KTH EI1120 Elkretsanalys (CENMI) TEN1 2018-05-29 kl114-19

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tva i del B (10p) och fyra i del C (18p).

Hjilpmedel: Upp till tre Ad-ark (bada sidor kan anvindas) med studentens egna anteckningar pa
valfritt sétt: handskrivet eller datorutskrift; text eller diagram; stor eller liten textstorlek, osv. Dessa
maste inte ldmnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna virden av
komponenter (t.ex. R for ett motstand, U for en spénningskélla, K for en beroende killa) antas
vara kinda storheter; och andra markerade storheter (t.ex. strommen markerad i ett motstand eller
spanningskélla) antas vara okinda storheter. Losningar ska uttryckas i kidnda storheter och forenklas.
Var tydlig med diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara svarare att tjina podng pa: fastna inte pa dessa.
Det hjilper, ofta, att rita om ett diagram for olika tillstand eller med ersédttningar eller borttagning av
delar som inte &r relevanta for det sokta vérdet. Da blir kretsen ofta mycket ldttare att tdnka pa och
16sa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ l6sningsmetod.

Réknande av betyg: Lat A, B och C vara de maximala mojliga poéngen fran delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. Lat a, b och ¢ vara poéingen man far i dessa respektive delar i tentan, och ay
vara poangen man fick fran kontrollskrivning KS1, och by podngen fran KS2, och h bonuspoédngen fran

hemuppgifterna. Godkénd tentamen (och dérigenom hel kurs) kriver:
max(b, by) max(a, ax) + max(b,bx) + c+ h > 0.5

max(a, a)
—=>04 &
’ A+B+C -

A =z

C
>04 & —>03 &
- Yy 0_7

Betyget riiknas ocksa fran summan 6ver alla delar och bonuspoéng, d.v.s. sista termen ovan, med grénser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkédnd med liten marginal, sa kan
betyget Fx registreras, med mdojlighet att fa betyget E om ett kompletteringsarbete dr godként inom
nagra veckor efter tentamen.

Observera att nu i VT18 omgangen har vi givit mojlighet for studenter pa EI1120 att klara av alla poéng
fran tal 9, om trefas véxelstrom, genom godkind datoruppgift (hemuppgift 13).

Nathaniel Taylor (073 949 8572)

Del A. Likstréom

I
a) [1p] Effekten absorberad av Ry. v

1) [4p] Bestédm foljande: — A\ VNV Q
R, /
)

G
b) [1p] Strémmen i. O \_Ij

_l_

I Ui
. R3
c) [Ip] Potentialen v. i
WO
d) [1p] Effekten levererad av killan Uj. Ry Uy =
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2) [4p]

Anvand nodanalys for att skriva ekvationer som
skulle kunna losas for alla fem nodpotentialerna v1,
V9, U3, V4, U5. Du maste inte losa ekvationerna.

Us

3) [4p]

Motstandet R, ar valt for att det ska fa sa mycket effekt
som mojligt fran resten av kretsen. Hur mycket effekt far

det?

Del B. Transient

4) [5p] Bestédm f6ljande:

a) [3p] vid ¢t =0T,

effekten absorberad av Ry, R3, Lo:

PRl (0+>7 PR3 (0+)7

b) [2p] t — oo,
energin lagrad i Lo, C":
Wy,(00), We(o0).

Fp,(07).

Ry
AVAVAY,
Ry Cc——
10
Ly R3
Lo
Y'Y Y

5) [5p]

Bestam w(t), for ¢t > 0.

Obs. att spolarna dr seriekopplade och darfér kan behandlas

som en ekvivalent under 16sningen, férutom sista steget dar

man berdknar spanningen 6ver en enda spole.

+ Ry Ry
u(t) CD 1@ U @)
PV
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Del C. Viaxelstrom

6) [4p M R

Kéllorna har foljande tidsfunktioner: * *

+
I(t) = Icos(wt) I(t) CT) u(t) Ly Ly U(t)

U(t) = Usin(wt)

Bestdm u(t).

