
KTH EI1120 Elkretsanalys (CENMI) TEN1 2018-05-29 kl 14–19

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor kan användas) med studentens egna anteckningar p̊a
valfritt sätt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek, osv. Dessa
måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas
vara kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller
spänningskälla) antas vara okända storheter. Lösningar ska uttryckas i kända storheter och förenklas.
Var tydlig med diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Observera att nu i VT18 omg̊angen har vi givit möjlighet för studenter p̊a EI1120 att klara av alla poäng
fr̊an tal 9, om trefas växelström, genom godkänd datoruppgift (hemuppgift 13).

Nathaniel Taylor (073 949 8572)

Del A. Likström

1) [4p] Bestäm följande:

a) [1p] Effekten absorberad av R2.

b) [1p] Strömmen i.

c) [1p] Potentialen v.

d) [1p] Effekten levererad av källan U1. R2

+ −

U2

+ −

U1I2

i
R3

I1
R1

v
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2) [4p]

Använd nodanalys för att skriva ekvationer som
skulle kunna lösas för alla fem nodpotentialerna v1,
v2, v3, v4, v5. Du måste inte lösa ekvationerna.

+
− H ix

R1

I

R2

ix

R3

+ −

U1

R4

+
−U2

v1

v2

v3

v4

v5

3) [4p]

Motst̊andet Rx är valt för att det ska f̊a s̊a mycket effekt
som möjligt fr̊an resten av kretsen. Hur mycket effekt f̊ar
det?

−

+

R3

R1

+
−U1

+−

U2 R2

Rx

Del B. Transient

4) [5p] Bestäm följande:

a) [3p] vid t = 0+,
effekten absorberad av R1, R3, L2:

P
R1
(0+), P

R3
(0+), P

L2
(0+).

b) [2p] t → ∞,
energin lagrad i L2, C:

W
L2
(∞), W

C
(∞).

+
−U · 1(t)

L2

L1

R1

R2

R3

C

I

5) [5p]

Bestäm u(t), för t > 0.

Obs. att spolarna är seriekopplade och därför kan behandlas

som en ekvivalent under lösningen, förutom sista steget där

man beräknar spänningen över en enda spole.

I · 1(t)

+
−U

R2R1

L1

−

+

u(t)

L2
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Del C. Växelström

6) [4p]

Källorna har följande tidsfunktioner:

I(t) = Î cos(ωt)

U(t) = Û sin(ωt)

Bestäm u(t).

L1 L2I(t)

+

−

u(t)

+
−U(t)

RM

7) [4p]

a) [3p] Rita ett Bode amplituddiagram av funktionen H(ω) =
(1 + jω/ω2) (1 + jω/ω2)

(1 + jω/ω1) (1 + jω/ω3)
.

Anta att: ω1 ≪ ω2 ≪ ω3.
Markera viktiga frekvenser och lutningar.

b) [1p] Rita en krets som har nätverksfunktionen
1

1 + jω/ω0
.

Visa tydligt vilka storheter i kretsen som är ’in’ och ’ut’ för nätverksfunktionen.
Visa ocks̊a hur ω0 kan uttryckas som funktion av komponentvärden i kretsen.

8) [4p]

Källan har vinkelfrekvens ω. Den är kopplad genom en
ledning med impedans Zs, till en last R och L med
tillhörande kondensator C.

a) [2p] Bestäm C s̊a att effektfaktorn för hela lasten av
C, L, R tillsammans blir 1.

+
−U

Zs R

L

C

b) [2p] Visa hur man skulle kunna bestämma värden av R och C som maximerar den aktiveffekt som
levereras till lasten. Du f̊ar lämna ekvationer oförenklade, d.v.s. med R och C p̊a flera ställen.

9) [6p] Kretsen visar en trefas källa, och tre trefas
laster (9 impedanser totalt). De är alla balanserade.
Linjerna mellan dessa representerar trefas anslutningar
best̊aende av tre fasledare med försumbara impedanser.

