KTH EI1120 Elkretsanalys (CENMI) TEN1 2018-03-13 k108-13

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tva i del B (10p) och fyra i del C (18p).

Studenter fran EI1110 svarar bara pa Del C, vixelstrom!

Hjilpmedel: Upp till tre Ad-ark (bada sidor kan anvéndas) med studentens egna anteckningar pa val-
fritt satt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek, osv. Dessa maste
inte ldmnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna vérden av kom-
ponenter (t.ex. R for ett motstand, U for en spianningskélla, K for en beroende kiilla) antas vara kdnda
storheter; och andra markerade storheter (t.ex. strommen markerad i ett motstand eller spanningskilla)
antas vara okdnda storheter. Losningar ska uttryckas i kidnda storheter och férenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara svarare att tjina podng pa: fastna inte pa dessa.
Det hjilper, ofta, att rita om ett diagram for olika tillstand eller med ersdttningar eller borttagning av
delar som inte &r relevanta for det sdkta vérdet. Da blir kretsen ofta mycket ldttare att tdnka pa och
l6sa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ 16sningsmetod.

Réknande av betyg: Lat A, B och C vara de maximala mdjliga poéngen fran delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. Lat a, b och ¢ vara poingen man far i dessa respektive delar i tentan, och ay
vara poingen man fick fran kontrollskrivning KS1, och by poéngen fran KS2, och h bonuspodngen fran
hemuppgifterna. Godkénd tentamen (och dérigenom hel kurs) kriver:

max(a, ay)

A

max (b, by)

max(a, ax) + max(b,by) + c+ h > 0.5,

>
204 & A+B+C -

c
>04 & =203 &
-_ C—?

Betyget riknas ocksa fran summan 6ver alla delar och bonuspoédng, d.v.s. sista termen ovan, med grinser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkénd med liten marginal, sa kan
betyget Fx registreras, med mojlighet att fa betyget E om ett kompletteringsarbete dr godkint inom
nagra veckor efter tentamen.

Observera att nu i VI'18 omgangen har vi givit méjlighet for studenter pa EI1120 att klara av alla poédng
fran tal 9, om trefas véxelstrom, genom godkind datoruppgift (hemuppgift 13).

Nathaniel Taylor (073 949 8572)
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Del A. Likstrom

1) [4p] Bestdm effekterna absorberad av foljande I I
komponenternas: Q Q

NI NI
a) [Ip] Ry Ry
b) [1p] Rs. Ry Vs Kv,

Uz

c) [1p] Us.

D A —
d) [1p] L. = U R3

1

2) [4p]

a) [3p] Anvénd nodanalys for att skriva ekvationer
som skulle kunna losas for alla fyra nodpotenti-
alerna v1, vg, v3, v4. Du maste inte 16sa ekvationerna.

b) [1p] Bestdm vy (valfri metod).

3) [4p] < > AAN

Ry
Bestdm den maximala effekten som kretsen kan leverera fran v
polerna a-b (till nagonting som man ansluter till dessa poler). ~
—
_/
Ré !
R3
[e] O
a b
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Del B. Transient

4) [5p] Bestdm w och i vid foljande tider:

a) [2p] t=0".
b) [2p] t=0".

c) [Ip] t— oo.

5) [5p] I-(1-1())
)
Bestdm u(t), for ¢ > 0. O
Ry
Ry
AW 16
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Del C. Viaxelstrom

6) (4] M R
Kallorna har foljande tidsfunktioner:
A 1) CD Ly L U(t)
I(t) = 1Icos(wt) i(t)
U(t) = Usin(wt) <

Bestam i(t).

7) [4p]
v
O— — +

a) [2p] Bestdm kretsens nitverksfunktion,

Vg (w
H(w) = v%((w)) Ry
Z A"
b) [2p] Svaret till deltal ’a’ kan skrivas pa foljande formen, §
R3
(jw/wa) (1 + jw/we) —°

Skiss ett Bode amplituddiagram av funktionen ovan. T:
Anta att: w, < wp < we.

Markera viktiga frekvenser och lutningar.

8) [4p]

Kallan har vinkelfrekvens w.

a) [3p] Bestdm Ry och L for att maximera
den aktiva effekten som levereras till Rs.

b) [1p] Ersitt spolen L med en kortslutning, och transformatorn med kopplade spolor L; (vénster)
och Ly (hoger). Bestam motstandet Ry och kopplingskoefficienten k& mellan spolorna, for att maximera
den aktiva effekten som levereras till Rs.
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9) [6p]

Spéanningskéllorna utgér en balanserad
trefaskilla med huvudspénning U och
vinkelfrekvens w.

a) [1p] Bestdm strommen iy.

torer (komplexa tal) som skulle kunna
beskriva potentialerna i noderna ’a’, 'b’
och ’c’. Det finns flera mgjliga svar.

