
KTH EI1120 Elkretsanalys (CENMI) TEN1 2018-03-13 kl 08–13

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Studenter fr̊an EI1110 svarar bara p̊a Del C, växelström!

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor kan användas) med studentens egna anteckningar p̊a val-
fritt sätt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek, osv. Dessa måste
inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av kom-
ponenter (t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända

storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Observera att nu i VT18 omg̊angen har vi givit möjlighet för studenter p̊a EI1120 att klara av alla poäng
fr̊an tal 9, om trefas växelström, genom godkänd datoruppgift (hemuppgift 13).

Nathaniel Taylor (073 949 8572)
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Del A. Likström

1) [4p] Bestäm effekterna absorberad av följande
komponenterna:

a) [1p] R1.

b) [1p] R3.

c) [1p] U2.

d) [1p] I2.

R1

I1

+ −

U1

+
−U2

vx

R2

R3

I2

+
−

K vx

2) [4p]

a) [3p] Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för alla fyra nodpotenti-
alerna v1, v2, v3, v4. Du måste inte lösa ekvationerna.

b) [1p] Bestäm v4 (valfri metod).

−

+

v4

R4R1
I

v2

R2

ix

v1
+−

Hix

v3

R3

3) [4p]

Bestäm den maximala effekten som kretsen kan leverera fr̊an
polerna a-b (till n̊agonting som man ansluter till dessa poler).

a b

R3

R2
I

+−

U
R1
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Del B. Transient

4) [5p] Bestäm u och i vid följande tider:

a) [2p] t = 0−.

b) [2p] t = 0+.

c) [1p] t → ∞.

+
−U

R1

t=0

C1

+ −
u

L1 R3

i

I

R2

5) [5p]

Bestäm u(t), för t > 0.

R3

R2

I ·
(

1− 1(t)
)

R1

C

+

−

u(t)

+
−U
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Del C. Växelström

6) [4p]

Källorna har följande tidsfunktioner:

I(t) = Î cos(ωt)

U(t) = Û sin(ωt)

Bestäm i(t).

L1 L2I(t)

i(t)

+
− U(t)

RM

7) [4p]

a) [2p] Bestäm kretsens nätverksfunktion,

H(ω) =
vx(ω)

vi(ω)
.

b) [2p] Svaret till deltal ’a’ kan skrivas p̊a följande formen,

H(ω) =
1 + jω/ωb

(jω/ωa) (1 + jω/ωc)
.

Skiss ett Bode amplituddiagram av funktionen ovan.
Anta att: ωa ≪ ωb ≪ ωc.
Markera viktiga frekvenser och lutningar.

−

+vi

R2

R1 L

R3

C

vx

8) [4p]

Källan har vinkelfrekvens ω.

a) [3p] Bestäm R2 och L för att maximera
den aktiva effekten som levereras till R2.

n : 1

C R1 I R2 L

b) [1p] Ersätt spolen L med en kortslutning, och transformatorn med kopplade spolor L1 (vänster)
och L2 (höger). Bestäm motst̊andet R2 och kopplingskoefficienten k mellan spolorna, för att maximera
den aktiva effekten som levereras till R2.
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9) [6p]

Spänningskällorna utgör en balanserad
trefaskälla med huvudspänning U och
vinkelfrekvens ω.

a) [1p] Bestäm strömmen in.

b) [1p] Ge ett exempel p̊a tre fasvek-
torer (komplexa tal) som skulle kunna
beskriva potentialerna i noderna ’a’, ’b’
och ’c’. Det finns flera möjliga svar.

c) [1p] Bestäm den reaktiva effekten
levererad till den delta-anslutna lasten
(alla R och L komponenterna).

+− a

+− b

+− c

R

L

R

L

R
ix

L

iy

C C C
n

in

d) [2p] Bestäm effektfaktorn (pf) hos hela lasten som den trefas spänningskällan matar.

e) [1p] Bestäm fasvinkeln hos strömmen iy relativ till strömmen ix.