Källa: huvudspänning U , vinkelfrekvens ω.
Last 1: skenbareffekt |S1|, effektfaktor pf1 (lagging).
Last 2: aktiveffekt P2, effektfaktor pf2 (lagging).

källa x

last 1

y

last 2

z

last 3

Last 3: skenbareffekt |S3|, fas θ3 av ström relativ till spänning.

a) [2p] Vilken reaktiveffekt flöder vid markeringen ’y’?

b) [2p] Vilken strömamplitud (absolutbelopp) finns i varje ledare i linjen vid markeringen ’x’?

c) [2p] L̊at oss kalla de tre fasledarna i linjen för a,b,c, och definera vinklarna s̊a att spänningen av ’a’
relativ till ’b’ är U 30➦. Fasföljden är a,b,c. Vad är strömmens fasvinkel i fasledare ’b’ vid markeringen ’z’?

Slut . . . men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT18, 2018-05-29)

Q1

a) P
R2

= (I1 − I2)
2R2.

KVL at the left node. Order of I1 − I2 or I2 − I1 doesn’t matter, as it’s squared.

b) i =
U1 − U2

R3
.

KVL in loop at bottom right. The order (signs) of U1 and U2 do matter.

c) v = U2 + (I1 − I2)R2.

Potential-change from earth node to node v; avoid current sources as we don’t directly know their
voltages, which should not be assumed to be zero (a surprisingly common mistake).

d) P
U1

=
U1 (U1 − U2)

R3
− U1I2.

The power out from source U1 is the product of its voltage and the current defined out of its ‘+’ terminal.
This current is found by KCL in the central node of the circuit: i− I2. Substitute the expression for i,
and multiply by U1.

Q2

Two possible methods are shown below, for writing suitable equations.

Extended nodal analysis.

Start with KCL at every node except the reference. This circuit has three voltage sources: two indepen-
dent and one dependent. We can define unknown currents in these: let’s define them into the +-pole of
the source, and call them iα, iβ and iγ in respectively sources U1, U2 and Hix.

KCL(1): 0 = iγ +
v1 − v2
R1

+
v1 − v3
R2

(1)

KCL(2): 0 =
v2 − v1
R1

+ iα (2)

KCL(3): 0 = I +
v3 − v1
R2

+
v3 − v5
R3

(3)

KCL(4): 0 =
v4
R4

− iβ (4)

KCL(5): 0 =
v5 − v3
R3

− iα + iβ . (5)

Now we have 5 equations, in 8 unknowns. The 5 unknown node-potentials and 5 KCL equations would
give a well defined solution. But we the 3 voltage sources have added unknowns; this hints that we should
look to the voltage sources to provide corresponding further equations. The source set the following
relation between pairs of node-potentials:

v2 − v5 = U1 (6)

v5 − v4 = U2 (7)

v1 = Hix. (8)
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However, this last of these introduced a further unknown, the marked quantity ix. This needs to be
described in terms of the existing defined quantities, in order for the equations to describe all the
relevant detail of the circuit:

ix =
v5 − v3
R3

. (9)

The above equations are a sufficient solution.

Nodal analysis: simplify on the way, e.g. supernode

Another approach is to try to reduce the number of equations from the start, instead of ending up as in
the above example, with lots of simpler equations to solve.

If we follow this principle, and use the idea of supernodes, then we end up with just two equations to
solve, then after solving them we find other potentials by simple relations given by the voltage sources.

The nodes v2, v4 and v5 are joined by voltage sources, so we use just one of these potentials as an
unknown, and write the others in terms of that by adding or subtracting the voltage source values, as
in equations (6) and (7) above. Let’s keep v4, since the direction of the voltage sources is such that we
can then express v5 and v2 without negative signs:

v5 = v4 + U2 (1)

v2 = v4 + U1 + U2. (2)

The node v1 is joined to the zero node by the dependent voltage source, so we can immediately write
Hix instead of v1. However, we prefer to avoid the further variable ix: we saw that it can be written
instead as v5−v3

R3
, and since we’ve decided to use only the potential v4 in the top supernode, we use (1)

to substitute for v5,

v1 = H
v4 + U2 − v3

R3
. (3)

Now we can write KCL for the non-reference supernodes and other nodes: we have just one such
supernode and one other node.