0
b) [1p] Ge ett exempel pa tre fasvek- @ ¢

c) [Ip] Bestdm den reaktiva effekten —
levererad till den delta-anslutna lasten
(alla R och L komponenterna).

d) [2p] Bestiam effektfaktorn (PF) hos hela lasten som den trefas spédnningskéllan matar.

e) [1p] Bestdm fasvinkeln hos strommen i, relativ till strommen i,.

Slut ... men slosa inte eventuell aterstaende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT18, 2018-03-13)

Q1

a) Py, = I?R;.

The current source and resistor are in series; KCL determines the resistor’s current.

b) P, = I3Rs.

Similar to the case in ‘a)’, although not perhaps so obvious, as there is a dependent source between the
current source and the resistor.

C) PU2 = (Il —I-IQ)UQ.

The power delivered to this source is the product of its voltage and the current into the terminal that is
the positive reference of that voltage (i.e. ‘passive convention’). The current downwards in this voltage
source is found directly by KCL in the top node.

d) P, =IL(KU, — (14+K)U; — I Ry — I;(R2+Rs)).

The power into this source is the product of its current and the voltage of its right-hand side relative to
its left-hand side (as the current is marked right-to-left).

KVL around the right-hand loop gives: P, = Iy (—K(Us — Uy) — IaR3 — Uy — (11 + I2)R2), where the

I
first term comes from the KVL relation v, = —U; + Us.

Q2
a) Two possible methods are shown below, for writing suitable equations.
Extended nodal analysis.

Start with KCL at every node except the reference. This circuit has two voltage sources: the dependent
source and the opamp output. We can define unknown currents in these: we’ll call them i, into the
+-pole of the dependent source, and i, out of the opamp.

KCL(1): 0 = —L47—i, (1)
Ry
(%]
KCL(2): 0 = 27 2
CLE: 0 = 2 ©)
KCL(3): 0 = iq+ 22 (3)
R3
Vg4 — V3 Vg .
KCL(4): = — — 4

Now we have 4 equations, in 6 unknowns. Beyond the 4 unknown node-potentials, there are the currents
in the voltage sources; this hints to us that we should look to the voltage sources to provide further
equations. The dependent source sets a relation between two node-potentials:

vy — v, = Hig. (5)

However, this new equation introduced a further unknown, the marked quantity i,. This needs to be
described in terms of the existing defined quantities, in order for the equations to describe all the relevant
detail of the circuit. We can express i, as

. V2

i, = —. 6
The opamp is the other voltage source. In contrast to normal voltage sources, where we can directly
express their voltage in terms of a constant or another circuit quantity, the opamp’s voltage is whatever
value is needed to force the inputs to be equal. The equation that it guarantees for us is therefore equality
of the input potentials:

vy = v (7)
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The above equations are sufficient.
Nodal analysis: simplify on the way, e.g. supernode

Another approach is to try to avoid extra equations. For nodes joined by a voltage source, we write just
one KCL for those nodes together, and define one of the potentials, expressing the other[s] in terms of
this potential and the source voltage. This is equivalent to summing the separate KCL equations and
thereby eliminating the unknown current in a voltage source. We can also try to avoid writing extra
equations for controlling variables, by substituting suitable expressions at the start.

vl vitHg —v
KCL(1&3): 0 = —4T1+4+ ——2 1
(1&:3) R (1)
KCL(2): 0 = 2 _p 2)
Ry
Vg — U3 Vg .
KCL(4): 0 = Y, 3
(4) Rt (3)

b) One possible approach is to take the equations from answer ‘a’ and solve them for vy. In this circuit
it may be easier just to reason about the circuit, solving for each potential. Potential vy is determined
directly by vo = I Rs; this is seen from KCL, as the opamp input has no current. Then by the assumption
of an ideal opamp with negative feedback, we know v = vy = I Ry. The dependent source’s voltage is
determined by the relation i, = I, so that Hi, = HI. The current through the dependent source
determines vy: if this current is i, (into the + side) then vy = v3 + iqR3. To find what i, is, we must
look to the other side of the dependent source, where the potential must be v; = v3 — Hi, which can be

written v, = TRy — TH. KCL gives that i, — g — 12—,

Then vy = IRy + %T_H).