Slut . . . men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT18, 2018-03-13)

Q1

a) P
R1

= I21R1.
The current source and resistor are in series; KCL determines the resistor’s current.

b) P
R3

= I22R3.
Similar to the case in ‘a)’, although not perhaps so obvious, as there is a dependent source between the
current source and the resistor.

c) P
U2

= (I1 + I2)U2.
The power delivered to this source is the product of its voltage and the current into the terminal that is
the positive reference of that voltage (i.e. ‘passive convention’). The current downwards in this voltage
source is found directly by KCL in the top node.

d) P
I2
= I2

(

KU1 − (1+K)U2 − I1R2 − I2(R2+R3)
)

.
The power into this source is the product of its current and the voltage of its right-hand side relative to
its left-hand side (as the current is marked right-to-left).
KVL around the right-hand loop gives: P

I2
= I2 (−K(U2 − U1)− I2R3 − U2 − (I1 + I2)R2), where the

first term comes from the KVL relation vx = −U1 + U2.

Q2

a) Two possible methods are shown below, for writing suitable equations.

Extended nodal analysis.

Start with KCL at every node except the reference. This circuit has two voltage sources: the dependent
source and the opamp output. We can define unknown currents in these: we’ll call them iα into the
+-pole of the dependent source, and io out of the opamp.

KCL(1): 0 =
v1
R1

+ I − iα (1)

KCL(2): 0 =
v2
R2

− I (2)

KCL(3): 0 = iα +
v3 − v4
R3

(3)

KCL(4): 0 =
v4 − v3
R3

+
v4
R4

− io (4)

Now we have 4 equations, in 6 unknowns. Beyond the 4 unknown node-potentials, there are the currents
in the voltage sources; this hints to us that we should look to the voltage sources to provide further
equations. The dependent source sets a relation between two node-potentials:

v3 − v1 = Hix. (5)

However, this new equation introduced a further unknown, the marked quantity ix. This needs to be
described in terms of the existing defined quantities, in order for the equations to describe all the relevant
detail of the circuit. We can express ix as

ix =
v2
R2

. (6)

The opamp is the other voltage source. In contrast to normal voltage sources, where we can directly
express their voltage in terms of a constant or another circuit quantity, the opamp’s voltage is whatever
value is needed to force the inputs to be equal. The equation that it guarantees for us is therefore equality
of the input potentials:

v3 = v2. (7)
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The above equations are sufficient.

Nodal analysis: simplify on the way, e.g. supernode

Another approach is to try to avoid extra equations. For nodes joined by a voltage source, we write just
one KCL for those nodes together, and define one of the potentials, expressing the other[s] in terms of
this potential and the source voltage. This is equivalent to summing the separate KCL equations and
thereby eliminating the unknown current in a voltage source. We can also try to avoid writing extra
equations for controlling variables, by substituting suitable expressions at the start.

KCL(1&3): 0 =
v1
R1

+ I +
v1+H v2

R2
− v4

R3
(1)

KCL(2): 0 =
v2
R2

− I (2)

KCL(4): 0 =
v4 − v3
R3

+
v4
R4

− io (3)

b) One possible approach is to take the equations from answer ‘a’ and solve them for v4. In this circuit
it may be easier just to reason about the circuit, solving for each potential. Potential v2 is determined
directly by v2 = IR2; this is seen from KCL, as the opamp input has no current. Then by the assumption
of an ideal opamp with negative feedback, we know v3 = v2 = IR2. The dependent source’s voltage is
determined by the relation ix = I, so that H ix = HI. The current through the dependent source
determines v4: if this current is iα (into the + side) then v4 = v3 + iαR3. To find what iα is, we must
look to the other side of the dependent source, where the potential must be v1 = v3 −Hix which can be
written v1 = IR2 − IH. KCL gives that iα = v1

R1
= I(R2−H)

R1
.

Then v4 = IR2 +
IR3(R2−H)

R1
.

Q3

The maximum power that can be obtained from a two-terminal linear circuit is the product of half the
short-circuit current and half the open-circuit voltage, i.e. Pmax = uocisc

4 . One example of how this can be
achieved is when a resistance equal to the circuit’s source resistance (its Thevenin or Norton resistance)
is connected. If we find the Thevenin or Norton equivalent of this circuit between terminals a-b, then

we can express its maximum possible power output as
U2

T

4R
T

.

The open-circuit voltage and short-circuit current are quite similar to derive for this circuit: in both
cases one can solve a three-branch circuit, using for example a KCL equation, or source-transformation
or superposition; the difference is whether R2 and R3 form one branch, or whether it is only R2 (when
R3 is shorted). Let’s take the short-circuit case, which should be a little easier.

