
KTH EI1120 Elkretsanalys (CENMI) TEN1 2019-03-15 kl. 14–19

Permitted material: Beyond writing-equipment, up to three pieces of paper up to A4 size can be brought,
with free choice of content: handwritten, printed; small, large; text, diagram, image; one or both sides,
etc. These papers do not need to be handed in with the exam.

Unless it is stated otherwise, the final answer to a question should be expressed in terms of the known
quantities given in the question, and any clear simplifications should be done. Component values such
as R for a resistor, U for an independent voltage source, or K for a dependent source, are assumed to
be known quantities. Marked currents or voltages such as ix are assumed to be definitions, not known
quantities.

Clearly drawn and labelled diagrams are a good way to help yourself avoid mistakes, and to make clear
to others what you are doing. By showing clearly your intermediate steps in a solution, you improve
your chance of getting points even if the final result is wrong. You may write in Swedish or English; but
we suggest that writing in either is seldom necessary if you make good use of diagrams and equations!

Determination of exam grade. Denote as A, B and C the available points from sections A, B and C
of this exam: A=12, B=10, C=18. Denote as a, b and c the points actually obtained in the respective
sections, and as ak and bk the points fr̊an KS1 and KS2, and as h the homework ‘bonus’. The requirement
for passing the exam (E or higher) is:

max(a, ak)

A
≥ 40% &

max(b, bk)

B
≥ 40% &

c

C
≥ 40% &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 50%

The grade is then determined by the total including bonus, i.e. the last of the terms above: boundaries
(%) are 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). If the exam misses a pass by a small margin on just
one criterion, a grade of Fx may be registered, with the possibility of completing to E by an extra task
arranged later.

For this VT19 round, students who have their final project-task approved will get full points on Q9 in
this exam.

Nathaniel Taylor (08 790 6222)

Section A. Direct Current

1) [4p]

Find:

a) [1p] the current i4

b) [1p] the voltage u2

c) [1p] the power delivered from source I1

d) [1p] the power delivered from source U1

R1 I1

R4

i4

R3

+
−U1

R5

+
− U2

I2

R6

R2

− +u2
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2) [4p]

Write equations that could be
solved without further information
to find the potential v1 in terms of
the component values.

I1

+
−U1

ix

R1 R2

+ −

K2uy

R3

K1ix

R4

+

−

uy I2

v1 v2

v3

v4

3) [4p]

What is the maximum power that
can be obtained from

a) [3p] terminals a-o

b) [1p] terminals a-b

of this circuit?

−

+I1

+
−U

R1

R2

a

o

I2 R3

b

Section B. Transient Calculations

4) [5p] Find:

a) [1p] Power absorbed by R2 at t = 0−

b) [1p] Energy stored in L2 at t = 0+

c) [2p] Power supplied by C1 at t = 0+

d) [1p] Energy stored in C2 as t → ∞ R1

C1

L1

+
−U

R2

R3

L2

I t = 0

C2
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5) [5p]

a) [4p] Find the voltage u(t), for t > 0.

b) [1p] Find the power absorbed by R2 for t > 0. I R1

R2

C

+ −
u(t)

t = 0

+
−U

R3

Both of the above are expected to be functions of time.

Section C. Alternating Current

6) [4p]

The source’s voltage is U(t) = Û sin(ωt).

Determine u(t).

+
−U(t)

R1

L1

L2

+

−

u(t)

7) [4p]

a) [2p] Determine this circuit’s network
function,

H(ω) =
u1(ω)

u0(ω)
.

b) [1p] Show that the solution of ‘a’ can
be written in the form

H(ω) =
−jω/ω0 (1 + jω/ω3)

(1 + jω/ω1) (1 + jω/ω2)
.

It is sufficient to show how to express the
parameters ω0,1,2,3 in terms of the circuit
component values.

−

+
+

−
u1

R3

R2

C2

C1
R1

+

−

u0

c) [1p] Sketch a Bode amplitude plot of the function H(ω) shown in ‘b’.
Assume ω0 ≪ ω1 ≪ ω2 ≪ ω3.
Mark the gradients (other than zero) and the frequencies ω0 etc.
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8) [4p]

The source has angular frequency ω.

Component values n and C can be chosen,
but other component values are fixed.

I L R1

1 : n
C

R2

a) [3p] Determine the values of n and C that will maximise the power delivered to resistor R2.

b) [1p] What is the value of this maximum power to R2?

9) [6p]

At the left of this circuit is a balanced
three-phase source, of line-voltage
U , angular frequency ω, and phase-
rotation a,b,c. The phase of va is taken
as the reference: va = 0.

a) [2p] What apparent power is
supplied by the source?

b) [1p] What is ix as a phasor
(magnitude and angle)?

c) [1p] What value of capacitance
C is needed in order for the source to
supply purely active power?

+−

va

+−
vb

+−

vc

R

L

R

L

R
ix

L

iy

C C C

d) [2p] The first phase (’a’) of the source explodes. In its new state, the circuit can be modelled by
replacing the uppermost voltage-source in the diagram by an open-circuit.
What now is iy (magnitude and angle)?

The End. Please don’t waste remaining time . . . check your solutions!
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Översättningar:

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet eller
datorutskrift; text, diagram, bild; stor eller liten textstorlek, o.s.v. Dessa måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter och förenklas.

Var tydlig med diagram och definitioner av variabler. Du f̊ar skriva p̊a svenska eller engelska, men vi rekommenderar
att diagram och ekvationer används i stället i de flesta fall.

