
KTH EI1120 Elkretsanalys (CENMI) TEN1 2019-06-07 kl. 14–19

Permitted material: Beyond writing-equipment, up to three pieces of paper up to A4 size can be brought,
with free choice of content: handwritten, printed; small, large; text, diagram, image; one or both sides,
etc. These papers do not need to be handed in with the exam.

Unless it is stated otherwise, the final answer to a question should be expressed in terms of the known
quantities given in the question, and any clear simplifications should be done. Component values such
as R for a resistor, U for an independent voltage source, or K for a dependent source, are assumed to
be known quantities. Marked currents or voltages such as ix are assumed to be definitions, not known
quantities.

Clearly drawn and labelled diagrams are a good way to help yourself avoid mistakes, and to make clear
to others what you are doing. By showing clearly your intermediate steps in a solution, you improve
your chance of getting points even if the final result is wrong. You may write in Swedish or English; but
we suggest that writing in either is seldom necessary if you make good use of diagrams and equations!

Determination of exam grade. Denote as A, B and C the available points from sections A, B and C
of this exam: A=12, B=10, C=18. Denote as a, b and c the points actually obtained in the respective
sections, and as ak and bk the points fr̊an KS1 and KS2, and as h the homework ‘bonus’. The requirement
for passing the exam (E or higher) is:

max(a, ak)

A
≥ 40% &

max(b, bk)

B
≥ 40% &

c

C
≥ 40% &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 50%

The grade is then determined by the total including bonus, i.e. the last of the terms above: boundaries
(%) are 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). If the exam misses a pass by a small margin on just
one criterion, a grade of Fx may be registered, with the possibility of completing to E by an extra task
arranged later.

For this VT19 round, students who have their final project-task approved will get full points on Q9 in
this exam.

Nathaniel Taylor (08 790 6222)

Section A. Direct Current

1) [4p]

Find:

a) [1p] the voltage ux

b) [1p] the current ix

c) [1p] the power delivered from source I1

d) [1p] the power delivered from source U2
R3

I1

+
−U1

R1 R2 ix

+−

U2

R4

R5 R6

+ −ux
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2) [4p]

Write equations that could be solved to
find the potential v0 in terms of the
component values.

You do not have to simplify or solve
the equations. The equations should
be sufficient to give a solution without
needing further information.

−

+

Gvo

R1

I R2 +
−U

vo

R3

3) [4p]

In this circuit,

U1 = U2 = U, R1 = R2 = R, I1 = I2 = U/R.

The final answers should be in terms of U and/or
R and simplified; they should not include the other
names such as U1 etc.

a) [2p] What value of resistor, connected between
terminals a-b, will maximize the power delivered by
this circuit to the resistor.

+
− U1

I1

R2

R1

+−

U2

a

b

I2

b) [2p] A voltage source is now connected at a-b instead of a resistor, with its + pole to terminal ‘a’.
What value should the voltage source have in order to maximize the power delivered to it.

Section B. Transient Calculations

4) [5p] Find:

a) [1p] Power absorbed by R1 at t = 0−

b) [1p] Energy stored in C2 at t = 0−

c) [1p] Energy stored in L2 at t = 0+

d) [1p] Power absorbed by R2 at t = 0+

e) [1p] Rate of change
du2
dt

at t = 0+

L1

C1

R1

t = 0

I

C2

+ −
u2

L2

+ −

U

R2
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5) [5p]

a) [4p] Find the current i(t), for t > 0.

b) [1p] Find the power absorbed by R1 for t > 0.

Both of the above are expected to be functions of time.

+
−U

R1 R2

R3L

i(t)

I · 1(−t)

Section C. Alternating Current

6) [4p]

Determine u(t).

Steady-state sinusoidal conditions can be assumed.

The two inductors have some mutual inductance,
described in terms of coupling coefficient k.

Recall that k is a dimensionless coefficient, not a
mutual inductance!

C

+−

U(t) = Û cos (ωt+ 30◦)

L1

R

L2

+

−

u(t)

k

7) [4p]

a) [2p] Determine this circuit’s
network function,

u(ω)

U(ω)
.

+
−U(ω)

ix

R1 L K ix C R2

−

+

u(ω)

b) [2p] Sketch a Bode amplitude plot of the following network function:

H(ω) =
K (1 + jω/ω1)

(1 + jω/ω2) (1 + jω/ω3)
2 .

