with v(t) as its dependent variable,

v(t) = −IR−RC
dv(t)

dt

which in a standard form is
dv(t)

dt
+

1

RC
v(t) =

−I

C

with general solution
v(t) = −IR+Ke−t/RC K to be determined

Before the step-function at t = 0 changed the current-source from 0 to I, the equilibrium state was
v(0−) = 0, since KCL requires zero current through R if the capacitor is open-circuit (equilibrium)
and the current source is zeroed (step-function). The voltage v is the same as the voltage across the
capacitor, which is a continuous quantity. Therefore, by continuity v(0+) = v(0−) = 0. Inserting this
into the above solution, at time t = 0+, we find K,

v(0+) = 0 = −IR+Ke−0/RC = −IR+K =⇒ K = IR,

from which the function v(t) can be written as

v(t) = IR
(

e−t/RC − 1
)

(t > 0).

Method 2: Equivalent source and function-fit.

Given that this is a first-order circuit, we know that the solution will be of the form

v(t) = v(∞) +
(

v(0+)− v(∞)
)

e−t/τ ,

where v(∞) is the final value, v(0+) is the initial value, and τ is the time-constant.

As reasoned in the earlier solution, v(0+) = 0. The final value is an equilibrium, so we assume no current
flows in the capacitor; in that case all the current I flows in the resistor R, resulting in v(∞) = −IR.
The time-constant can be quite confidently guessed as τ = RC in this circuit.

However, for more complex circuits (or to justify our guess about the time-constant in this case) it would
be sensible to find the Thevenin or Norton equivalent of the circuit that the capacitor is connected to,
and then to find the time-constant and final value from this.

The earlier expression v(t) = −IR− i(t)R implies a Thevenin equivalent with UT = −IR and RT = R.

As expected, this gives a final voltage v(∞) = UT = −IR and time-constant τ = RTC = RC.

Filling in the initial value, final value and time-constant,

v(t) = −IR+ (0− (−IR)) e−t/RC = IR
(

e−t/RC − 1
)

(t > 0).
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Q6

We’ll do ac analysis (rather than solving by differential equations). Using sine and peak-value, the
time-function Û sinωt is represented by the phasor U(ω) = Û 0.

With currents marked, the circuit is the following:

L1 L2

+
−U(ω) = Û 0

i1(ω)

R

−

+

u(ω)

i2(ω)
M

The equations for mutual inductors, and Ohm’s law for the resistor, are:

Û 0 = jωL1i1 + jωM(−i2)

u = jωL2(−i2) + jωMi1

u = R i2.

Substitute the third into the others, to eliminate i2,

Û 0 = jωL1i1 − jω
M

R
u

u = jωMi1 − jω
L2

R
u

then the first into the second, to eliminate i1,

u = jωM

(

Û 0

jωL1
+

M

RL1
u

)

− jω
L2

R
u

and rearrange,

M

L1
Û 0 =

(

1 + jω
L2

R
− jω

M2

RL1

)

u,

u(ω) =
Û M

L1

1 + jω
(

L2
R − M2

L1R

) =
Û MR

L1

R+ jω
(

L2 − M2

L1

)

The numerator (top) is purely real. The angle of u(ω) is therefore the negation of the phase of the
denominator,

|u(ω)| =
Û M

L1
√

1 + ω2
(

L2
R − M2

L1R

)2
, u(ω) = − tan−1

(

ω
(

L2
R − M2

L1R

))

,

Converting back to time, being careful to use the same choice of sine and peak reference,

u(t) =
Û M

L1
√

1 + ω2
(

L2
R − M2

L1R

)2
sin
(

ωt− tan−1
(

ω
(

L2
R − M2

L1R

)))

.
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Q7

a) In the loop at the left, voltage division gives

ux =
jωL

R1 + jωL
ui.

In the remainder of the circuit, to the right, the voltage uo is across the parallel impedance of the
components C and R2, with current Gux, so

uo =
R2

1
jωC

R2 +
1

jωC

Gux =
GR2

1 + jωCR2
ux.