1. [4p] Bestäm följande:
a) [1p] strömmen i4
b) [1p] spänningen u2

c) [1p] effekten levererad fr̊an källan I1
d) [1p] effekten levererad fr̊an källan U1

2. [4p] Skriv ekvationer som skulle kunna lösas, utan vidare information, för att bestämma potentialen v1 som
funktion av kretsens komponentvärden.

3. [4p] Vilken maximaleffekt kan levereras
fr̊an
a) [3p] polerna a-o
b) [1p] polerna b-a
av kretsen?

4. [5p] Bestäm:
a) [1p] Effekten absorberad av R2 vid t = 0−.
b) [1p] Energin lagrad i L2 vid t = 0+.
c) [2p] Effekten försörjd av C1 vid t = 0+.
d) [1p] Energin lagrad i C2 vid t → ∞.

5. [5p]
a) [4p] Bestäm spänningen u(t) vid t > 0.
b) [1p] Bestäm effekten absorberad av R2 vid t > 0.

6. [4p] Källans spänning är U(t) = Û sin(ωt). Bestäm u(t).

7. [4p]
a) [2p] Härled kretsens nätverksfunktion, H(ω) = u1(ω)/u0(ω).

b) [1p] Visa att funktionen fr̊an deltal ’a’ kan skrivas H(ω) = −jω/ω0 (1+jω/ω3)
(1+jω/ω1) (1+jω/ω2)

.

c) [1p] Skissa ett Bodeamplituddiagram av H(ω) fr̊an deltal ’b’. Antag ω0 ≪ ω1 ≪ ω2 ≪ ω3. Markera viktiga
punkter och lutningar.

8. [4p] Källan har vinkelfrekvens ω. Komponentvärden n och C kan väljas men andra komponentvärden är fasta.
a) [3p] Bestäm värden n och C som ger maximaleffekt till R2.
b) [1p] Hur mycket effekt blir den till R2 vid situationen fr̊an deltal ’a’?

9. [6p] Till vänster i kretsen är en balanserad trefas källa, med huvudspänning U , vinkelfrekvens ω, och fasföljd
a,b,c. Fasvinkeln av va tas som referens, d.v.s. va = 0.
a) [2p] Vilken skenbareffekt levererar källan?
b) [1p] Bestäm ix (som fasvektor – magnitud och vinkel).
c) [1p] Vilken kapacitans C behövs för att källan matar rent aktiveffekt.
d) [2p] Första fasen (a) i källan exploderar. Situationen efter̊at kan modelleras genom att ersätta den övre
spänningskällan vid va med en öppenkrets. Bestäm iy (magnitud och vinkel).
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Solutions (EI1120 TEN1 VT19, 2019-03-15)

Q1.

a) i4 =
R3

R3 +R4
I1

b) u2 =
−R2

R1 +R2
U1

c) P
I1
=

(

U1 +
R3R4I1
R3 +R4

)

I1

d) P
U1

=

(

U1 + U2 + I2R6

R5 +R6
+

U1

R1 +R2
− I1

)

U1 R1 I1

R4

i4

R3

+
−U1

R5

+
− U2

I2

R6

R2

− +u2

The following is one way in which the original circuit can be re-drawn to be a bit clearer.
Some further quantities have been marked here for use during the solutions.

R1

R2

−

+

u2

R3 R4

i4

I1

−

+

uz

+
−U1

iy

R5

+
− U2

ix

R6 I2

The current i4 is found by current-division of the fixed source-current I1 between the parallel resistors
R3 and R4.

The voltage u2 is found by voltage division between R1 and R2. The voltage across this series pair is
U1, which can be seen from KVL. A negative sign is needed due to the direction in which u2 is marked
relative to the voltage U1 across the pair of resistors.

The power delivered by source I1 is found by finding the voltage uz across this source, and multiplying
it by the source’s value (current). In order for this product to give the power from the source, uz must
be defined in the direction shown in the diagram above; otherwise a negative sign is needed.

By KVL around the loop of { I1, R3||R4, U1 }, this voltage is

uz = U1 +
R3R4I

R3 +R4
.
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The power delivered by source U1 is P
U1

= U1 iy.

By KCL above source U1,

iy =
U1

R1 +R2
− I1 + ix.

It is just the ix term that is a bit awkward to find.

The voltage across the rightmost branch of the circuit (R5, U2, R6, I2) is determined by source U1, and
is not affected by the branches further to the left.

The circuit on the right shows the part of the original
circuit relevant to finding ix, after a Norton-Thevenin source-
transformation on the pair { R6, I2 }.
From this circuit, by KVL and Ohm’s law,

ix =
U1 + U2 + I2R6

R5 +R6
.

Hence,

P
U1

=

(

U1 + U2 + I2R6

R5 +R6
+

U1

R1 +R2
− I1

)

U1.

+
−U1

R5

+
− U2

ix

R6

+
− I2R6

Q2.

There isn’t any particularly nice
step-by-step method apparent for
this circuit, so it’s fortunate we only
have to write suitable equations,
rather than having to solve all the
way for v1.

Two possible methods are shown
below: the extended nodal analysis,
and the method based on supernodes
and avoiding defining extra
variables. The former is almost
certainly easier to write, although
the latter is probably easier to solve.

I1

+
−U1

ix

R1 R2

+ −

K2uy

R3

K1ix

R4

+

−

uy I2

v1 v2

v3

v4

Extended nodal analysis.

Simple rules to follow for writing the equations, but not so nice to solve!

Start with KCL at all nodes except the reference.
This circuit has two voltage sources: one independent and one dependent. Their currents are not initially
known, so we define them: call them iα in U1, and iβ in Kuy, into the +-terminals. There is already a
current ix defined in the source U , but this time we’ll choose to define our own current iα separately.