KCL(2&4&5): 0 =
v4 + U1 + U2 −H v4+U2−v3

R3

R1
+

v4 + U2 − v3
R3

+
v4
R4

(4)

KCL(3): 0 = I +
v3 −H v4+U2−v3

R3

R2
+

v3 − (v4 + U2)

R3
(5)

The five equations above are all that are needed. Compared to the first method, this method gave fewer
equations, by avoiding having three unknown source currents and a marked current. Perhaps the bigger
advantage is that only the two final equations (KCL) have to be solved simultaneously: after finding
their unknowns v3 and v4 the other potentials can be written based on the earlier equations.

Q3

This question could be put in other words as: find
the Thevenin (or Norton) equivalent at the marked
terminals, for the circuit without Rx, and then find
the maximum power that this source can produce.

We’re told that the load Rx connected across the
terminals has been chosen to obtain this value of
power.

−

+

R3

R1

+
−U1

+−

U2 R2

+

−

uoc

vo
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First: open-circuit voltage, which is the Thevenin voltage.

What is the opamp’s output potential? The non-inverting input is held to zero, so the inverting input
must also be at zero, as we have negative feedback and everything’s ideal. KCL(out) at the inverting
input gives

0 + U2 − vo
R2

+
0− U1 − 0

R1
= 0,

from which

vo = U2 −
R2

R1
U1.

In the open-circuit case, there is no current in R3, so uoc = vo.

The Thevenin resistance is simply R3.
Reason: The potential of the terminal at the opamp output is fixed to whatever is required by the
feedback circuit to hold the inverting input to the same potential as the non-inverting input; the opamp
is like a voltage source, which has to provide the current for whatever we connect to it, while keeping the
necessary potential. If we connected between the zero node and the opamp output, it would appear as
an ideal voltage source, with zero resistance. But the lower terminal connects to the zero node through
a resistance, R3, so this is the Thevenin resistance seen at the terminals.

The Thevenin equivalent at the terminals is therefore

U
T
= U2 −

R2

R1
U1, R

T
= R3.

By the usual relations for maximum power, this circuit can supply at its terminals a maximum of

Pmax =
U2

T

4R
T

=

(

U2 − R2

R1
U1

)2

4R3
.

This maximum power would happen when Rx = R3; but we weren’t asked to point that out.

Q4

a) This question concerns the state at t = 0+, just after the step-change of the voltage source. This
state is shown on the right below, with inductors and capacitors replaced by current and voltage sources.
In order to find the values of these sources, we need to solve for them in the circuit on the left, which
shows the circuit at t = 0−, in equilibrium before the step.

t= 0−

(L2)

(L1)

R1

R2

R3

(C)

I

t= 0+

+
−U

i
L2

i
L1

R1

R2

R3

+
−u

C

I

Solving the left circuit, with regard to definitions of current and voltage used in the right circuit, we
find: i

L2
= I, i

L1
= 0, u

C
= −IR2. Inserting these in the circuit on the right, and solving:

P
R1
(0+) = 0, because i

L1
= 0, as L1 has not yet allowed current to flow in this branch.

P
R3
(0+) = 0, KCL at the bottom node shows that no current flows in R3.

P
L2
(0+) = I(U − IR2 − u

C
− 0) = UI, by KVL in the loop of L2, U , R2, uC

, R3.
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b) The equilibrium at t → ∞ differs from t = 0− only in that the voltage source is now U instead of 0.

W
L2
(∞) = 1

2L2

(

I + U
R1

)2

The current downwards through R1 is U/R1.
By KCL below R1, the current in L2 is therefore
I + U/R1.

W
C
(∞) = 1

2C (U − IR2)
2

By KVL, the voltage across the capacitor is U−IR2;
there is no voltage across R3 (open circuit capacitor,
so by KCL no current, so by Ohm’s law no voltage),
nor across L2 (equilibrium).

t→ ∞

+
−U

(L2)

(L1)

R1

R2

R3

(C)

I

Q5

The reactive component here is the total of the two
inductors. As they are in series, they behave to the
rest of the circuit like a single inductor of L1 + L2.