(This is not the same as the function in part ‘a’ !)

Assume K =
√
10 and ω1 ≪ ω2 ≪ ω3.

Mark the frequencies ω1 etc, any non-zero gradients, and any known amplitudes.

Don’t be worried by the squared term: just write the term twice if that helps.
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8) [4p]

The current source has angular frequency ω.

a) [2p] What value of impedance Z will maximize the
active power delivered to this impedance? Express this in
terms of other component values.

b) [2p] What is the value of the active power into Z in the
situation described in part ‘a)’.

R

L

C

I

Z

9) [6p]

At the left of this circuit is a balanced
three-phase source consisting of three
single-phase voltage sources. It has
line-voltage U , angular frequency ω,
and phase-rotation 1,2,3. The phase of
u1 is taken as the reference: u1 = 0.

a) [2p] Determine the complex power
supplied by the source.

+−

u1 C

+−
u2 C

i2

+−

u3 C

R

L

R

L

R
ia

L

b) [2p] What value of capacitance C is needed in order for the source to supply zero reactive power?

c) [1p] Determine i2 as a phasor (magnitude and angle).

d) [1p] Phase ‘2’ of the source melts. In its new state the circuit can be modelled by replacing the
middle voltage-source in the diagram by an open-circuit. What now is ia (magnitude and angle)?

The End. Please don’t waste remaining time . . . check your solutions!
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Översättningar:

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet eller
datorutskrift; text, diagram, bild; stor eller liten textstorlek, o.s.v. Dessa måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter och förenklas.

Var tydlig med diagram och definitioner av variabler. Du f̊ar skriva p̊a svenska eller engelska, men vi rekom-
menderar att diagram och ekvationer används i stället i de flesta fall.

1. [4p] Bestäm följande:
a) [1p] spänningen ux

b) [1p] strömmen ix
c) [1p] effekten levererad fr̊an källan I1
d) [1p] effekten levererad fr̊an källan U2

2. [4p] Skriv ekvationer som skulle kunna lösas, utan vidare information, för att bestämma potentialen v0 som
funktion av kretsens komponentvärden. Du måste inte förenkla eller lösa ekvationerna.

3. [4p] Vilket komponentvärde behövs för att maximaleffekt ska levereras när komponenten kopplas mellan a-b:
a) [2p] motst̊and
b) [2p] spänningskälla med +-polen kopplad till ’a’
De slutliga uttrycken borde inneh̊alla storheterna U och/eller R och förenklad; storheterna U1 o.s.v. borde inte
vara kvar.

4. [5p] Bestäm:
a) [1p] Effekten absorberad av R1 vid t = 0−.
b) [1p] Energin lagrad i C2 vid t = 0−.
c) [1p] Energin lagrad i L2 vid t = 0+.
d) [1p] Effekten absorberad av R2 vid t = 0+.
e) [1p] Tidsderivaten av spänning, du2

dt vid t = 0+.

5. [5p]
a) [4p] Bestäm strömmen i(t) vid t > 0.
b) [1p] Bestäm effekten absorberad av R1 vid t > 0.

6. [4p] Bestäm u(t). Använd jω-metoden. Obs att k inte är ömsesidiginduktans utan kopplingsfaktor.

7. [4p]
a) [2p] Härled kretsens nätverksfunktion, u(ω)/U(ω).

b) [2p] Skissa ett Bodeamplituddiagram av H(ω) = K(1+jω/ω1)

(1+jω/ω2) (1+jω/ω3)
2 .

Obs. kvadrat p̊a en term i nämnaren. Den här är inte samma funktion som i ’a’ !
Antag K =

√
10 och ω1 ≪ ω2 ≪ ω3. Markera viktiga punkter och lutningar.

8. [4p] Källan har vinkelfrekvens ω.
a) [2p] Bestäm värden Z som ger maximaleffekt till impedansen Z.
b) [2p] Hur mycket effekt blir den till Z vid situationen fr̊an deltal ’a’?