KCL(1): 0 = I1 +
v1 − v3
R1

+ iβ (1)

KCL(2): 0 = −iβ +
v2 − v3
R2

+
v2 − v4
R4

− I2 (2)

KCL(3): 0 = iα +
v3 − v1
R1

+
v3 − v2
R2

−K1ix (3)

KCL(4): 0 =
v4
R3

+K1ix +
v4 − v2
R4

+ I2 (4)
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The above are 4 equations, in 7 unknowns. The 4 unknown node-potentials and 4 KCL equations would
give a well defined solution. But the 2 voltage sources have given further unknowns, of their currents;
this hints that we should look to the voltage sources to provide corresponding further equations. The
sources set the following relation between pairs of node-potentials:

v3 = U1 (5)

v1 − v2 = K2 uy (6)

Now one further unknown, uy, has been introduced. There are still two more unknowns than equations:
these are due to the marked quantities ix and uy, which are the controlling variables of the two dependent
sources. They have to be defined as equations, in order to convey the same information as the diagram
tells us about them; otherwise the equations don’t provide enough information to solve the shown circuit.

ix = −iα (7)

uy = v4 − v2 (8)

The above equations (1)–(8) are a sufficient solution.

Nodal analysis: simplify on the way, e.g. supernode

Another approach is to try to reduce the number of equations from the start, instead of ending up as in
the above example, with lots of simpler equations to solve.

If we follow this principle, and use the idea of supernodes, then we end up with just two equations
to solve; after solving them, other potentials could be found by simple relations given by the voltage
sources. First we’ll do the preparation work of choosing which potentials to keep, on the way to writing
the KCL equations.

The nodes 0 and v3 are joined into a supernode by the independent voltage source; they are a ‘ground
supernode’. Instead of using the potential v3 in equations, we therefore substitute

v3 = U1. (1)

Nodes v1 and v2 are joined by the dependent voltage source, giving the relation v1 = v2 + K2 uy. We
usually try to avoid marked quantities such as uy in the equations (see later), so looking at the diagram
we substitute for this in terms of node potentials, uy = v4 − v2, leading to

v1 = (1−K2) v2 +K2 v4. (2)

Only one of the supernode’s potentials v1 or v2 needs to be kept as an unknown in the equations. It
could seem good to keep v1, since this is what we’re actually asked to find. However, in this case a little
experimenting suggests that it’s easier to write the equations if it’s v2 that’s defined. So we’ll keep v2,
and substitute from (2) wherever v1 tries to appear in a KCL or other equation.

If our aim is to write our KCLs without including further unknowns that need further equations, then
we should avoid using the controlling variables ix and uy in the equations. From the diagram, it is easy
to express the latter as

uy = v4 − v2,

which would have been messier if v1 instead of v2 had been chosen as the potential to keep in the
supernode. The current ix is harder: it can be found from KCL in node 3,

ix = −K1 ix +
v3 − v2
R2

+
v3 − v1
R1

,

but this introduces a further ix term and also a v1 and v3, which are not the node potentials we decided
to keep, and therefore have to be substituted. Putting it together,

ix =
U1−v2
R2

+ U1−((1−K2)v2+K2v4)
R1

1 +K1
=

(

1
R1

+ 1
R2

)

U1 −
(

1−K2

R1
+ 1

R2

)

v2 − K2v4
R1

1 +K1
.
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Now we can write the two necessary KCL equations: one for the supernode that contains the nodes
marked v1 and v2, and one for the node marked v4.

KCL(1&2): 0 = I1 +
(1−K2) v2 +K2 v4 − U1

R1
+

v2 − v3
R2

+
v2 − v4
R4

− I2 (3)

KCL(4): 0 =
v4
R3

+
v4 − v2
R4

+ I2 +K1

(

1
R1

+ 1
R2

)

U1 −
(

1−K2

R1
+ 1

R2

)

v2 − K2v4
R1

1 +K1
(4)

The equations (3) and (4) are part of the solution, and must be solved together. The equations (1) and
(2) are the remainder of the solution, and are necessary in order to make up an equation system that
can be solved for all node potentials.

As this question only required that v1 can be solved for, one could omit (1).

The ’moral’ of the above is probably that the extended method was much easier to write for this circuit.
It has the further advantage that if the circuit is changed, the corresponding change can easily be made in
the equations, since each equation directly describes some feature of the circuit without being obfuscated
by substitutions and rearrangements.

Various checks can be done, symbolically or numerically, to compare the above solutions with each other
or with another calculation. Confession: in writing the extended-method equations, I initially got the
wrong sign on iα, having looked at the arrow marked for ix; checking is a worthwhile effort.

Below we use Matlab’s symbolic toolbox to compare the above two sets of equations symbolically. Then
we subsitute numbers into the symbolic solutions and compare the result with a calculation by the
program SPICE 2g.6 (from 15/March/1983!).

syms U1 I1 I2 K1 K2 R1 R2 R3 R4

syms v1 v2 v3 v4

syms ix uy

% extended nodal analysis

syms ia ib

s1 = solve( ...

{ ...

0 == I1 + (v1-v3)/R1 + ib, ...

0 == -ib + (v2-v3)/R2 + (v2-v4)/R4 - I2, ...

0 == ia + (v3-v1)/R1 + (v3-v2)/R2 - K1*ix, ...

0 == v4/R3 + K1*ix + (v4-v2)/R4 + I2, ...

v3 == U1, ...

v1 - v2 == K2*uy, ...

ix == -ia, ...

uy == v4 - v2 ...

}, ...