(This is important: if they were in different
places, they might have independent responses with
different time-constants, or might interact to give
a second-order system. As we can make a single
equivalent inductance, we expect this circuit to have
the simple behaviour of a first-order system where
all quantities are of the form a+ be−t/τ .)

I · 1(t)

+
−U

R2R1

L1

−

+

u(t)

i(t) L2

During the period of interest (t > 0) the current source’s value is I. The Thevenin equivalent seen by
the two inductors is

U
T
= U + IR2, R

T
= R1 +R2.

The Thevenin voltage here is for the upper node (left of R1) relative to the lower (below I). It can be
found from KVL around the open-circuit case, with the inductors not present, after KCL shows that all
of I passes through R2. The Thevenin resistance can be found by setting the sources (both independent)
to zero, and simplifying to a single resistance.

We’ll first find the current in the inductors, as that is the continuous quantity. Then we’ll find the
marked voltage across L1 from this current.

An inductance behaves as a short-circuit in the equilibrium, so the final current down through L1 is the
short-circuit current of the Thevenin equivalent that was found above: i(∞) = U+IR2

R1+R2
.

Before the step-function, in the equilibrium at t = 0−, the current source is like an open circuit, and
the inductors are like short circuits: so in this case the current down L1 is i(0−) = U

R1+R2
. Immediately

after the step-function, this current is the same, as current is the continuous quantity in an inductor –
it takes energy and time to change it. Therefore, i(0+) = U

R1+R2
.

We now have the initial and final values of the current, in the period of interest. The time-constant is
found from the Thevenin resistance and the inductance: τ = L1+L2

R1+R2
. Using these three results,

i(t) = i(∞) +
(

i(0+)− i(∞)
)

e−t/τ =
U + IR2

R1 +R2
− IR2

R1 +R2
e
−t

R1+R2
L2+L2 (t > 0)

We were actually looking for the voltage u(t) across L1, so now we calculate this from the solved current:

u(t) = L1
di(t)

dt
= L1

R1 +R2

L1 + L2

IR2

R1 +R2
e
−t

R1+R2
L2+L2 =

IR2L1

L1 + L2
e
−t

R1+R2
L2+L2 (t > 0).
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Q6

Both sources are sinusoidal, with the
same frequency: we can use one solution,
representing each source as a phasor.

Let’s take cos(ωt) as our reference, so
that this function corresponds to a phasor
with zero angle. Then the sin(ωt) function
corresponds to an angle of −π/2.

I(t) = Î cos(ωt) U(t) = Û sin(ωt)

L1 L2I(t)

+

−

u(t)

+
−U(t)

+
−U(t)

RM

Now we can express the two sources as phasors at angular frequency ω, as below. (In the later equations,
we’ll drop the ‘(ω)’ and just write the quantities’ symbols I, U , u etc., to make it neater.)

I(ω) = Î , U(ω) = −jÛ .

Notice that this is the same circuit as Q6 in the previous exam (March 2018), but now we are solving
for the voltage across the left coil, rather than for the current in the right coil. One solution method is
to start by solving for the current in the right coil, as done in the previous exam’s solution, and then use
this current, along with I(ω), to calculate the left coil’s voltage u from the mutual inductance equation.

Here, instead, we’ll try the method of writing equations for all that we know, and then seeing what we
can do with the equations. Let’s define the coils’ voltages as u1 (left) and u2, with positive reference at
the top, and their currents as i1 and i2 both defined into the tops of the coils.