Q3

The maximum power that can be obtained from a two-terminal linear circuit is the product of half the
short-circuit current and half the open-circuit voltage, i.e. Ppax = %. One example of how this can be
achieved is when a resistance equal to the circuit’s source resistance (its Thevenin or Norton resistance)

is connected. If we find the Thevenin or Norton equivalent of this circuit between terminals a-b, then
2

. . . U
we can express its maximum possible power output as ;7.
T

The open-circuit voltage and short-circuit current are quite similar to derive for this circuit: in both
cases one can solve a three-branch circuit, using for example a KCL equation, or source-transformation
or superposition; the difference is whether Ry and R3 form one branch, or whether it is only Ry (when
R3 is shorted). Let’s take the short-circuit case, which should be a little easier.

Write KCL in the top left-hand node, for the case of a short-circuit between a-b. To avoid defining
further variables, we can start by expressing the voltage between this node and the node on the right as
isc 2, where ig. is the short-circuit current from a to b.

iseRo +U .
Ry N

i _U+IR1
. Ri+ Ry

KCL:  tgc +1+ 0

The open-circuit voltage could be found similarly, using the value Ry 4+ Rj3 instead of just Ry when
writing KCL, then using Ohm’s law to find the voltage across R3 from the current through the Rs-Rj

branch. This gives
U+ IRy

Yoo = = Ry + Ry
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Alternatively, we can directly find the equivalent resistance (Thevenin resistance) of the circuit between
a-b by setting the independent sources to zero: as there are no dependent sources, the resulting circuit
contains just resistors, making it easy to solve. With the voltage source represented as a short-circuit,
and the current source as an open circuit, the resulting resistance between a-b is R3 in parallel with the
series pair Ry + R,
B (R1 + R2)R3
e Ry + Ry + R3’

As expected, this resistance fulfils the condition Req = %°<.

Isc

We only needed to find any two of the above solutions (uqc, isc, Req), in order to answer the question.
The final answer is:

Uoe dse U2, .o Req R3 (U +1Ry)?

Prax(ab) = —& - = — Usc :
(@) = 5 9 T ARy " 4  (Ri+ Ra)(Ri+ Ra+ Rs)

(In the above explanation the names equivalent resistance (or source resistance) Req, and uoc and ise
could instead have been called the Thevenin or Norton resistance, Thevenin voltage, and Norton current,
respectively.

Q4

a) Original equilibrium, before the switch closes at t = 0:
U(O_) =1IR

i(oi) = IRQIE’QRS

b) Immediately after the change, with continuity:
u(0+) = IRl

, U+I(Rz—R

i(04) = Sl

¢) New equilibrium:

u(oo) =U

i(00) = I

Q5

Before ¢t = 0 the current source is active, with current I.

At t = 07, the capacitor behaves as an open circuit (equilibrium). Solving the circuit in this condition
gives:
U(RQ + Rg) —IR1R;3

07) =
w(07) Ry + Ry + R3

By continuity, u(07) = u(07).
Times t > 0 are after the current source becomes zero. A zeroed current source can alternatively be
modelled as an open circuit. Drawing the circuit for this situation, the capacitor is connected to the

three resistors and the voltage source. These components, as ‘seen’ from the capacitor’s terminals, have
a Thevenin equivalent of

B R1(R2 + Rg)

I Ry + R3
T Ri+Ry+R3

= and R
T Ri+Ry+ Ry
The Thevenin resistance allows us to find the time-constant: 7 = CR..

In the final equilibrium, as ¢ — oo, no further change has happened, so the same Thevenin equivalent is
valid. Drawing this connected to the capacitor, which is an open-circuit (equilibrium), the voltage across
the capacitor is u(oo) = U,..

Using the method of initial value, final value and time-constant, the time function we’re seeking is

u(t) = u(oo) + (u(0F) —u(o0)) e “Fr (¢ >0).
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As the final answer, we must put the earlier expressions back, to express this in terms of the given
quantities instead of our own definitions:

Ry + R3 U R1R3 7 ex (—tR1+R2+R3>

= — _ t > 0).
Ry + Ry + R3 Ry + Ry + R3 R1(R2 +R3)C ( )

u(t)

Q6
Both sources are sinusoidal, with the same frequency: we can use one solution, representing each source

as a phasor. (As this is the ac part of the exam, we assume ‘sinusoidal steady-state’ conditions, i.e.
transients when ‘turning on’ the circuit have now died away, so just the sinusoidal solution is needed.)