Write KCL in the top left-hand node, for the case of a short-circuit between a-b. To avoid defining
further variables, we can start by expressing the voltage between this node and the node on the right as
iscR2, where isc is the short-circuit current from a to b.

KCL: isc + I +
iscR2 + U

R1
= 0

isc = − U + IR1

R1 +R2

The open-circuit voltage could be found similarly, using the value R2 + R3 instead of just R2 when
writing KCL, then using Ohm’s law to find the voltage across R3 from the current through the R2-R3

branch. This gives

uoc = −R3
U + IR1

R1 +R2 +R3
.
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Alternatively, we can directly find the equivalent resistance (Thevenin resistance) of the circuit between
a-b by setting the independent sources to zero: as there are no dependent sources, the resulting circuit
contains just resistors, making it easy to solve. With the voltage source represented as a short-circuit,
and the current source as an open circuit, the resulting resistance between a-b is R3 in parallel with the
series pair R1 +R2,

Req =
(R1 +R2)R3

R1 +R2 +R3
.

As expected, this resistance fulfils the condition Req = uoc

isc
.

We only needed to find any two of the above solutions (uoc, isc, Req), in order to answer the question.

The final answer is:

Pmax(ab) =
uoc
2

· isc
2

=
u2oc
4Req

= i2sc
Req

4
=

R3 (U + IR1)
2

(R1 +R2) (R1 +R2 +R3)
.

(In the above explanation the names equivalent resistance (or source resistance) Req, and uoc and isc
could instead have been called the Thevenin or Norton resistance, Thevenin voltage, and Norton current,
respectively.

Q4

a) Original equilibrium, before the switch closes at t = 0:
u(0−) = IR1

i(0−) = I R2

R2+R3

b) Immediately after the change, with continuity:
u(0+) = IR1

i(0+) = U+I(R2−R1)
R2+R3

c) New equilibrium:
u(∞) = U
i(∞) = I R2

R2+R3

Q5

Before t = 0 the current source is active, with current I.

At t = 0−, the capacitor behaves as an open circuit (equilibrium). Solving the circuit in this condition
gives:

u(0−) =
U(R2 +R3)− IR1R3

R1 +R2 +R3
.

By continuity, u(0+) = u(0−).

Times t > 0 are after the current source becomes zero. A zeroed current source can alternatively be
modelled as an open circuit. Drawing the circuit for this situation, the capacitor is connected to the
three resistors and the voltage source. These components, as ‘seen’ from the capacitor’s terminals, have
a Thevenin equivalent of

U
T
=

R2 +R3

R1 +R2 +R3
U and R

T
=

R1(R2 +R3)

R1 +R2 +R3
.

The Thevenin resistance allows us to find the time-constant: τ = CR
T
.

In the final equilibrium, as t → ∞, no further change has happened, so the same Thevenin equivalent is
valid. Drawing this connected to the capacitor, which is an open-circuit (equilibrium), the voltage across
the capacitor is u(∞) = U

T
.

Using the method of initial value, final value and time-constant, the time function we’re seeking is

u(t) = u(∞) +
(

u(0+)− u(∞)
)

e−t/CR
T (t > 0).
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As the final answer, we must put the earlier expressions back, to express this in terms of the given
quantities instead of our own definitions:

u(t) =
R2 +R3

R1 +R2 +R3
U − R1R3

R1 +R2 +R3
I exp

(

−t
R1 +R2 +R3

R1(R2 +R3)C

)

(t > 0).

Q6

Both sources are sinusoidal, with the same frequency: we can use one solution, representing each source
as a phasor. (As this is the ac part of the exam, we assume ‘sinusoidal steady-state’ conditions, i.e.
transients when ‘turning on’ the circuit have now died away, so just the sinusoidal solution is needed.)

Let’s take cos(ωt) as our reference, so that this function corresponds to a phasor with zero angle. Then
the sin(ωt) function corresponds to an angle of −π/2. Then we can express the two sources as phasors
at angular frequency ω:

I(ω) = Î , U(ω) = −jÛ .

To get a solution of everything in the circuit, we could write and solve 4 equations: two for KVL in the
loops, and two for the mutual inductors. In the specific case we only want the current in the right-hand
loop, and the current in the left-hand loop is already determined by the current source, so we can work
with just 2 of the equations:

KVL(right) u2 = U + iR

mutual inductance u2 = jωL2(−i) + jωMI

Putting these together and rearranging,

i =
jωMI − U

R+ jωL2

into which the values of the phasors can now be inserted,

i =
jωMÎ + jÛ

R+ jωL2

The magnitude and angle of this i(ω) are

|i| = ωMÎ + Û
√

R2 + ω2L2
2

and i =
π

2
− tan−1 ωL2

R
.