We write the equations for the two coils’ voltages,

mutual inductance (left) u1 = jωL1i1 + jωMi2 (1)

mutual inductance (right) u2 = jωL2i2 + jωMi1 (2)

Due to our chosen definitions of the currents and voltages, these equations have no negative signs. The
equations of the other parts of the circuit come from KCL in the left loop, and KCL or KVL in the right
loop,

KCL(left) i1 = I (3)

KVL(right) u2 = U −R i2 (4)

We can also note the obvious, that our definition u1 is the same as the quantity u that we want to find
in the end. (The reason for defining u1 was that it’s more consistent with how we’ve studied mutual
inductance calculations, and that experience tells us it’s nicer to think about x1 and x2 than about x
and x2.)

Looking at the above equations, we have 4 equations and 4 unknowns: u1, u2, i1, i2. Equation (3) directly
gives us i1. We only want to find u1, so we must also eliminate u2 and i2.

Substituting equations (3)(4) into (1)(2),

mutual inductance (left) u1 = jωL1I + jωMi2 (5)

mutual inductance (right) U −R2 i2 = jωL2i2 + jωMI. (6)

Substituting now (6) into (5),

u1 = jωL1I + jωM
U − jωMI

R+ jωL2
,
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Now we put in the values of the source phasors,

u1 = jωL1Î + jωM
−jÛ − jωMÎ

R+ jωL2
,

and ‘simplify’ the result,

u1 =
ωMÛ

R+ jωL2
+

ω2M2Î

R+ jωL2
+ jωL1Î =

ωMÛ + ω2
(

M2 − L1L2

)

Î + jωL1RÎ

R+ jωL2
.

While (or before!) simplifying, it’s wise to think what we want the result for. In this case, we have to
extract the polar form – magnitude and angle – in order to find the time function. That is why the final
form, above, was chosen: it has a single rectangular expression on the top and on the bottom, which
makes it fairly easy to convert to polar form.

Now we find the magnitude and angle of this phasor. As we’re near the final answer, we’ll call it u
instead of the name u1 that we used for our own working.

|u| =

√

√

√

√

(

ωMÛ + ω2 (M2 − L1L2) Î
)2

+
(

ωL1RÎ
)2

R2 + ω2L2
2

u = tan−1 ωL1RÎ

ωMÛ + ω2 (M2 − L1L2) Î
− tan−1 ωL2

R
.

If you’re being very careful, you might wonder whether the real parts used in the inverse tangents are guaranteed
to be non-negative: remember that if a complex number (a+jb) has a negative real part a, its angle is tan−1 b

a
+π.

In the expression for u1, if L1L2 > M2 and Û is sufficiently small, the real part on the top could be negative. Due
to the relation M = k

√
L1L2, with 0 ≤ k ≤ 1, the condition L1L2 > M2 will be true unless k = 1. We’ll leave

this question/worry just as a point to note if you are programming solutions of this sort of problem.

As we had a cosine reference, the corresponding time function is

u(t) = |u| cos (ωt+ u),

and we’ll leave it like that instead of inserting the nasty big expressions from above.

Q7

a)

When ω ≪ ω1, all the four terms give gain
of 1 (0 dB).

When the frequency passes ω1, one
term in the bottom of the function
starts giving a slope −20 dB/decade until
ω2, at which the two top terms each
contribute 20 dB/decade so the total slope
is 20 dB/decade.

This continues until ω3 at which the
other bottom term starts to give
−20 dB/decade, so that the four terms’
slopes cancel to zero slope for the higher
frequencies.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

−35

−30

−25

−20

−15

−10

−5

0

f  or  ω   [a.u.]

|H
(ω

)|
  

[d
B

]

 

 
|H(ω)|

dB
 actual function

asymptotic approximation

ω
1

ω
2

ω
3

0 dB/dec

−20
dB/dec

+20
dB/dec

0 dB/dec
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The example shown is only an example! It is a particular case where ω2

ω1
= ω3

ω2
= 100. In that case, the

amplitude for ω ≫ ω3 is the same as the amplitude for ω ≪ ω1, since the negative and the positive
gradient both occur over equal ranges of frequency (2 decades).

In other cases, the amplitude for ω ≫ ω3 could be higher or lower. The position of the lowest point also
depends on our choice of how much greater ω2 is than ω1, which we chose to be 100 times.