Putting these together,

H =
uo
ui

=
GR2

1 + jωCR2
· jωL

R1 + jωL

b) By a small rearrangement, the above answer

H(ω) =
GR2

1 + jωCR2
· jωL

R1 + jωL
=

jωLGR2

(1 + jωCR2) (R1 + jωL)
=

GR2 jωL/R1

(1 + jωL/R1) (1 + jωCR2)
,

which matches the requested expression if

ωa =
R1

L
, ωb =

1

CR2
, k = GR2.

c) The plot below shows the smooth function of network-function magnitude, and its asymptotic
approximation (classic Bode magnitude plot).

The significant details to note are:

i) the flat part at ωa < ω < ωb,

ii) this flat part has a level of 20 dB,

iii) slope of 20 dB/decade at ω < ωa,

iv) slope of −20 dB/decade at ω > ωb.

These details need to be made clear in the
submitted solution.
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The Bode magnitude diagram can be worked out from the function itself, considering approximations
when the frequency is at, or is much above or below, the special frequencies ωa and ωb.

Another way one can work out the diagram is by separate treatment of each of the 4 terms in the
equation, (k), (jω/ωa), 1/(1+ jω/ωa), 1/(1+ jω/ωb), then adding their Bode plots (multiplication of the
terms corresponds to addition in the logarithmic scale of the Bode amplitude plot).
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Q8

This is a classic “maximum power and transformer” question, based on the ac maximum power, which
happens with complex-conjugate matching of the load and source impedances. Different boundaries
between ‘source’ and ‘load’ can be chosen: for example, the left of the transformer, or the right, or
between R and L, or between the unknown components. It is easier to apply the maximum power con-
dition if we remove the transformer and scale (by n) the component values that were on one side of the
transformer so that they have the same effect on the components that were on the other side.

‘Standard’ solution. Before trying a short-cut, we’ll go the long way. Let’s demonstrate this for the
case where we remove the transformer but scale the values of U , R and L by the transformer’s ratio, so
that they will behave the same when ‘seen’ by the other components (the unknown components). We
can call the unknown components Cx and Rx, and regard them as the load.

n : 1

+
− U

R L

+
− U/n

R/n2 L/n2 Cx

Rx

By the ac maximum power theorem, we need
(

R

n2
+ jω

L

n2

)

=

(

Rx + j
1

jωCx

)∗

=

(

Rx + j
1

ωCx

)

,

from which (equating real and imaginary parts separately) Rx = R
n2 and Cx = n2

ω2L
.

The current in the loop is then

i =
U/n

R/n2 +Rx + jωL/n2 + 1
jωCx

=
U/n

2R/n2
=

nU

2R
.

The power in the load resistor Rx is

P = i2Rx = i2R/n2 =

(

nU

2R

)2 R

n2
=

U2

4R
.

Short solution. In this question we do not have to determine the values of the unknown components,
but only to determine the power into the unknown resistor given that the components are chosen to give
maximum power. There is a short-cut available.

If we define the source/load break at the left of the transformer, the source is a Thevenin voltage U
and impedance Z = R + jωL. The load is the combination of the transformer and the two unknown
components. It will behave as a plain impedance, and the only part of it that can have non-zero active
power is the resistor: the ideal transformer consumes or generates no power (not active or reactive), and
the capacitor only generates reactive power.

From this, we see that the maximum possible power from the source will be the power in the unknown
resistor in the case when the unknown components are chosen to maximise the power. We don’t actually
have to analyse the load. The source will deliver maximum power if its load is the complex conjugate of
the source impedance: i.e. if the load has a capacitive part that ‘cancels’ the inductive reactance , and
a resistive part equal to R.

In this case the circuit simplifies to a source U and two series resistors R. Assuming (as usual) that the
magnitude of U is in an rms scale, the power in the load resistor is

Pmax =

(

U

2R

)2

R =
U2

4R
.
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Q9

Note that all parts of this question are about a balanced system, in contrast to some recent exams where
unbalanced conditions were studied in the last parts of the question.

a) To determine the total active power supplied by the three-phase source, there is the classic difficulty
that the delta load and the line impedances form a ‘messy’ network without obvious parallel connections
to simplify. It becomes much easier if the delta is converted to an equivalent star, of components R∆/3
and C∆/3. Then we can analyse just one phase of this, knowing by symmetry that the other two phases
will have similar voltages and currents but with 120° shifts.

