
KTH EI1120 Elkretsanalys (CENMI) KS 2 2018-02-12 kl 08–10

Hjälpmedel: Upp till tv̊a A4-ark (b̊ada sidor kan användas) med studentens egna anteckningar p̊a
valfritt sätt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek, osv. Dessa
måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av kom-
ponenter (t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända

storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter och förenklas. Var tydlig med
diagram och definitioner av variabler.

KS2 ger inte direkt betyg, utan poäng som kan ersätta poängen i sektion-B i tentan (TEN1, mars) om
KS:en gav mer. Se därför reglerna för TEN1 ang̊aende gränser.

Nathaniel Taylor (073 949 8572)

1) [5p]

Bestäm följande:

Determine the following:

a) [2p] ux(0
−)

b) [2p] i1(0
+)

c) [1p] u2(0
+)
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2) [5p]

Bestäm spänningen u(t), för t > 0.
(1(t) är enhetsstegfunktionen.)

Find the voltage u(t) for t > 0.

(1(t) denotes a unit-step function.)
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Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120 KS 2 VT18, 2018-02-12)

Q1.

a) ux(0
−).

The original circuit is shown on the right.

In equilibrium it can be redrawn (right) with
the switch in its open state and the capacitors
and inductors replaced with their steady-state
behaviours of respectively no current and no
voltage.
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Here is the redrawn circuit for the equilibrium
state at t = 0−, when the switch is still open.

The marked i1 and u2 are seen to be zero; we’ve
omitted them from the diagram to keep it neat.

We want to find ux in this state. One choice
– often a good one – is a nodal analysis with
simplifications. If we mark a ground and a
potential v (shown as pale additions in the
diagram) we can write KCL at v by looking
at the 4 branches between these nodes; two of
those have zero current so they don’t affect
the KCL equation.
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KCL(v) :
v −Kux

R1
+ 0 +

v − U2

R2
+ 0 = 0

This contains the sought unknown, ux, but also the extra unknown v that we introduced. We look to
the way that ux is defined in the circuit (this should be relevant to the solution, and the KCL we have
written does not describe the definition of ux across the open circuit).

ux + U1 = −v =⇒ v = −U1 − ux

Substituting this relation into KCL(v) to eliminate v,

−U1 − ux −Kux
R1

+
−U1 − ux − U2

R2
= 0

and rearranging,

ux

(

1 +K

R1
+

1

R2

)

= −
U1

R1
−

U1 + U2

R2

ux =
−

U1

R1
−

U1+U2

R2

1+K
R1

+ 1
R2

= −

U1(R1+R2)+U2R1

R1R2

R1+(1+K)R2

R1R2

= −
U1(R1 +R2) + U2R1

R1 + (1 +K)R2
.

Alternative method:
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Instead of starting with KCL, we could try KVL. The circuit shown for t = 0− has only one loop that
can carry current: we can define that unknown current as i going clockwise. Other branches in this
circuit are open circuits, so their current is zero.

KVL: K ux + 0− iR1 − U2 − iR2 + 0 = 0 =⇒ i =
K ux − U2

R1 +R2

That has two unknowns. We can relate i and ux through another equation, in the branch with the switch
and U1. This is another KVL.

KVL: 0 = −ux − U1 − U2 − iR2.

Substituting from the earlier KVL, to eliminate i,

0 = −ux − U1 − U2 −
(K ux − U2)R2

R1 +R2
,

which is rearranged to

ux = −

U1 + U2 − U2
R2

R1+R2

1 + KR2

R1+R2

= −
U1 (R1 +R2) + U2R1

R1 + (1 +K)R2
.

b) i1(0
+).

At t = 0+ (imediately after the switch closes) the in-
ductors’ currents and the capacitor’s voltage are the same
as before. The diagram on the right shows the circuit at
this time.

The switch is closed (short), so there is no voltage across
it: ux = 0. This also means that the dependent voltage
source K ux becomes fixed to zero, so it can be represen-
ted as a short.

The current i that we defined in part ‘a)’ was flowing
around the loop of both inductors. Due to continuity of
inductor currents, we can represent the inductors at t =
0+ by current-sources having the value of i(0−).

The capacitor has a voltage u
C
which by continuity is the

same as the before the switch closed: u
C
(0+) = u

C
(0−).
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+ −
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+ −
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+−
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+−

u
C
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v

Let’s start by solving for i1(0
+) using these symbols i and u

C
. Then we can fill in those values later.

The voltage between the left and right nodes is now fixed by the source U1. (This makes the top branch
irrelevant to i1 and u2.) KVL around U1, uC

and R3 allows us to find the voltage across R3; then Ohm’s
law finds the current through it, and KCL says this is the same as the current in the capacitor. Be
careful about the signs!

i1(0
+) =

−U1 − u
C

R3
.