7) [4p]
(1 +jw/WQ) (1 +jW/WQ)

a) [3p] Rita ett Bode amplituddiagram av funktionen H(w) = (0T /o) (LT jw/os)
jw /w1 jw/ws

Anta att: w] K wy K ws.
Markera viktiga frekvenser och lutningar.

b) [1p] Rita en krets som har nétverksfunktionen ————.
1+ jw/wo
Visa tydligt vilka storheter i kretsen som &r ’in’ och 'ut’ for nétverksfunktionen.

Visa ocksa hur wp kan uttryckas som funktion av komponentvérden i kretsen.

8) [4p] —L 1

Kallan har vinkelfrekvens w. Den &r kopplad genom en Zs R
ledning med impedans Zg, till en last R och L med m .
tillhérande kondensator C. C—) u —_—¢

a) [2p] Bestdm C sa att effektfaktorn for hela lasten av L
C, L, R tillsammans blir 1.

b) [2p] Visa hur man skulle kunna bestdmma vérden av R och C' som maximerar den aktiveffekt som
levereras till lasten. Du far lamna ekvationer oférenklade, d.v.s. med R och C pa flera stillen.

9) [6p] Kretsen visar en trefas killa, och tre trefas kélla X y z
laster (9 impedanser totalt). De &r alla balanserade.
Linjerna mellan dessa representerar trefas anslutningar
bestaende av tre fasledare med férsumbara impedanser.

Kélla: huvudspénning U, vinkelfrekvens w.
Last 1: skenbareffekt | S|, effektfaktor pF; (lagging).
Last 2: aktiveffekt P, effektfaktor PFy (lagging).

Last 3: skenbareffekt |S3], fas 03 av strom relativ till spanning.
a) [2p] Vilken reaktiveffekt floder vid markeringen ’y’?
b) [2p] Vilken stréomamplitud (absolutbelopp) finns i varje ledare i linjen vid markeringen 'x’?

c) [2p] Lat oss kalla de tre fasledarna i linjen for a,b,c, och definera vinklarna sa att spénningen av ’a’
relativ till 'b’ &r U/30°. Fasfoljden &r a,b,c. Vad &r strommens fasvinkel i fasledare b’ vid markeringen 'z’ ?

Slut ... men slosa inte eventuell aterstaende tid: kolla och dubbelkolla svaren!
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Solutions (EI1120 TEN1 VT18, 2018-05-29)
Q1

a) P, = (I — I)*Ry.
KVL at the left node. Order of I; — Iy or I — I; doesn’t matter, as it’s squared.
. Ui —Us
b = —".
) i 7
KVL in loop at bottom right. The order (signs) of U; and Us do matter.

C) U:Uz—l-(fl —]Q)RQ.

Potential-change from earth node to node v; avoid current sources as we don’t directly know their
voltages, which should not be assumed to be zero (a surprisingly common mistake).

Uy (Ur — Us)
R3

The power out from source Uj is the product of its voltage and the current defined out of its ‘+’ terminal.

This current is found by KCL in the central node of the circuit: ¢ — I5. Substitute the expression for ¢,

and multiply by Uj.

d) P, = — Uils.

Q2

Two possible methods are shown below, for writing suitable equations.

Extended nodal analysis.

Start with KCL at every node except the reference. This circuit has three voltage sources: two indepen-
dent and one dependent. We can define unknown currents in these: let’s define them into the +-pole of
the source, and call them i, ig and i, in respectively sources Uy, Uz and Hi,.

U1 — U2 U1 — U3
+

KCL(1): 0 = iy +

R Ry
KCL(2): 0 = 244, 2)
Ry
V3 — U1 U3 — Vs
KCL(3): 0 = I 3
®) pHon B ®)
KCL(4): 0 = — —ig (4)
Ry
KCL(G): 0 = 2% 4ig. (5)
R3

Now we have 5 equations, in 8 unknowns. The 5 unknown node-potentials and 5 KCL equations would
give a well defined solution. But we the 3 voltage sources have added unknowns; this hints that we should
look to the voltage sources to provide corresponding further equations. The source set the following
relation between pairs of node-potentials:

Vg — V5 = U1 (6)
Vs — V4 = U2 (7)
v1T = Hlx (8)
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However, this last of these introduced a further unknown, the marked quantity ¢,. This needs to be
described in terms of the existing defined quantities, in order for the equations to describe all the
relevant detail of the circuit:

Vs — U3

i )

1y —

The above equations are a sufficient solution.