As we used a cosine reference (and peak-value reference) to translate from time-functions to phasors,
the same choice must also be used to find the time-function of i(t):

i(t) =
ωMÎ + Û

√

R2 + ω2L2
2

cos
(

ωt+ π
2 − tan−1 ωL2

R

)

.

Q7

a) One possible approach here is nodal analysis on the entire circuit. We will use another approach, by
identifying that R3 and C form a load that does not affect the rest of the circuit, and that the remaining
components form a standard non-inverting amplifier. The reason the load does not affect the rest of the
circuit is that it connects to a pure voltage source: it is between the opamp output and the ground node.
(If you use a ‘supernode’ method to do a nodal analysis, you will see this from the fact that the output
node will be ‘part of the ground supernode’ and will not need a KCL.)

The non-inverting amplifier has a relation vo
vi

= Z1+Z2

Z1
where Z1 is the lower and Z2 the upper impedance

in the voltage divider between the opamp’s output and inverting input. In our circuit, Z1 =
jωLR1

R1+jωL , and
Z2 = R2, giving the relation

vo
vi

=
R2 +

jωLR1

R1+jωL

jωLR1

R1+jωL

= R2
R1 + jωL

jωLR1
+ 1 =

R1 + jωL+ jωLR1/R2

jωLR1/R2
=

1 + jωL
/(

R1R2

R1+R2

)

jωL/R2
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The potential vx is in the middle of a voltage divider that is connected between ground and vo. The
relationship of vx to vo is therefore

vx
vo

=

1
jωC

R3 +
1

jωC

=
1

1 + jωCR3
.

Putting the above two results together,

vx
vi

=
vx
vo

· vo
vi

=
1 + jωL

/(

R1R2

R1+R2

)

(jωL/R2) (1 + jωCR3)
.

You were not required to rearrange the equations to this classic form. However, doing so might have
helped you check that your answer agrees with the clue given in part ‘b’.

b) There are three terms:

|jω/ωa| is a single line at −20 dB/decade slope, passing through 0 dB at ωa,

|1 + jω/ωb| is flat at 0 dB until ωb, but then slopes up at 20 dB/decade,
∣

∣

∣

1
|1+jω/ωc

∣

∣

∣
is flat at 0 dB until ωc, but the slopes down.

The following plot shows these features. We have chosen 1000 as the ‘very big difference’ to fulfil ωa ≪
ωb ≪ ωc; the numerical values on the dB axis are based on this assumption. You did not have to put
any numbers except 0 dB (at ωa).
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If you’re being very observant, you perhaps noticed that the assumption (anta att ωa ≪ ωb ≪ ωc) contradicts
the actual circuit in part ‘a’. From the original equations, we see ωa = R2

L
whereas ωb = R1R2

L(R1+R2)
. The parallel

combination R1R2

R1+R2

cannot be larger than R2, if all resistance values are positive. So in fact we expect ωb to be less
than ωa. But never mind . . . that wouldn’t give such a nice plot! Part ‘b’ didn’t explictly say that the assumption
relates to our circuit: it’s just what you are told to assume for the diagram.

Q8

a) We are asked to choose two of these components (resistor, inductor) to maximise the active power
transferred to that same resistor. This sounds like a classic maximum power question, even if its diagram
is perhaps not so obvious.
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Let’s consider the inductor and transformer together as an inductor n2L. This inductance, parallel with
resistance R2, can be seen as a load impedance (or admittance). The remainder of the circuit, C, R1

and I, would then be seen as the source from which the load is to extract maximum power: in fact, it
is basically a Norton source, with an impedance made of two parallel components.

It’s easier to use admittances here, since all the components are in parallel. For maximum active power
transfer to the load admittance Yl from the source with admittance Zs we need Yl = Y ∗

s ,

1

R2
+

1

jωn2L
=

1

R1
− jωC,

which requires

R2 = R1 and L =
1

ω2n2C
.

b) Now the circuit is changed to the one shown below.