But now we have to fill in the value of u
C
. This is a continuous quantity (voltage across a capacitor).

Looking back to the equilibrium state shown in part ‘a)’, u
C
is found by KVL around the lowest loop,

u
C
= U2 + iR2.

Into this we substitute i = K ux−U2

R1+R2
, which we found in the KVL-based method for part ‘a)’. Then ux in

the expression for i is substituted with the solution found in part ‘a)’,

i1(0
+) =

1

R3



−U1 − U2 −R2





K
(

−
U1(R1+R2)+U2R1

R1+(1+K)R2

)

− U2

R1 +R2







 ,
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or more neatly,

i1(0
+) =

−1

R3



U1 + U2 −R2





K
(

U1(R1+R2)+U2R1

R1+(1+K)R2

)

+ U2

R1 +R2







 .

After some ‘not inconsiderable’ manipulation of the messy result we get

i1(0
+) = −

U1(R1 +R2) + U2R1

(R1 + (1+K)R2)R3
.

This level of simplification is certainly not required, as it’s not entirely obvious at the start whether it’s
going to simplify so much.

c) u2(0
+).

Using the same diagram as in part ‘b)’, KVL in the middle loop gives

−U1 − U2 + (−i)R2 + u2 = 0 =⇒ u2(0
+) = U1 + U2 + iR2.

As in part ‘b)’, we now must use the earlier expressions for ‘i’ and then for ux, from part ‘a)’,

u2(0
+) = U1 + U2 +R2

K
(

−
U1(R1+R2)+U2R1

R1+(1+K)R2

)

− U2

R1 +R2

This can be simplified to

u2(0
+) =

U1(R1 +R2) + U2R1

R1 + (1+K)R2
,

but again it is not required to go this far with the simplification.
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Q2.

Two extreme types of solution will be presented. An intermediate form would be to find a two-pole
equivalent (Thevenin or Norton) of everything except the inductor, then to solve the circuit consisting
of this equivalent connected to the inductor.

I. Quick ‘three-point’ method: initial value, final value, time-constant.

We’ve usually said “solve first for the continuous quantity, then find other quantities from this solution”.
Following that principle we would first solve for the inductor’s current. We’ll define this current as i(t),
downwards.

The final value is i(∞) = U
R1

.
This is seen from the current source being zero (open circuit) and the other resistors (R2,3) being shorted
by the inductor, which behaves as a short-circuit as this is an equilibrium state.

The initial value is i(0+) = i(0−) = U
R1

−
IR3

R2+R3
.

This is found from equilibrium and continuity. In the equilibrium state at t = 0−, the inductor has zero
voltage, i.e. it is like a short-circuit. Its current is by KCL the sum of the currents in R1 and R2. The
current in R1 is found directly by Ohm’s law, and the current in R2 is found by current division of
I. This is perhaps not obvious from the diagram. Try re-drawing it with the inductor short-circuited.
Instead or as well, consider applying nodal analysis with the bottom node as zero and with a supernode
around the voltage source: then there is only one other node for which to solve the potential, and that
result can be used to find the current in R2.

The time-constant is τ = L(R1+R2+R3)
R1(R2+R3)

.

This is found by the principle that the time-constant is the ratio L/R
T
, where R

T
is the equivalent

resistance of all the circuit except the inductor, seen from the inductor’s terminals. As there are no
dependent sources, it is easy to set the independent sources to zero and then simplify the remaining
circuit which is simply R1 in parallel with the series branch of R2 +R3. This gives RT

= R1(R2+R3)
R1+R2+R3

.

To make a decaying exponential curve that goes from i(0+) to i(∞) with time-constant τ , we take

i(t) = i(∞) +
(

i(0+)− i(∞)
)

e−t/τ .

For our previously found values,

i(t) =
U

R1
−

IR3

R2 +R3
exp

{

−t R1(R2+R3)
L(R1+R2+R3)

}

(t > 0)

That is the solution of the continuous quantity (current in the inductor), but we were supposed to find
the voltage u(t) across the inductor. These are related by u = Ldi

dt . . . we are of course careful to check
that the defined directions of the voltage and current do not require a minus sign in the expression.

u(t) = L
di(t)

dt
= L ·

−IR3

R2 +R3
·

−R1 (R2 +R3)

L (R1 +R2 +R3)
exp

{

−t R1(R2+R3)
L(R1+R2+R3)

}

and this simplifies to

u(t) =
IR1R3

R1 +R2 +R3
exp

{

−t R1(R2+R3)
L(R1+R2+R3)

}

(t > 0).
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II. Forming ODE directly from the circuit.

We’ll use nodal analysis as a starting point.