The only features that must be found in any correct solution are the amplitude of 0 dB at ω ≪ ω1, and
the gradients of ±20 dB/decade.

b) Some simple circuits with this property of out
in = 1

1+jω/ω0
are:

L

R

−

+

uout

+

−

uin

R
C

−

+

uout

+

−

uin

L

iout

R

iin

R

iout

C

iin

Deriving the network functions, and thereby showing the relation of ω0 to the component values, is
“left as an exercise for the reader”: similar circuits are solved in the notes or exercises of the Topic on
time-functions. Since there are only two components in each of these circuits, dimensional analysis is a
good cheat-method for finding ω0 – there isn’t a lot of choice!

Q8

a)

We want to make the complete load (R, L, C) have ‘unity
power factor’, which means its complex power will have
no reactive part (Q = 0) and its total impedance will also
be purely real.

One approach is to work with powers. Define the voltage
across this load as u:

S =
|u|2

R− jωL
+ |u|2 (−jωC),

+
−U

Zs R

L

C

and split this into real and imaginary parts,

S = P + jQ = |u|2
(

R

R2 + ω2L2
+ j

(

ωL

R2 + ω2L2
− ωC

)

)

.

The condition Q = 0 requires that

ωL

R2 + ω2L2
= ωC, thus C =

L

R2 + ω2L2
.

Another approach – simpler by avoiding defining a quantity u – is to set the total impedance to be real.
The two branches are in parallel, so it’s easier to set the total admittance to be real: this is equivalent,

10 / 13 KTH EI1120 (Electric circuit analyis) Omtentamen SOLUTIONS, 2018-05-29



as Z is real if and only if 1
Z is real.

ℑ
{

jωC +
1

R+ jωL

}

= 0, thus C =
L

R2 + ω2L2
.

b) We want to maximise the active power delivered to the ‘load’. The ac maximum power theorem is
appropriate to a fixed source (impedance and open-circuit voltage) and a load that can be varied to
give whatever magnitude and phase-angle of current are necessary to obtain maximum power from the
source.

We often have a choice about which parts of the circuit to consider as the load, and which as the source.
It’s essential that the load contains the components where the active power is to be consumed. Reactive
components could be put in the load or the source, but it generally is nice and clear if all the parts that
we are free to choose are in the load. That’s easy in this case, if we treat R, L and C as the load.

For maximum power, the condition is Zload = Z∗
source. Thus,

Z∗
s =

1
1

R+jωL + jωC
=

R+ jωL

(1− ω2L) + jωCR
,

which is a nasty mixture of real and imaginary parts and multiple occurrences of the unknown R.

It’s probably better to start again, expressing the equation in terms of admittances,

1

Zs
=

(

1

R+ jωL
+ jωC

)∗

,

from which, taking real and imaginary parts of Zs,

R

R2 + ω2L2
= ℜ

{

1

Zs

}

C =
L

R2 + ω2L2
− 1

ω
ℑ
{

1

Zs

}

.

Having solved the first of these equations to get R, the second is easier.

This question, Q8b, was so open that it’s not a demand to do more than showing the initial relation that equates
a correct expression for load impedance with the conjugate of the source impedance. If this is clear, it should give
the full points. Perhaps if someone does a really clever job of going further, they might get a little bonus.

Q9

We’ll start by finding the loads’ active and reactive powers, from the two given quantities for each load.

Source: line-voltage U , angular frequency ω.

Load 1: |S1|, pf1:
P1 = |S1| pf1, Q1 = |S1|

√

1− pf
2
1.

Load 2: P2, pf2:

P2 = P2, Q2 = P2

√

1
pf

2
2

− 1.