Nodal analysis: simplify on the way, e.g. supernode

Another approach is to try to reduce the number of equations from the start, instead of ending up as in
the above example, with lots of simpler equations to solve.

If we follow this principle, and use the idea of supernodes, then we end up with just two equations to
solve, then after solving them we find other potentials by simple relations given by the voltage sources.

The nodes vy, v4 and vs are joined by voltage sources, so we use just one of these potentials as an
unknown, and write the others in terms of that by adding or subtracting the voltage source values, as
in equations (6) and (7) above. Let’s keep vy, since the direction of the voltage sources is such that we
can then express vs and vy without negative signs:

vs = w4+ Uy (1)
vg = wg+ U+ Us. (2)

The node v; is joined to the zero node by the dependent voltage source, so we can immediately write

Hi, instead of v;. However, we prefer to avoid the further variable i,: we saw that it can be written

instead as “53, and since we’ve decided to use only the potential v4 in the top supernode, we use (1)

to substitute for vs,

v+ Us — g (3)
Rs ’

Now we can write KCL for the non-reference supernodes and other nodes: we have just one such
supernode and one other node.

’Ul:H

vy + Uy + Uy — Hutl2=vs U, —
KCL(2&4&5): 0 = — 11772 B tatlh—vs, b1 (4)
R1 R3 R4

va+Uz—v3
H i

v3 — +v3—(v4+U2)

KCL(3): 0 = T
(3) + 7 R

()

The five equations above are all that are needed. Compared to the first method, this method gave fewer
equations, by avoiding having three unknown source currents and a marked current. Perhaps the bigger
advantage is that only the two final equations (KCL) have to be solved simultaneously: after finding
their unknowns vz and v4 the other potentials can be written based on the earlier equations.

Q3

This question could be put in other words as: find
the Thevenin (or Norton) equivalent at the marked
terminals, for the circuit without R, and then find
the maximum power that this source can produce.

We're told that the load R, connected across the
terminals has been chosen to obtain this value of

power.
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First: open-circuit voltage, which is the Thevenin voltage.

What is the opamp’s output potential? The non-inverting input is held to zero, so the inverting input
must also be at zero, as we have negative feedback and everything’s ideal. KCL(out) at the inverting
input gives

=0
Ry Ry ’
from which R
o =Us — —2U
v, 2 i 1

In the open-circuit case, there is no current in R3, SO Ugc = V.

The Thevenin resistance is simply Rs.

Reason: The potential of the terminal at the opamp output is fixed to whatever is required by the
feedback circuit to hold the inverting input to the same potential as the non-inverting input; the opamp
is like a voltage source, which has to provide the current for whatever we connect to it, while keeping the
necessary potential. If we connected between the zero node and the opamp output, it would appear as
an ideal voltage source, with zero resistance. But the lower terminal connects to the zero node through
a resistance, Rs3, so this is the Thevenin resistance seen at the terminals.

The Thevenin equivalent at the terminals is therefore

m_@—gm, R, = Rs.

By the usual relations for maximum power, this circuit can supply at its terminals a maximum of

P — UEZ:G&;ii%)a

This maximum power would happen when R, = R3; but we weren’t asked to point that out.