Let’s take cos(wt) as our reference, so that this function corresponds to a phasor with zero angle. Then
the sin(wt) function corresponds to an angle of —7/2. Then we can express the two sources as phasors
at angular frequency w:

Iw)y=1, Uw)=-jU.

To get a solution of everything in the circuit, we could write and solve 4 equations: two for KVL in the
loops, and two for the mutual inductors. In the specific case we only want the current in the right-hand
loop, and the current in the left-hand loop is already determined by the current source, so we can work
with just 2 of the equations:

KVL(right) U2 = U+iR
mutual inductance ug = jwLo(—i) +jwMI
Putting these together and rearranging,
jwMI—-U
P = =
R+ jwlo

into which the values of the phasors can now be inserted,

_jwMI+iU
R+ jwLo
The magnitude and angle of this i(w) are
MI+U L
li] = Bt and  /fi= T _tan 12

NiEwas 2 R

As we used a cosine reference (and peak-value reference) to translate from time-functions to phasors,
the same choice must also be used to find the time-function of i(¢):

. wMI+TU

i(t) = ——= cos (wt + 5 — tan"! “’—}%2) .

VER?+w?l3
Q7

a) One possible approach here is nodal analysis on the entire circuit. We will use another approach, by
identifying that R3 and C form a load that does not affect the rest of the circuit, and that the remaining
components form a standard non-inverting amplifier. The reason the load does not affect the rest of the
circuit is that it connects to a pure voltage source: it is between the opamp output and the ground node.
(If you use a ‘supernode’ method to do a nodal analysis, you will see this from the fact that the output
node will be ‘part of the ground supernode’ and will not need a KCL.)

The non-inverting amplifier has a relation 72 = 21%122 where Z; is the lower and Zs the upper impedance

_ jwLRy
~ Ri+jwl>

in the voltage divider between the opamp’s output and inverting input. In our circuit, Z; and
Zy = Ra, giving the relation

jwL Ry

. . . : R R
v _ Mot miger _ R2R1 tiwl R +jwL +jwLRi/Ry 1+jwl/(75%;)
[ }sz—f-/fulL ijRl ijRl/RQ ij/RQ
1
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The potential v, is in the middle of a voltage divider that is connected between ground and wv,. The
relationship of v, to v, is therefore

1
Vs _ O 1

Vo R3+jw% 1+ jwCRs’

Putting the above two results together,

Ve Uz U L+ jwl/(#4%;)

vi v v;  (wL/Rg)(1+jwCR3)’

You were not required to rearrange the equations to this classic form. However, doing so might have
helped you check that your answer agrees with the clue given in part ‘b’.

b) There are three terms:

liw/wq| is a single line at —20 dB/decade slope, passing through 0dB at w,

|1+ jw/wp| is flat at 0 dB until wj, but then slopes up at 20 dB/decade,

‘m‘ is flat at 0dB until w,, but the slopes down.

The following plot shows these features. We have chosen 1000 as the ‘very big difference’ to fulfil w, <
wp < we; the numerical values on the dB axis are based on this assumption. You did not have to put
any numbers except 0dB (at wg).

20 T T T T T T T

10} 1

— — . [H()| g actual function i

L
o
T

asymptotic approximatior

IH(@)| (48]
8

—40[ 20 dB/de
N 0 dB/dec

N\ -20{dB/dec
iwa (:”b imc
-80 I I I I I I I
10° 10° 107
foro [au]

If you're being very observant, you perhaps noticed that the assumption (anta att w, < wp < w,) contradicts

the actual circuit in part ‘a’. From the original equations, we see w, = % whereas w;, = Mg%%. The parallel
combination RI?_;_RI% cannot be larger than Ry, if all resistance values are positive. So in fact we expect wy, to be less
than w,. But never mind ... that wouldn’t give such a nice plot! Part ‘b’ didn’t explictly say that the assumption

relates to our circuit: it’s just what you are told to assume for the diagram.

Q8
a) We are asked to choose two of these components (resistor, inductor) to maximise the active power

transferred to that same resistor. This sounds like a classic maximum power question, even if its diagram
is perhaps not so obvious.
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Let’s consider the inductor and transformer together as an inductor n?L. This inductance, parallel with
resistance Ro, can be seen as a load impedance (or admittance). The remainder of the circuit, C', R;
and I, would then be seen as the source from which the load is to extract maximum power: in fact, it
is basically a Norton source, with an impedance made of two parallel components.