{ v1, v2, v3, v4, ix, uy, ia, ib } );

% supernode

s2 = solve( ...

{ ...

0 == I1 + ( (1-K2)*v2 + K2*v4 - U1 )/R1 + (v2-v3)/R2 + (v2-v4)/R4 - I2, ...

0 == v4/R3 + (v4-v2)/R4 + I2 + ...

K1*( (1/R1 + 1/R2)*U1 - ((1-K2)/R1 + 1/R2)*v2 - K2*v4/R1 )/(1+K1), ...

v3 == U1, ...

v1 == (1-K2)*v2 + K2*v4 ...

}, ...

{ v1, v2, v3, v4 } );

%% symbolic check

simplify( s1.v1 - s2.v1 )

simplify( s1.v2 - s2.v2 )

simplify( s1.v3 - s2.v3 )

simplify( s1.v4 - s2.v4 )

% --> all zero : good
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%% numeric check

U1=27; I1=1; I2=5; K1=0.2; K2=0.11; R1=20; R2=13; R3=3; R4=40;

for fld={’v1’,’v2’,’v3’,’v4’},

fprintf(’ %s = %7.4f \n’, fld{1}, double(subs(s1.(fld{1}))) );

end

% v1 = 43.0120

% v2 = 49.4805

% v3 = 27.0000

% v4 = -9.3247

% Input "netlist" file for SPICE

%

EI1120_VT19_TEN1_Q2

V1 3 0 DC 27.0

I1 1 0 DC 1.0

I2 4 2 DC 5.0

F1 4 3 V1 -0.2

E1 1 2 4 2 0.11

R1 1 3 20.0

R2 2 3 13.0

R3 4 0 3.0

R4 4 2 40.0

.OP

.PRINT DC V(0) V(1) V(2) V(3) V(4)

.END

% output:

% node voltage node voltage node voltage node voltage

% ( 1) 43.0120 ( 2) 49.4805 ( 3) 27.0000 ( 4) -9.3247
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Q3.

The opamp’s output behaves as a
voltage source. Its potential, vb, will
be whatever value is necessary in
order for the inverting input to
have the same potential as the non-
inverting input, which is U .

KCL at the inverting input gives
I1 = (vb − U) /R1, from which

vb = U + I1R1.

−

+I1

+
−U

R1

vb

R2

a

o

I2 R3

b

Seen by the components to the right of the opamp output, the opamp output therefore behaves as a
fixed voltage source vb, with its other side connected to the reference node. For solving the circuit at the
right, we can represent the opamp and its feedback and inputs as a voltage source U + I1R1, leading to
the following circuit.

(Note that replacing the opamp with a fixed voltage
source is valid and useful because we’re interested in
what happens on the right of the opamp, and we are
not considering changing anything in its feedback
and inputs – if we considered connecting other
things to ‘extract power’ from the parts around the
left, that might change the circuit so the opamp
would have a different voltage.)

a

o

I2 R3

+
−U + I1R1

R2

b

a)

Between terminals a-o, we can find a Norton
equivalent by doing source transformation
on the voltage source and adjacent resistor
from the above diagram, leading to the
circuit on the right.

a

o

I2 R3
U + I1R1

R2
R2

Between a-o this simplifies to a Norton source of

I
N
=

U

R2
+

R1

R2
I1 + I2 and R

N
=

R2R3

R2 +R3
.

The maximum power that such a source can supply is

Pmax:ao =
1

4
I2
N
R

N
=

1

4

(

U

R2
+

R1

R2
I1 + I2

)2 R2R3

R2 +R3
= (U + I1R1 + I2R2)

2 R3

4R2 (R2 +R3)
.

b)

The terminal ’b’ is at a node that disappeared when
doing the source transformation in question ’a’ above. That
method is therefore not directly useful now.

Instead, we can find a Thevenin equivalent by source
transformation of current source I2 and its parallel resistor
R3, to give the circuit shown on the right.

+
−I2R3

R3

+
−U + I1R1

R2

b a
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This simplifies to the circuit at the left below, by combining the two series sources into an equivalent
one and re-drawing. That circuit in turn simplifies to a Thevenin source, by voltage division and parallel
resistance.

+
−I2R3 − I1R1 − U

R3

R2

a

b

+
−R2

R2+R3
(I2R3 − I1R1 − U)

R2R3

R2+R3

a

b

The Thevenin equivalent between a-b is therefore

U
T
=

R2

R2 +R3
(I2R3 − I1R1 − U) and R

T
=

R2R3

R2 +R3
.

The maximum power that such a source can supply is

Pmax:ab =
U2

T

4R
T

=

(

R2

R2+R3

)2
(I2R3 − I1R1 − U)2

4 R2R3

R2+R3

=
R2 (I2R3 − I1R1 − U)2

4R3 (R2 +R3)

Both ’a’ and ’b’ could have been done instead by other methods, such as nodal analysis, superposition,
etc. Since I seem to be in a mood for writing lots of diagrams in this year’s solutions, I’m trying more
of the ‘intuitive’ step-by-step solutions.

Q4.

Task — find:

a) P
R2
(0−) = U2/R2

b) W
L2
(0+) = 1

2L2

(

U
R2

+ I
)2

c) P
C1
(0+) = (U−IR3)UR3

R1R2+R2R3+R3R1
.

d) W
C2
(∞) = 1

2C2U
2

R1

C1

L1

+
−U

R2

R3

L2

I t = 0

C2

At time t = 0−, the switch is still open-circuit.