Load 3: |S3|, θ3.
P3 = |S3| cos θ3, Q3 = −|S3| sin θ3.

source x

load 1

y

load 2

z

load 3

The reason for the negative sign on the sin θ3 term is that this angle was defined as current relative
to voltage (e.g. for each phase of the load), meaning that a lagging load (one that consumes reactive
power) would have a negative angle. As we are defining power flow into the load, we want a lagging load
to have a positive value of reactive power.
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Note that each line in the diagram indicates a three-phase connection. As the source and all the loads are
balanced, it does not matter whether there is a neutral or not, or whether the loads have a star or delta
connection. This ‘single-line diagram’ for showing a three-phase system is a common way to simplify
diagrams; it has been shown in the course-notes for the Topic on balanced three-phase calculations, and
used in an exercise in the examples.

a) At point ‘y’, the power flow is the sum of powers of loads 2 and 3.
Summing the reactive powers calculated above,

Qy = Q2 +Q3 = P2

√

1

pf
2
2

− 1 − |S3| sin θ3.

b) At point ‘x’, the sum of all the loads is flowing. We know that in a balanced three-phase system the
apparent power flow is given by |S| =

√
3UI, where U and I are line voltage and line current magnitudes.

We can find the apparent power from the sums of P and Q, and we know the line-voltage magnitude,
so we can use this equation:

I =
|S|√
3U

=

√

(
∑

P )2 + (
∑

Q)2

√
3U

· · ·

=

√

(

|S1| pf1 + P2 + |S3| cos θ3
)2

+

(

|S1|
√

1− pf
2
1 + P2

√

1
pf

2
2

− 1 − |S3| sin θ3
)2

√
3U

.

Thought: I really don’t like the double symbol ‘pf’ for power factor in equations. How about ‘f’ or ‘k’? Likewise,
|S| for apparent power and S for complex power is nice and simple when mainly dealing with complex power,
but it would be nicer to have something like S and S to avoid lots of || symbols in equations. The reason for our
choice in the course is the relative difficulty of drawing bold-font on a board, or the tedium of always needing an
overbar (‘S̄’) if instead the bar method is used for showing complex quantities, given that most of the quantities
in this part of the course are complex.

c) This task is to find the angle of the current in line-b at point ‘z’, which means the current going to
just load 3. The reference angle is given by defining the angle of the voltage uab as being 30➦.

The solution is αib = −120➦ + θ3, or in radians −2π
3 + θ3.

One method. Imagine there to be a neutral, and that we define the line potentials relative to this: va,
vb, vc. If we draw out the three potentials in the complex plane at angles such that the line from vb to
va (which shows the direction of uab) has an angle of 30➦ to the real axis, we note that va = 0➦ and
so vb = −120➦. Assume the load to be star-connected. As the load is balanced, each phase has similar
properties (e.g. the same angle between its current and voltage). As the angle of current relative to
voltage is stated to be θ3 for this load, the phase current must be at θ3 relative to the phase voltage. For
the phase connected to line 3, the phase voltage is −120➦, so the phase current is at the angle −120➦+θ3.
As a star-connection has the same phase current as the line current, this is the solution.

Another method. This starts directly from the given angle, without considering any neutral point or star
connection. We know that the angles are defined such that the voltage of ‘a’ relative to ‘b’ is 30➦; then
with phase-rotation a,b,c, the voltage of ‘b’ relative to ‘c’ will be shifted −120➦ further, to −90➦. If we
assume a delta load with phase-impedances Z, the current in line ‘b’ in the direction of the arrow at
point ’z’ is:

ib =
uba
Z

+
ubc
Z

=
−uab
Z

+
ubc
Z

=
U

Z

(

1 −150➦ + 1 −90➦
)

=
√
3
U

Z
−120➦.

This is not the final answer: U is a real number, describing the line voltage magnitude, but Z is the
impedance in each phase of the load. The load is balanced and has an angle of θ3 of the current relative
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to the voltage in each phase. An impedance relates a current (i) and voltage (u) according to Z = u
i .

From this, it must be in our case that Z = −θ3 in order that Z = |u| α
|i| α+ θ3

, where α is whatever angle

the voltage across a particular phase is defined as having. Putting this in to find the answer,

ib =
√
3U
Z −120➦ = U − (−θ3)− 120➦ = θ3 − 120➦.

In these examples we note how assumptions about a particular load structure (star or delta) might help
us to think, and they come to the same conclusion about what happens in the sytem outside the load.
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