It’s easier to use admittances here, since all the components are in parallel. For maximum active power
transfer to the load admittance Y] from the source with admittance Zs we need Yj = Y.*,

1 1 1

b = = _uC
Ry Djenll C m YC
which requires
1
R2 = R1 and L= WQHQC'
b) Now the circuit is changed to the one shown below.
Ly, k, Ly

C__ R I CD Ry

We are given L; and Lo, but the coupling coefficient between these can be chosen. This could for
example be that we have two coils and can choose their distance and relative orientation. Recall the
relation M = k+/LiLo between mutual and self inductances and coupling. Let us see how the whole
combination of the two coils and the short circuit behaves, when seen at the terminals of the left coil.
Calling this left coil’s voltage u, and writing the short-circuited coil’s voltage as 0, the mutual-inductance
equations are

jwLiiy + jwMig
0 = jwlLois+ jwMiy

M? k2L, L
u:jw<L1—>i1:jw<L1— Ll 2>i1:jw(1—k2)L1.
2

This tells us that at the terminals of Ly, the behaviour of the circuit made from Lq, Lo, their coupling
k and the shortcircuit on Ls, is simply the behaviour of an inductor (1 — k2)L.

from which

Following the same principle as in part ‘a’, but with (1 — k2)L; instead of n’L,

1 1
1 — 2 = :> = 1 — .
k w?2C14 k V w?2CL

Q9

a) in, =0.

This marked current is between the neutrals (star-points) of the star-connected source and star-connected
load. The source is known to be a balanced three-phase voltage, and the loads are balanced. So no neutral
current is expected.

b) { %@, % —%’T, % 2% }. The absolute angle is free to be arbitrarily chosen, as long as the three
phasors keep equal relative angles. The phase-rotation is not specified either, so it doesn’t matter which
of the phasors is said to be for phase a, b or ¢ of the source. The line voltage magnitude is U, so the

phase-voltage magnitude of the start-connected source should be U/sqrt3.

c) Each phase of the delta load has impedance R + jwL, and is connected to the line-voltage, U. For
three of these phases, the complex power is

U2

S8 = 3L
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The reactive power delivered to this load is the imaginary part,

3U2wL
d) The power factor of the whole load (the delta and star parts) could be found by converting the loads
to an equivalent impedance, and taking the ratio of the impedance’s real part to its magnitude. To find
an equivalent impedance, we’d probably choose to look at one phase of a star-connected load, for which
we’d convert the delta to a star also.

Alternatively, we can look straight at the powers. The complex power into the delta load was already
(UpvE)?

1\ T
()
—jwCU?. (The ‘—j’ shows that it is a pure reactive power, and is coming out from the capacitors.)
Summing these two loads,

found as a step in the solution of part ‘c’. The complex power into the star load is S = 3

U? 9

The power factor is %, which with S defined as above means:

3U%R
<]PS 2 272
PF — o R?+4w?L

5] su2r |2 o wL 2
R2+DJ2L2 R2+UJ2L2

e) Absolute choice of angle isn’t important as we're asked for the relative phase. We can define any
angle we like, e.g. to set the voltage of source ‘a’ to zero phase, as long as the relative angles are a
balanced three-phase set.

In the course we’ve had a default assumption of phase-rotation 1,2,3 or a,b,c. The rotation does matter
for this question. If the opposite is assumed (a,c,b), then in this question the angle will be negated. You
would get full points either way, as long as it’s clear what you assumed.

Let’s define the source voltages as {vq, vp, vc} = %L {0, _?2”, %4”}

Then,
U /=2=m U U
R Vi S e . _ v
1y = - and ly = =3
R+ jwL el

We simplify these into pure polar form, by looking at a drawing of the phasors, or playing with some
sin and cos functions. (For example, draw a diagram with v, along the real axis, and thus v, at —120°,
then draw in the line-voltage vy, — v, by joining these two points: it will have a phase of —150° if you
look at it as a phasor going from v, to vy, which is what v, — v, means.)

- U/_T&r — U —bm —1 wL . _UWC T
XS Y ey i e S D WA
The requested angle is then,
. . T —=om 4wl 8 1wl —47 _, wL
[iy = [ix = 5 — —5— T tan 1? = 5 T tan 1§ = — Ttan 1}.

The radian angles such as %““ could equally well have been expressed as —120°; we don’t care which is

used.
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