No change has happened in the circuit yet, so equilibrium is assumed. This means that inductors have
no voltage, capacitors have no current

The circuit below shows the situation for t = 0−, with the switch open, inductors short-circuited and
capacitors open-circuited. All the inductor currents and capacitor voltages are marked; these may be
useful when we come to t = 0+, so we will find all of them now.
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i
L1

= 0
kcl, with zero current at the open-circuited
capacitors.

i
L2

= U
R2

+ I
kvl to find voltage across R2, then Ohm’s law for
its current, then kcl above source I.

u
C1

= U
kvl around the top left loop.

u
C2

= IR3

kcl below R3, Ohm’s law in R3, and kvl around
the bottom left loop.

R1

−

+

u
C1

i
L1

+
−U

R2

R3

i
L2

I

− +u
C2

Question ’a’ requires the power absorbed by resistor R2 in this equilibrium state. By KVL around the
top right loop, the voltage across this is U , so the power is U2/R2.

At time t = 0+, the switch is closed, and inductors and capacitors cannot be assumed to be in
equilibrium any more, since a change has happened.

The switch short-circuits the current source. Seen from all the rest of the circuit, the current source is
‘invisible’ (irrelevant): whatever current it produces just circulates in the one node that it’s connected
to. So we’re probably best to remove it from the diagram for clarity, since none of the questions wants
to know something about it such as what power it produces or what voltage it has . . . both of which
are zero.

The capacitors and inductors have known continuous variables at t = 0+, since these must be the same
as at t = 0−. They are therefore modelled here as fixed sources, whose values were found above for
t = 0−. To begin with we’ll leave them as neat symbols such as u

C1
.

As inductor L1 was found to have zero current it is more simply modelled as an open-circuit. Simplicity
is key to improving our chance of seeing neat solutions.

The circuit below is the resulting view of the situation at t = 0+.

Question ’b’ wants the energy stored in the inductor
L2. Energy depends on the continuous variable,
which is the same at t = 0+ as at t = 0−, so this
question can be answered entirely from the earlier
circuit.

The energy is 1
2L2 i

2
L2
, which is 1

2L2

(

U
R2

+ I
)2

.

Question ’c’ wants the power delivered by the
capacitor C1. This is more difficult. The current
upwards through the capacitor needs to be
found, and multiplied with the voltage u

C1
. Any

of superposition, source transformation or nodal
analysis could be used to find the current.

R1

+
− u

C1

+
−U

R2

R3

i
L2

+−

u
C2

To apply nodal analysis in a simple way with one KCL, we can regard the circuit as three parallel
branches, as shown in a simpler form below.
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The two series-connected voltage sources have been
combined to a single one of u

C1
−u

C2
.

Then the values calculated at t = 0− have been
substituted to give U − IR3 for that source, and U

R2
+ I

for the source on the right representing L2.

The resistors R2 and R3 were in parallel, so have been
combined also.

Using the marked potential v, KCL gives

v − U + IR3

R1
+

v − U

R2R3
(R2 +R3) +

U

R2
+ I = 0

R1

+
−U − IR3

ix

R23 =
R2R3

R2+R3

+
−U

i
L2

= U
R2

+ I

v

After some effort, a solution for v is found,

v =
R2 (R1 +R3) (U − IR3)

R1R2 +R1R3 +R2R3
,

from which in turn the current ix is found,

ix =
U − IR3 − v

R1
=

(U − IR3)R3

R1R2 +R1R3 +R2R3
.

The above was quite a lot of effort with unwieldy expressions for component values. It added to the
effort that we did it by the canonical node-potential method, then found ix from v.

One rather neat ‘more intuitive’ alternative method is the following:

We want to find ix in the above circuit. Imagine breaking the circuit (introducing an open-
circuit) at the point where ix is marked, and finding the Thevenin equivalent between the
two sides of the break.

The Thevenin resistance can be found by setting sources to zero and simplifying the remanin-
ing resistors, which gives R

T
= R1 +R23.

The Thevenin voltage of the left relative to the right side of the break is U−IR3+i
L2
R23−U ,

which is seen from KVL in the left loop, bearing in mind that with the break in the circuit
all of the current from the current source must pass up through R23.

Putting in the given quantities instead of our defined names,

U
T

= U − IR3 + i
L2
R23 − U = −IR3 +

(

U

R2
+ I

)

R2R3

R2 +R3

= −IR3 + (U + IR2)
R3

R2 +R3
=

(U − IR3)R3

R2 +R3

What we want is the short-circuit current of this Thevenin source:

ix =
U

T

R
T

=

(U−IR3)R3

R2+R3

R1 +
R2R3

R2+R3

=
(U − IR3)R3

R1R2 +R2R3 +R3R1
.

That felt somehow a bit more satisfying than the nodal way, but neither was trivial!

Now we find the power from the capacitor by multiplying this current by the capacitor’s voltage,

P
C1
(0+) = u

C1
ix = Uix =

(U − IR3)UR3

R1R2 +R2R3 +R3R1
.
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At time t → ∞, equilibrium can again be assumed. The difference from t = 0− is that the switch is
now closed, and all memory of the short-circuited current source I will now have disappeared from the
circuit.

Question ’d’ wants the energy stored in capacitor C2.

This is 1
2C2u

2
C2
.

The voltage u
C2

can be found by taking a KVL around
{ C2, R1, L1, U , L2 }, in which only C2 and U have
non-zero voltages.

Thus the energy is 1
2C2U

2.

A nice feature of squaring the voltage is that we didn’t
have to care about its direction. R1

−

+

u
C1

i
L1

+
−U

R2

R3

i
L2

− +u
C2

Q5.