There are four nodes. Two are joined by the
voltage source, so they can be treated as a
supernode. Let’s define the bottom node as the
reference (ground); then the node above the
voltage source is part of the same supernode:
we don’t need KCL at either of the nodes in
this ground supernode (their potentials are al-
ready defined as 0 and U).

Now we write KCL at the two remaining no-
des. One has a potential already defined by
the marked ‘u’. The other we can define as
‘v’. We’ll define the current downwards through
the inductor as i.

R3

R2

I ·
(

1− 1(t)
)

R1

L

+

−

u(t)

i(t)

+
−Uv u

KCL(u) : 0 = i+
u− v

R2
+

u− U

R1

KCL(v) : 0 =
v

R3
+

v − u

R2
+ I · (1− 1(t))

These are two equations in three unknowns. We also can include the inductor’s equation,

u = L
di

dt
.

It links u and i and makes our problem solvable, but the derivative term means that a differential
equation has to be solved.

Let us first eliminate v from the two KCL equations.
Rearrange KCL(v)

0 =

(

1

R2
+

1

R3

)

v −
u

R2
+ I · (1− 1(t)) ,

then rearrange KCL(u)

v = R2

(

u

(

1

R1
+

1

R2

)

+ i−
U

R1

)

,

and substitute for v,

0 =

(

1

R2
+

1

R3

)

R2

(

u

(

1

R1
+

1

R2

)

+ i−
U

R1

)

−
u

R2
+ I · (1− 1(t)) .

Now substitute with u = Ldi
dt , to get a differential equation in the continuous quantity i.

As we are only interested in finding the result for t > 0, we can simplify the step-function term, since
(1− 1(t)) = 0 for t > 0,

(

R2 +R3

R2R3
R2 ·

R1 +R2

R1R2
−

1

R2

)

L
di(t)

dt
+

R2 +R3

R2R3
R2i(t) =

R2 +R3

R1R2R3
U.

Now rearrange in a standard form,

di(t)

dt
+

R1(R2 +R3)

L(R1 +R2 +R3)
i(t) =

(R2 +R3)U

(R1 +R2 +R3)L
,
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which has the following general solution, where K is a constant to be determined,

i(t) =
U

R1
+K exp

{

−t R1(R2+R3)
L(R1+R2+R3)

}

.

To find K we need the initial condition. Consider the equilibrium at t = 0−. In this case the inductor
has zero voltage (it is like a short-circuit). Thus u(0−) = 0. If we take the earlier equation that combined
both KCL equations and eliminated v, we can use it at t = 0− by setting u = 0 and (1 − 1(t)) = 1, to
find the equilibrium current,

0 =

(

1

R2
+

1

R3

)

R2

(

i(0−)−
U

R1

)

+ I, =⇒ i(0−) =
U

R1
−

R3

R2 +R3
I.

Due to the continuity of inductor current, i(0+) = i(0−).
Putting this into the ODE solution,

i(0+) =
U

R1
−

R3

R2 +R3
I =

U

R1
+K e0 =⇒ K = −

R3

R2 +R3
I.

Inserting this value of K to the general solution of the ODE gives (as expected) the same result as
was found by the first method, of initial value, final value, time constant. Then, as was done there, the
voltage u(t) can be found from the current i(t).

A comment. This circuit looks simple: there are no dependent sources, and only six components. But it needs
surprisingly much algebra to solve it in a general way; one attempted explanation is that the topology initially
has no series or parallel branches that can be simplified (after the current source becomes zero, it is simpler, with
two series-connected resistors).

III. Thevenin equivalent.

Several approaches can be used here to find the Thevenin or Norton equivalent of the circuit that the
inductor ‘sees’ at its terminals.

Considering t > 0, when the current source has zero value, the short-circuit current where the inductor
is connected is simply isc = U/R1. The open-circuit voltage at the same terminals is found by voltage
division, uoc = U(R2 + R3)/(R1 + R2 + R3). The equivalent resistance is then uoc/isc, which could
alternatively be found by the method of setting sources to zero and simplifying, as used in our first
example solution method.

Alternatively, being more equation-oriented than diagram-simplification-oriented, we could start in the
same way as the second example solution method (forming ODE directly), to rearrange and combine
the two KCLs, which gives a relation between u and i at the terminals where the inductor is connected.
This equation can be rearranged in the form u = U

T
− iR

T
to identify the Thevenin parameters directly,

or it can have current and voltage set to zero to identify respectively uoc and isc.

Having found the Thevenin equivalent, it is still necessary to consider also the circuit before the step
function, to get the right initial condition for the inductor’s current. The Thevenin equivalent found
above is not appropriate for this time, since it is based on the current source having value 0. Approaches
as shown in methods I or II can be used.
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