Q4

a) This question concerns the state at ¢ = 0T, just after the step-change of the voltage source. This
state is shown on the right below, with inductors and capacitors replaced by current and voltage sources.
In order to find the values of these sources, we need to solve for them in the circuit on the left, which
shows the circuit at t = 07, in equilibrium before the step.

t=0" Ry t=0" Ry
VWﬁT“" AVAVAY
Ry () R, Ug
“ @ O @
(L) Rs3 ; % R
L), -

Solving the left circuit, with regard to definitions of current and voltage used in the right circuit, we

find: 4, =1, i, =0, u, = —IRy. Inserting these in the circuit on the right, and solving:

P, (07) =0, because i, =0, as L has not yet allowed current to flow in this branch.

P..(07) =0, KCL at the bottom node shows that no current flows in Rs.

P,(0")=1I(U—-1IRy —u, —0)=UI, by KVL in the loop of Lo, U, R, u., Rs.

L
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b) The equilibrium at t — oo differs from ¢t = 0~ only in that the voltage source is now U instead of 0.

Wa(00) = 4 (1+ )

t— 00 R
The current downwards through R; is U/R;. AVAVAY, l
By KCL below Rj, the current in Lg is therefore
I+U/R;. B (©)
'O @

W, (00) = 3C (U — IRy)?

L R
By KVL, the voltage across the capacitor is U — I Ro; (L) K
there is no voltage across R3 (open circuit capacitor, (L2) |

so by KCL no current, so by Ohm’s law no voltage),
nor across Lo (equilibrium).

Q5

The reactive component here is the total of the two
inductors. As they are in series, they behave to the NN\ NN\

rest of the circuit like a single inductor of L + Lo. n R Ry

(This is important: if they were in different

places, they might have independent responses with L1 > () Q) I-1(t) U G)
different time-constants, or might interact to give

a second-order system. As we can make a single i(t)y— Lo

equivalent inductance, we expect this circuit to have YY)

the simple behaviour of a first-order system where
all quantities are of the form a + be=*/7.)

During the period of interest (¢ > 0) the current source’s value is I. The Thevenin equivalent seen by
the two inductors is
UTZU-i-IRQ, RT:R1+R2.

The Thevenin voltage here is for the upper node (left of R;) relative to the lower (below I). It can be
found from KVL around the open-circuit case, with the inductors not present, after KCL shows that all
of I passes through Ry. The Thevenin resistance can be found by setting the sources (both independent)
to zero, and simplifying to a single resistance.

We'll first find the current in the inductors, as that is the continuous quantity. Then we’ll find the
marked voltage across L from this current.

An inductance behaves as a short-circuit in the equilibrium, so the final current down through L; is the

short-circuit current of the Thevenin equivalent that was found above: i(c0) = %;{}%.

Before the step-function, in the equilibrium at ¢ = 07, the current source is like an open circuit, and
the inductors are like short circuits: so in this case the current down L, is ¢(07) = ﬁ. Immediately
after the step-function, this current is the same, as current is the continuous quantity in an inductor —

it takes energy and time to change it. Therefore, i(07) = ﬁ.

We now have the initial and final values of the current, in the period of interest. The time-constant is

found from the Thevenin resistance and the inductance: 7 = 1%1%2 Using these three results,

U+IR, IRy i
— 2+L2 t>0
Ri+ Ry R+ Ry (t>0)

i(t) = i(00) + (i(07) —i(o0)) e™/7 =

We were actually looking for the voltage u(t) across L1, so now we calculate this from the solved current:

di(t)  Ri+Ry IR —pde IRy - B4Ry

t) = L = = — La+L t>0).
U() ' dt 1Ll'f‘LQ Rl"‘RQe L1+ Lo e ( )
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Q6

Both sources are sinusoidal, with the M R

. /\
same frequency: we can use one solution, o Y ANNN—
representing each source as a phasor.

_l_
, I(t) T ut) L L 0
Let’s take cos(wt) as our reference, so 1 2 -

that this function corresponds to a phasor
with zero angle. Then the sin(wt) function
corresponds to an angle of —m/2.

I(t) = I cos(wt) U(t) = U sin(wt)

Now we can express the two sources as phasors at angular frequency w, as below. (In the later equations,
we’ll drop the ‘(w)’ and just write the quantities’ symbols I, U, u etc., to make it neater.)