Solutions of the circuit at the right, for t > 0:

a) u(t) = IR1 − U e−t
/

(R1+R2)C

b) P
R2
(t) =

U2R2

(R1 +R2)
2 e−t

/

(R1+R2)C I R1

R2

C

+ −
u(t)

t = 0
+
−U

R3

Initial conditions

The diagram to the right shows the circuit with
the switch open.

At t = 0− an equilibrium can be assumed, in
which the capacitor has no current, and there
is therefore no voltage drop across the resistors
in the loop.

From KVL, u(0−) = IR1 − U .

+
− IR1

R1 R2

+
−U

R3C

+ −
u(t)
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Circuit at t > 0

When the switch closes, the circuit becomes simpler.

The capacitor’s voltage is a continuous variable, so it is
initially unchanged: u(0+) = u(0−) = IR1 − U .

The rest of the circuit that the capacitor is connected to
has a Thevenin equivalent of U

T
= IR1 andR

T
= R1+R2.

+
−IR1

R1 R2

C

+ −
u(t)

As t → ∞ the circuit will reach a new equilibrium, in which the capacitor’s voltage will equal the
Thevenin voltage.

We now know the initial value and final value of u(t) for t ≥ 0. The time-constant is CR
T
.

Putting these into the usual exponential decay expression for first-order circuits,

u(t) = u(∞) +
(

u(0+)− u(∞)
)

e−t/τ = IR1 + (IR1−U − IR1) e
−t
/

R
T
C

u(t) = IR1 − Ue−t
/

(R1+R2)C .

The power in R2 is i2R2 where i is the current through R2. Looking at the circuit, the current is the
same through R2 and the capacitor as they are in series. The direction doesn’t matter, as the current is
squared to find the power.

We could find i(t) from u(t) using KVL and Ohm’s law, or by using the equation of a capacitor.
Let’s try the latter:

i = C
d

dt

(

IR1 − Ue−t
/

(R1+R2)C

)

= − −UC

(R1 +R2)C
e−t

/

(R1+R2)C =
U

R1 +R2
e−t

/

(R1+R2)C .

So,

P
R2

= i2R2 =

(

U

R1 +R2
e−t

/

(R1+R2)C

)2

R2 =
U2R2

(R1 +R2)
2 e

−2t
/

(R1+R2)C .

Q6.

Task: determine u(t), given U(t) = Û sin(ωt).

First, represent the circuit suitably for AC analysis, with phasors and
impedances.

Let’s use “sine reference”, so that the time-domain quantity sinωt is
represented by a phasor with zero angle. And let’s use the peak of the
sinusoid as the magnitude of the corresponding phasor.

With these choices, the source becomes a phasor of U(ω) = Û 0.

The inductances are represented by their impedances, jωL1 and so forth.

+
−U(t)

R1

L1

L2

+

−

u(t)

Voltage division seems a sensible approach for this circuit, with the parallel combination of L1 and R1

as one of the two impedances in the divider:

u(ω) = U(ω)
jωL2

jωL2 +
jωL1R1

R1+jωL1

.
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That’s it . . . except that some rearrangement is useful in order to get nicer expressions for the magnitude
and angle of this result. It is necessary to have that polar description in order to write the final result
for u(t).

Substituting for U(ω), cancelling the jω factors, and then cancelling L2,

u(ω) = Û
L2

L2 +
R1L1

R1+jωL1

= Û
L2 (R1 + jωL1)

L2 (R1 + jωL1) +R1L1
= Û

R1 + jωL1
(

1 + L1

L2

)

R1 + jωL1

.

Now the magnitude and angle must be found, in order to write the time-function u(t). The above
expression is a quotient of two rectangular complex numbers.

One approach is to find the polar form of each, and take the ratio of magnitudes and the difference in
angles:

|u(ω)| = Û

√

√

√

√

R2
1 + ω2L2

1
(

1 + L1

L2

)2
R2

1 + ω2L2
1

u(ω) = atanωL1

R1
− atan ωL1

(

1+
L1
L2

)

R1

Another is to get a single rectangular complex number before converting, i.e. to separate real and
imaginary parts. Multiply the numerator and denominator by the complex conjugate of the denominator,

u(ω) = Û
(R1 + jωL1)

((

1 + L1

L2

)

R1 − jωL1

)

(

1 + L1

L2

)2
R2

1 + ω2L2
1

= Û

(

1 + L1

L2

)

R2
1 + ω2L2

1 + jω
L2
1R1

L2

(

1 + L1

L2

)2
R2

1 + ω2L2
1

|u(ω)| = Û

√

((

1 + L1

L2

)

R2
1 + ω2L2

1

)2
+
(

ω
L2
1R1

L2

)2

(

1 + L1

L2

)2
R2

1 + ω2L2
1

u(ω) = atan
ω

L2
1R1

L2
(

1 + L1

L2

)

R2
1 + ω2L2

1

The expressions from the two methods should, of course, be equivalent to each other. If one likes having
just one atan function it may be better to use the second method for the angle, and the first for a neater
expression for magnitude.

All the expressions for magnitude or angle were tediously long. It would be acceptable in the exam to
write them just once, and to show how they would be used to write the time-function u(t). Bearing in
mind the sine-reference and peak value scale that we chose when defining the phasors, this is:

u(t) = |u(ω)| sin
(

ωt+ u(ω)
)

.

Note that this is exceptional — usually one should write the final answer with just the given (known) quantities.
It’s often possible to simplify the final expression after substituting the values of help-variables that were used
during the solution. But one can’t do such simplification between the magnitude and angle expressions.

Q7.

a) Determine H(ω) = u1(ω)/u0(ω).