+−

u = 1√
3
U

R L
1
3R∆

3C∆

In the single-phase circuit above, the source provides a complex power of

S1 =
|u|2
Z∗
total

=

(

1√
3
U
)2

R+ R∆/3 − j
(

ωL− 1
3ωC∆

)

Multiplying by three (to get the total power from the three-phase source in the original question), and
taking just the real (active) part,

P = ℜ{3S1} = ℜ







U2

R+ 1
3R∆ − j

(

ωL− 1
3ωC∆

)







=
U2
(

R+ 1
3R∆

)

(

R+ 1
3R∆

)2
+
(

ωL− 1
3ωC∆

)2

b) In order for the source to supply no reactive power, the total load (the line R,L and the load R∆,C∆)
should appear as a real impedance.

In the single-phase equivalent circuit shown above, this means that the impedances of L and C∆/3 should
cancel (series resonsance), so that the source ‘sees’ a pure resistor of R+R∆/3. This requires

jωL+
1

jω3C
= 0

and so

C =
1

3ω2L

c) We have to determine a potential, as a phasor. The system is still all balanced, so we can start by
analysing a single phase equivalent, similar to what is shown in the solution of subquestion ‘a’.

+−

vb =
1√
3
U −120°

R L vx

1
3R∆

3C∆

Voltage division gives

vx = vb

R∆
3 + 1

jω3C∆

R+ jωL+ R∆
3 + 1

jω3C∆
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Putting in the value of vb, and trying to neaten it a bit,

vx =
U√
3

−120° ·
R∆
3 + 1

jω3C∆

R+ jωL+ R∆
3 + 1

jω3C∆

=
U√
3

−2π
3 ·

R∆ − j 1
ωC∆

3R+ jω3L+R∆ + 1
jωC∆

The solution above is sufficient.

We weren’t asked for a separate magnitude and angle (polar form) of the result, and we’re not going to
find a much more compact way of expressing it.

Possible further steps.

If we were wanting to get a solution in polar form, one way would be to take the magnitude and angle
of each of the three complex terms in the above expression (the voltage which is already in polar form,
and the upper and lower impedances in the voltage-division formula) and then join these together:

vx =
U√
3
·

√

√

√

√

√

R2
∆ + 1

ω2C2
∆

(3R+R∆)
2 +

(

3ωL− 1
ωC∆

)2 −2π
3 − tan−1 1

ωR∆C∆
− tan−1

3ωL− 1
ωC∆

3R+R∆
.

Other apparent simplifications, consisting of several rectangular complex numbers, are

vx =
U√
3

−120° ·
R∆
3 + 1

jω3C∆

R+ jωL+ R∆
3 + 1

jω3C∆

=
−
(

1
2
√
3
+ j12

)

U

1 + R+jωL
R∆
3

+ 1
jω3C∆

=
−
(

1 + j
√
3
)

U
2
√
3

1 + 3R+jω3L

R∆+ 1
jωC∆

.

These do not help to finding the overall magnitude and angle. To do this via a rectangular form, we
can try to separate the whole expression into a real and imaginary part. Start by expressing each term
in rectangular form, then making the bottom part real by multiplying top and bottom by its complex
conjugate.

vx =
− U

2
√
3

(

1 + j
√
3
)

(

R∆ − j 1
ωC∆

)

3R+ jω3L+R∆ + 1
jωC∆

=
U

2
√
3

·
−
(

1 + j
√
3
)

(

R∆ − j 1
ωC∆

)(

3R+R∆ − j
(

3ωL− 1
ωC∆

))

(3R+R∆)
2 +

(

3ωL− 1
ωC∆

)2 .

Expanding out the three complex terms on the top, and grouping them into real and imaginary parts,
a rectangular form is found in which the real and imaginary parts are separated.

vx =
−U

2
√
3
·

(

(

R∆+
√

3
ωC∆

)

(3R+R∆)+
(√

3R∆− 1
ωC∆

)(

3ωL− 1
ωC∆

)

)

+ j
(

(3R+R∆)
(√

3R∆− 1
ωC∆

)

−
(

R∆+
√

3
ωC∆

)(

3ωL− 1
ωC∆

)

)

(3R+R∆)
2 +

(

3ωL− 1
ωC∆

)2 .

From this, the polar form could be expressed. Only one arctangent would be needed to find the angle:
that could make it sound simpler than the earlier way in which the angle was found. However, this result
is so long that it is clearly neater to express the polar form in terms of two arctangents (as done earlier)
instead of going via this expansion into a rectangular complex number!
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