I(w)y=1, Uw)=-jU.

Notice that this is the same circuit as Q6 in the previous exam (March 2018), but now we are solving
for the voltage across the left coil, rather than for the current in the right coil. One solution method is
to start by solving for the current in the right coil, as done in the previous exam’s solution, and then use
this current, along with I(w), to calculate the left coil’s voltage u from the mutual inductance equation.

Here, instead, we’ll try the method of writing equations for all that we know, and then seeing what we
can do with the equations. Let’s define the coils’ voltages as u; (left) and ug, with positive reference at
the top, and their currents as 77 and io both defined into the tops of the coils.

We write the equations for the two coils’ voltages,

mutual inductance (left) up = jwliig + jwMis (1)
mutual inductance (right) uy = jwloig + jwMiy (2)

Due to our chosen definitions of the currents and voltages, these equations have no negative signs. The
equations of the other parts of the circuit come from KCL in the left loop, and KCL or KVL in the right
loop,

KCLgetty i1 = I (3)
KVL(right) U = U—Rig (4)

We can also note the obvious, that our definition u; is the same as the quantity u that we want to find
in the end. (The reason for defining u; was that it’s more consistent with how we’ve studied mutual
inductance calculations, and that experience tells us it’s nicer to think about x1 and x5 than about =
and x3.)

Looking at the above equations, we have 4 equations and 4 unknowns: u1, ug, i1, i2. Equation (3) directly
gives us 71. We only want to find uq, so we must also eliminate us and is.

Substituting equations (3)(4) into (1)(2),

mutual inductance (left) up = jwLil 4 jwMis (5)
mutual inductance (right) U—-Ryia = jwlois+jwMI. (6)
Substituting now (6) into (5),
U — jwMI

= w4 jwM
U1 Jwlil + jw R+ jwly
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Now we put in the values of the source phasors,

e U —jwMI
= LI M-———
U1 Jwlnl +jw R+JCUL2 )
and ‘simplify’ the result,
MU 2M2T . MU + w? (M? — L1 Ly) I +jwLRI
w = w. +w. +ij1[:w w( .12) Jw1‘
R+jwls R+ jwls R+ jwls

While (or before!) simplifying, it’s wise to think what we want the result for. In this case, we have to
extract the polar form — magnitude and angle — in order to find the time function. That is why the final
form, above, was chosen: it has a single rectangular expression on the top and on the bottom, which
makes it fairly easy to convert to polar form.

Now we find the magnitude and angle of this phasor. As we’re near the final answer, we’ll call it u
instead of the name u; that we used for our own working.

~ A\ 2 A 2
(wMU +w? (M2 — Ly L) I) v (leRI)

ul = R? + w?L3
a = tan~! wlr R —tan~! —wL2.
wMU+w2(M2—L1L2)I R

If you’re being very careful, you might wonder whether the real parts used in the inverse tangents are guaranteed
to be non-negative: remember that if a complex number (a+jb) has a negative real part a, its angle is tan—? g 4.

In the expression for uy, if L1 Ly > M? and U is sufficiently small, the real part on the top could be negative. Due
to the relation M = kv/LiLs, with 0 < k < 1, the condition LiLy > M? will be true unless k = 1. We’ll leave
this question/worry just as a point to note if you are programming solutions of this sort of problem.

As we had a cosine reference, the corresponding time function is
u(t) = lu] cos (wt + ),

and we’ll leave it like that instead of inserting the nasty big expressions from above.

Q7

a) . ' —__ H) - actual function '

When w < wq, all the four terms give gain asymptotic approximation | /1 / 0 dB/dec

of 1 (0dB). 5 : -

When the frequency passes wi, one 1ol i

term in the bottom of the function

starts giving a slope —20 dB/decade until g 15} 1

wo, at which the two top terms each = :

contribute 20 dB/decade so the total slope % 207 Eé%ec gé?dec ; 1

is 20 dB/decade. sl i i ]

This continues until ws at which the

other bottom term starts to give 807 |

—20dB/decade, so that the four terms’ a5l i

slopes cancel to zero slope for the higher o, o,

frequencies. 10’ 10° 10° 10° 10° 10° 10’ 10° 10°
foro [au]
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The example shown is only an erxample! 1t is a particular case where ‘;’—f = %; = 100. In that case, the
amplitude for w > w3 is the same as the amplitude for w < wq, since the negative and the positive

gradient both occur over equal ranges of frequency (2 decades).