This circuit can be seen as a standard inverting
amplifier configuration, with input impedance
Zi and feedback impedance Zf formed from the
groups of resistors and capacitors,

Zi = R1+
1

jωC1
and Zf = R3+

R2
1

jωC2

R2 +
1

jωC2

.

By KCL at the inverting input, or by the
standard inverting-amplifier formula,

−

+
+

−
u1

R3

R2

C2

C1
R1

+

−

u0
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H(ω) =
u1(ω)

u0(ω)
=

−Zf

Zi
= −

R3 +
R2

1
jωC2

R2+
1

jωC2

R1 +
1

jωC1

.

Rearranging,

H(ω) = −
(

jωC2R2R3 +R2+R3

)

1
jωC2

(

R1 +
1

jωC1

)(

R2 +
1

jωC2

) =
−jωC1 (R2+R3)

(

1 + jωC2
R2R3

R2+R3

)

(1 + jωC1R1) (1 + jωC2R2)
.

b) Express H(ω) in the form
−jω/ω0 (1 + jω/ω3)

(1 + jω/ω1) (1 + jω/ω2)
.

The final expression for H(ω) in part ’a’ is already in a suitable form. We just need to show what values
the various ωx must have:

ω0 =
1

C1 (R2 +R3)
, ω1 =

1

C1R1
, ω2 =

1

C2R2
, ω3 =

R2 +R3

C2R2R3
.

The values of ω1 and ω2 could have been defined the opposite way round; that would show poor taste
in spite of being technically correct.

c) Sketch a Bode amplitude
plot of H(ω), assuming
ω0 ≪ ω1 ≪ ω2 ≪ ω3.

An example is shown on the
right. This has a ratio 1000
between different frequencies,
leading to 60 dB at the maxi-
mum. Lower ratios would give
a lower maximum and a bigger
deviation between the Bode
approximation and the exact
magnitude.

10 0 10 2 10 4 10 6 10 8 10 10

f  or     [a.u.]

-20

-10

0

10

20

30

40

50

60

|H
(

)|
  

[d
B

]

|H( )|
dB

 actual function

asymptotic approximation

0 1 2 3

+20 dB/dec

0 dB/dec

-20 dB/dec

Q8.

Component values n and C can be chosen, but
other component values are fixed.

This is a fairly standard maximum power
question: one can identify a fixed source, and
a freely variable load-impedance consisting of
the transformer and the components on its
right.

I L R1

1 : n
C

R2

The slight ‘twist’ is that as the resistor in the load is fixed, the real part of load impedance has to be
varied by the transformer ratio; then the capacitor can be chosen to give the desired imaginary part.
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a) Determine the values of n and C that will maximise the power delivered to resistor R2.

If we see the ‘source’ as everything to the left of the transformer, then the source impedance is

Zs =
jωLR1

R1 + jωL
=

ω2L2R1 + jωLR2
1

R2
1 + ω2L2

.

The remainder of the circuit is then the load. The branch on the right of the transformer is an impedance
of R2+

1
jωC . What the source ‘sees’ at the transformer’s left terminals is therefore this impedance scaled,

Zl =
R2

n2
− j

1

n2ωC

Now that the source and load impedances are both expressed with real and imaginary parts separated,
it is easy to use the AC maximum power theorem:

Zl = Z∗
s =⇒ R2

n2
− j

1

n2ωC
=

ω2L2R1 − jωLR2
1

R2
1 + ω2L2

.

Equating real and imaginary parts separately, we notice that the real parts have only n as a free variable,
so we set this first,

R2

n2
=

ω2L2R1

R2
1 + ω2L2

=⇒ n =

√

R2
1 + ω2L2

ω2L2R1/R2
.

With n set, it is just C that is free to set the imaginary part of the load impedance,

1

n2ωC
=

ωLR2
1

R2
1 + ω2L2

=⇒ C =
R2

1 + ω2L2

n2ω2LR2
1

.

To be the ideal solution, one should try to express each of the two sought quantities in terms only of the
known ones. The above expression for C requires a solution of n, so we can substitute the expression for
n into it. This results in a large simplification,

C =
R2

1 + ω2L2

R2
1+ω2L2

ω2L2R1/R2
ω2LR2

1

=
L

R1R2
.

It’s nice if you did that, but as we didn’t say absolutely clearly that each separate expression in the
solution shall not depend on the other, we won’t deduct any points for leaving C in terms of n.

A note about choices of ‘source’ and ‘load’. We made probably the most obvious choice, by including the
transformer in the load as its value n was one of the free variables. But the dividing line between source and load
doesn’t matter as long as one does not include any components in the ‘load’ that can consume or produce active
power: remember that the maximum power theorem is about maximising active power to the load impedance,
so if the original task is to maximise the active power to a particular component or set of components then the
‘load impedance’ chosen for the solution must have the same active power as those components. The transformer,
capacitor and inductor cannot consume or produce any active power, so they could be included either in the load
or in the source, and the condition Zl = Z∗

s would still be valid.

b) What is the value of this maximum power to R2?

A long way to approach this is to solve the whole circuit with the chosen values of n and C from part
‘a’. It’s not very recommended. After much work, it should reduce to the expression below.

A shorter way is to consider that the maximum power is a property of the source. If we know that the
load is chosen to extract the maximum power from the source, then we don’t need to consider the details
of the load any more, but just to find the source’s maximum power. That could be done for example by
studying the case with the simplest possible form of load that is the complex conjugate of the source’s
impedance.
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With the definition of ‘source’ that we chose in ‘a’, that
simplest load would be a parallel combination of R′ = R1

and a capacitor C ′ that ‘cancels’ L by having ω2LC ′ = 1.
Then the capacitor and inductor in parallel become an infinite
impedance (open circuit), and so half the short-circuit current
of the source passes in the load resistor.

source | load

I R1 L C ′ R′

Thus, since the short-circuit current is the current-source current,

Pmax =
I2R1

4
.