C R1 I R2

L1, k, L2

We are given L1 and L2, but the coupling coefficient between these can be chosen. This could for
example be that we have two coils and can choose their distance and relative orientation. Recall the
relation M = k

√
L1L2 between mutual and self inductances and coupling. Let us see how the whole

combination of the two coils and the short circuit behaves, when seen at the terminals of the left coil.
Calling this left coil’s voltage u, and writing the short-circuited coil’s voltage as 0, the mutual-inductance
equations are

u = jωL1i1 + jωMi2

0 = jωL2i2 + jωMi1

from which

u = jω

(

L1 −
M2

L2

)

i1 = jω

(

L1 −
k2L1L2

L2

)

i1 = jω
(

1− k2
)

L1.

This tells us that at the terminals of L1, the behaviour of the circuit made from L1, L2, their coupling
k and the shortcircuit on L2, is simply the behaviour of an inductor (1− k2)L1.

Following the same principle as in part ‘a’, but with (1− k2)L1 instead of n2L,

1− k2 =
1

ω2CL1
=⇒ k =

√

1− 1

ω2CL
.

Q9

a) in = 0.
This marked current is between the neutrals (star-points) of the star-connected source and star-connected
load. The source is known to be a balanced three-phase voltage, and the loads are balanced. So no neutral
current is expected.

b) { U√
3
0, U√

3
−2π

3 , U√
3

2π
3 }. The absolute angle is free to be arbitrarily chosen, as long as the three

phasors keep equal relative angles. The phase-rotation is not specified either, so it doesn’t matter which
of the phasors is said to be for phase a, b or c of the source. The line voltage magnitude is U , so the
phase-voltage magnitude of the start-connected source should be U/sqrt3.

c) Each phase of the delta load has impedance R + jωL, and is connected to the line-voltage, U . For
three of these phases, the complex power is

S∆ = 3
U2

R− jωL
.
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The reactive power delivered to this load is the imaginary part,

Q∆ = ℑS∆ =
3U2ωL

R2 + ω2L2
.

d) The power factor of the whole load (the delta and star parts) could be found by converting the loads
to an equivalent impedance, and taking the ratio of the impedance’s real part to its magnitude. To find
an equivalent impedance, we’d probably choose to look at one phase of a star-connected load, for which
we’d convert the delta to a star also.

Alternatively, we can look straight at the powers. The complex power into the delta load was already

found as a step in the solution of part ‘c’. The complex power into the star load is S = 3 (U/
√
3)2

(

1
jωC

)∗ =

−jωCU2. (The ‘−j’ shows that it is a pure reactive power, and is coming out from the capacitors.)
Summing these two loads,

S = 3
U2

R− jωL
− jωCU2

The power factor is P
|S| , which with S defined as above means:

pf =
ℜS
|S| =

3U2R
R2+ω2L2

√

(

3U2R
R2+ω2L2

)2
+
(

jωL
R2+ω2L2

)2

e) Absolute choice of angle isn’t important as we’re asked for the relative phase. We can define any
angle we like, e.g. to set the voltage of source ‘a’ to zero phase, as long as the relative angles are a
balanced three-phase set.

In the course we’ve had a default assumption of phase-rotation 1,2,3 or a,b,c. The rotation does matter
for this question. If the opposite is assumed (a,c,b), then in this question the angle will be negated. You
would get full points either way, as long as it’s clear what you assumed.

Let’s define the source voltages as {va, vb, vc} = U√
3

{

0, −2π
3 , −4π

3

}

.

Then,

ix =

U√
3

−2π
3 − U√

3
0

R+ jωL
and iy =

U√
3
0

1
jωC

.

We simplify these into pure polar form, by looking at a drawing of the phasors, or playing with some
sin and cos functions. (For example, draw a diagram with va along the real axis, and thus vb at −120°,
then draw in the line-voltage vb − va by joining these two points: it will have a phase of −150° if you
look at it as a phasor going from va to vb, which is what vb − va means.)

ix =
U −5π

6

R+ jωL
=

U√
R2 + ω2L2

−5π
6 − tan−1 ωL

R and iy =
UωC√

3
π
2

The requested angle is then,

iy − ix =
π

2
− −5π

6
+ tan−1 ωL

R
=

8π

6
+ tan−1 ωL

R
=

−4π

6
+ tan−1 ωL

R
.

The radian angles such as −4π
6 could equally well have been expressed as −120°; we don’t care which is

used.
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