In other cases, the amplitude for w > w3 could be higher or lower. The position of the lowest point also
depends on our choice of how much greater ws is than w;, which we chose to be 100 times.

The only features that must be found in any correct solution are the amplitude of 0dB at w < w1, and
the gradients of +20dB/decade.

b) Some simple circuits with this property of i—‘:}t =7 +ju1J 7oy Are:
+ +
Lo L YV,
Uin R Uout Uin C " Uout
Z.in iin
O > O >
R L —_—C R
o lout o lout

Deriving the network functions, and thereby showing the relation of wg to the component values, is
“left as an exercise for the reader”: similar circuits are solved in the notes or exercises of the Topic on
time-functions. Since there are only two components in each of these circuits, dimensional analysis is a
good cheat-method for finding wy — there isn’t a lot of choice!

Q8
a) —__1
We want to make the complete load (R, L, C) have ‘unity Zs R
power factor’, which means its complex power will have m
. _ . . . U —C
no reactive part (Q = 0) and its total impedance will also
be purely real. I
One approach is to work with powers. Define the voltage

across this load as u:

Jul?

S=——
R —jwL

+ ‘u|2 (—jWC),

and split this into real and imaginary parts,

R wL
_ Sy 12 .
S=P+jQ = |ul (R2+w2L2 +J(R2—|—w2L2wc>>'

The condition @ = 0 requires that
wlL L
Ty A B -y

Another approach — simpler by avoiding defining a quantity u — is to set the total impedance to be real.
The two branches are in parallel, so it’s easier to set the total admittance to be real: this is equivalent,
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as Z is real if and only if % is real.

L

thus - C'= mp o772

NRjwC+ ————7 =0
N

b) We want to maximise the active power delivered to the ‘load’. The ac maximum power theorem is
appropriate to a fixed source (impedance and open-circuit voltage) and a load that can be varied to
give whatever magnitude and phase-angle of current are necessary to obtain maximum power from the
source.

We often have a choice about which parts of the circuit to consider as the load, and which as the source.
It’s essential that the load contains the components where the active power is to be consumed. Reactive
components could be put in the load or the source, but it generally is nice and clear if all the parts that
we are free to choose are in the load. That’s easy in this case, if we treat R, L and C as the load.

For maximum power, the condition is Zjoaq = Z2 Thus,

source*
75 _ 1 B R+ jwL
s ﬁij +jwC (1 —w2L)+jwCR’

which is a nasty mixture of real and imaginary parts and multiple occurrences of the unknown R.

It’s probably better to start again, expressing the equation in terms of admittances,

! L Lwe)
1_(_r .
Z. \RtjwL '’ ’

from which, taking real and imaginary parts of Zj,

R _w 1
R2 +w2L2?2 Zs
L 1 1
C = ————=——S¢=¢.
R? + w212 w“{zs}
Having solved the first of these equations to get R, the second is easier.

This question, Q8b, was so open that it’s not a demand to do more than showing the initial relation that equates
a correct expression for load impedance with the conjugate of the source impedance. If this is clear, it should give
the full points. Perhaps if someone does a really clever job of going further, they might get a little bonus.

Q9

We'll start by finding the loads’ active and reactive powers, from the two given quantities for each load.

Source: line-voltage U, angular frequency w. source x y 7z

Load 1: ’Sl‘, PFq:
P12‘81|PF1, Q1:|Sl|\/1*PF%.

Load 2: PQ, PF9:

P, =D, Q2:P2\/%—1-

Load 3: |53|, 93.
P3 = ‘53’00893, Qg = —|53‘ sin93.