Notice that it would be even simpler if we moved the inductor to be part of the ‘load’ for finding the
source’s maximum power: that is valid, as the inductor does not consume or produce active power.

20 / 22 KTH EI1120 (Electric circuit analyis) Tentamen SOLUTIONS, 2019-03-15



Q9.

Angular frequency ω.

Phase-rotation a,b,c.

Line-voltage U .

Reference va = 0.

Thus,

va =
U√
3

0

vb =
U√
3

−2π
3

vc =
U√
3

2π
3

+−

va

+−

vb

+−

vc

R

L

R

L

R
ix

L

iy

C C C

a) What apparent power is supplied by the source?

The only things here apart from the source are the impedances: three types, three of each. The complex
power that these consume must be the complex power that the source produces, and similiarly therefore
for any quantity derived from complex power, such as apparent power.

In each impedance the voltage is fixed by the source, so its complex power is easily found from the
relation |u|2/Z∗ for a voltage u applied to impedance Z. The total is

S = 3

(

U/
√
3
)2

(

1
jωC

)∗ + 3
U2

(R+ jωL)∗
= U2

(

3R

R2 + ω2L2
+ j

3ωL

R2 + ω2L2
− jωC

)

.

Note the importance of adding powers as complex powers, not apparent powers: for example, the
capacitor and inductor cancel each other to some extent, but the sums of their apparent powers would
simply add.

The question was about the apparent power, so we must now take the absolute value,

|S| = U2

√

(

3R

R2 + ω2L2

)2

+

(

3ωL

R2 + ω2L2
− ωC

)2

.

b) What is ix as a phasor (magnitude and angle)?

By KVL and Ohm’s law,

ix =
vb − va
R+ jωL

.

Putting in the phasor values of va and vb, and simplifying,

ix =

U√
3

(

1 −2π
3 − 1 0

)

R+ jωL
=

U√
3

(

cos −2π
3 − 1 + j sin −2π

3

)

R+ jωL
=

U√
3

(

−1
2 − 1 + j−

√
3

2

)

R+ jωL
=

U√
3

(

−3
2 − j

√
3
2

)

R+ jωL
.

In polar form this is

ix =
U
(

−
√
3
2 − j12

)

R+ jωL
=

U atan 1√
3
− π

R+ jωL
=

U −5π
6

R+ jωL
=

U√
R2 + ω2L2

atan −ωL
R − 5π

6 .
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The −π after the atan was added because the real part of the complex number was negative; it could
alternatively have been +π. The result, of −5π/6 radians or −150◦, could be seen by drawing the phasor
diagram, bearing in mind the usual relation of line-voltages having 30◦ shifts from phase-voltages.

c) What value of capacitance C is needed in order for the source to supply purely active power?

In part ‘a’ we found an expression for the total complex power supplied by the source. In order for the
source to supply purely active (real) power, the reactive power must be zero. The imaginary part of the
complex power expression is zero if

C =
3L

R2 + ω2L2
.

d) The top phase of the three-phase voltage source ‘disappears’, becoming an open-circuit: find iy.

In contrast to the earlier parts of this question, this is now an unbalanced three-phase system. To aid
thinking, it’s worth drawing the diagram with the top source removed, to see that iy is all coming
through two parts of the delta load.

One way. If you’re really confident about three-phase systems, phasor diagrams, Thevenin equivalents,
spatial thinking, symmetry, etc, it might be possible to see a quick intuitive approach. Consider the
Thevenin source seen by the capacitor in which iy is marked. One terminal is at zero potential. The
other terminal is in the middle of a voltage divider between two equal impedances of R+ jωL, that are
connected between potentials vb and vc; its potential is therefore halfway between those potentials va
and vb in the complex plane. The Thevenin impedance is the parallel sum of the two equal impedances.

U
T
=

−1

2
· U√

3
and Z

T
=

R+ jωL

2
.

The current iy is what this Thevenin source would supply to a capacitor C, which is

iy =
−U

2
√
3
· 1

1
2R+ jω 1

2L− j 1
ωC

=
U

√
3

√

R2 +
(

ωL− 2
ωC

)2
π − atan

ωL− 2
ωC

R .

Another way. It’s likely you’d feel more confident doing it the more ‘formal’ way. We’ll define potential
vx at the node where iy is marked; that node previously was marked va, but it could be confusing to
have different meaning for va in different sub-questions. This node has three branches connected to it:
they are all impedances, connecting to known potentials. By KCL at this node, vx,

0 =
vx − 0

1
jωC

+
vx − vb
R+ jωL

+
vx − vc
R+ jωL

= vx jωC (R+ jωL) + vx − vb + vx − vc,

resulting in

vx =
vb + vc

2 + jωC (R+ jωL)
=

vb + vc
2−ω2CL + jωCR

The current in the capacitor is then directly found as

iy =
vx − 0

1
jωC

=
jωC (vb + vc)

2 + jωC (R+ jωL)
=

vb + vc
2

jωC + (R+ jωL)
.

The sum vb + vc is
U√
3

(

1 −120◦ + 1 +120◦
)

, which reduces to −U√
3
.

Substituting this, and making into polar form,

iy =

U√
3
π

R+ jωL− j 2
ωC

=
U

√
3

√

R2 +
(

ωL− 2
ωC

)2
π − atan

ωL− 2
ωC

R .
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