The reason for the negative sign on the sinf3 term is that this angle was defined as current relative
to voltage (e.g. for each phase of the load), meaning that a lagging load (one that consumes reactive
power) would have a negative angle. As we are defining power flow into the load, we want a lagging load
to have a positive value of reactive power.
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Note that each line in the diagram indicates a three-phase connection. As the source and all the loads are
balanced, it does not matter whether there is a neutral or not, or whether the loads have a star or delta
connection. This ‘single-line diagram’ for showing a three-phase system is a common way to simplify
diagrams; it has been shown in the course-notes for the Topic on balanced three-phase calculations, and
used in an exercise in the examples.

a) At point ‘y’, the power flow is the sum of powers of loads 2 and 3.
Summing the reactive powers calculated above,

1
2
PF3

Qy = Q2+Q3 = P —1 — |S3|sin6s.

b) At point ‘x’, the sum of all the loads is flowing. We know that in a balanced three-phase system the
apparent power flow is given by |S| = v/3UI, where U and I are line voltage and line current magnitudes.
We can find the apparent power from the sums of P and ), and we know the line-voltage magnitude,
so we can use this equation:

s JEPPEEet
V3U V3U

2 2
\/(‘SlfPFl + P2 + ’S3’COS€3> + <’51‘\/1—PF% + Pg‘/%—l — \Sg\sin93>
V3U '

Thought: I really don’t like the double symbol ‘PF’ for power factor in equations. How about ‘f” or ‘k’? Likewise,
|S| for apparent power and S for complex power is nice and simple when mainly dealing with complex power,
but it would be nicer to have something like S and S to avoid lots of || symbols in equations. The reason for our
choice in the course is the relative difficulty of drawing bold-font on a board, or the tedium of always needing an

overbar (‘S”) if instead the bar method is used for showing complex quantities, given that most of the quantities
in this part of the course are complex.

c) This task is to find the angle of the current in line-b at point ‘z’, which means the current going to
just load 3. The reference angle is given by defining the angle of the voltage uy;, as being 30°.

The solution is «;, = —120° + 03, or in radians _TQW + 05.

One method. Imagine there to be a neutral, and that we define the line potentials relative to this: v,
vy, Ve. If we draw out the three potentials in the complex plane at angles such that the line from vy to
vo (which shows the direction of u4;) has an angle of 30° to the real axis, we note that v, = 0° and
so svp = —120°. Assume the load to be star-connected. As the load is balanced, each phase has similar
properties (e.g. the same angle between its current and voltage). As the angle of current relative to
voltage is stated to be 63 for this load, the phase current must be at 63 relative to the phase voltage. For
the phase connected to line 3, the phase voltage is —120°, so the phase current is at the angle —120°+ 05.
As a star-connection has the same phase current as the line current, this is the solution.

Another method. This starts directly from the given angle, without considering any neutral point or star
connection. We know that the angles are defined such that the voltage of ‘a’ relative to ‘b’ is 30°; then
with phase-rotation a,b,c, the voltage of ‘b’ relative to ‘¢’ will be shifted —120° further, to —90°. If we
assume a delta load with phase-impedances Z, the current in line ‘b’ in the direction of the arrow at
point 'z’ is:

Uba | Ube _ Uab  Ue _ U

o o _ U o
e e by Mo E(l —150°+ 1 —90) = VB /120"

i =

This is not the final answer: U is a real number, describing the line voltage magnitude, but Z is the
impedance in each phase of the load. The load is balanced and has an angle of 03 of the current relative
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to the voltage in each phase. An impedance relates a current (i) and voltage (u) according to Z = ¥.

From this, it must be in our case that /Z = —#f3 in order that Z = m‘oili%ﬁg’ where « is whatever angle

the voltage across a particular phase is defined as having. Putting this'in to find the answer,
[iv=/V35/=120° = [U — (=63) — 120" = 03 — 120".

In these examples we note how assumptions about a particular load structure (star or delta) might help
us to think, and they come to the same conclusion about what happens in the sytem outside the load.
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