9. [6p] Till vänster i kretsen är en balanserad trefas källa, med huvudspänning U , vinkelfrekvens ω, och fasföljd
1,2,3. Fasvinkeln av u1 tas som referens, d.v.s. u1 = 0.
a) [2p] Vilken komplexeffekt levererar källan?
b) [2p] Vilken kapacitans C behövs för att källan inte försörjer n̊agon reaktiveffekt.
c) [1p] Bestäm i2 (som fasvektor – magnitud och vinkel).
d) [1p] Fas 2 i källan smälter. Situationen efter̊at kan modelleras genom att ersätta spänningskällan i mitten (u2)
med en öppenkrets. Bestäm i s̊a fall ia (magnitud och vinkel).
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Solutions (EI1120 TEN1 VT19, 2019-06-07)

Having given very long, thorough answers to the ordinary exam this year (March 2019), we try this time
to please those who prefer concise answers.

Q1.

a) ux =
−R6

R5 +R6
U2

KVL to find voltage across R5 and R6, then voltage division.

b) ix =
R1

R1 +R2
I1

Current division between R1 and R2. KCL around U1 shows that the current I1 must split between
these two resistors. Note that these resistors are in parallel, as they both connect between the same pair
of nodes.

c) PI1 = U1I1 +

(

R1R2

R1 +R2
+R3

)

I21

KVL to find the the voltage across I1, then multiply this voltage by I1. Careful to get the right directions
for power from this source. It helps to simplify by combining R1 and R2 in parallel.

d) PU2 = U2
2

(

1

R4
+

1

R5 +R6

)

=
U2
2 (R4 +R5 +R6)

R4 (R5 +R6)
This is U2

2 /Req where Req is the equivalent of R4 in parallel with the series pair R5+R6. A cleaner way
to do it may be just KCL at the right of U2, after using KCL and Ohm’s law to find the currents in the
two resistor branches. (If doing KCL on the left of U2, one would have to notice that ix coming into this
node must be the same as the current going out of this node towards R3, so this current cancels itself
in the KCL).

Q2.

Extended nodal analysis

Define the node at the left of R1 as potential v1, the node above R2 as v2, and the node above U as v3.
The only other nodes are the reference node and the node already marked vo. In the KCL we’d need
currents in the voltage sources, which are U and the opamp output. Define iα into the + terminal of
source U , and iβ out of the opamp output.

Write KCL for all nodes except the reference.

KCL(0): 0 = −iβ +
vo − v1
R3

(1)

KCL(1): 0 =
v1 − vo
R3

+
v1 − v2
R1

−Gvo (2)

KCL(2): 0 =
v2 − v1
R1

− I +
v2
R2

+ 0 (3)

KCL(3): 0 = iα + 0 (4)

The above are 4 equations, in 6 unknowns. The two voltage sources have given us the problem of two
unknown currents,1 and the same two sources solve the problem by telling us further relationships about
voltage.

v3 = U (5)

v2 = v3 ideal opamp with negative feedback (6)

1You might think iα isn’t unknown, as it’s obviously zero; but that ‘obvious’ point is what KCL(3) is telling us, so if
we treat iα as known we also treat KCL(3) as having no further useful information, in which case we’ve 3 equations in 5
unknowns.
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The above equations (1)–(6) are a sufficient solution.

Nodal analysis: simplify on the way, e.g. supernode

The nodes with potentials that were called vo and v3 in the method above can now be ignored for KCL,
as they are both treated as part of the ‘ground supernode’. The symbol v3 is not needed, as we can
immediately call this potential −U . The symbol vo is still needed, as it appears in another KCL and
is anyway the quantity we’re wanting to find from our equations! Two KCL equations remain, in three
unknowns.

KCL(1): 0 =
v1 − vo
R3

+
v1 − v2
R1

−Gvo (1)

KCL(2): 0 =
v2 − v1
R1

− I +
v2
R2

+ 0 (2)

(3)

The further equation that is needed is given by the opamp, which was what also gave the further
unknown vo. As above, this is the relation saying that the two inputs of an ideal opamp with negative
feedback have equal potential,

v2 = U. (4)

Q3.

These questions are about maximum power. Recall from the theory, that maximum power from a linear
two-terminal dc circuit is obtained when the voltage at the terminals is half of its open-circuit value
(which is also when the output current is half of its short-circuit value), and that one way of acheiving
this is by a load of a resistor equal to the circuit’s Thevenin resistance.

a) R1R2
R1+R2

= 1
2R

As stated above, the maximum power condition for a resistive load is when the load resistance equals
the circuit’s Thevenin resistance.

We can find this circuit’s Thevenin resistance between a-b by setting the (independent) sources to zero:
voltage sources are short circuits, and current sources are open circuits. Then the two resistors R1 and
R2 are in parallel between the terminals, leading to the result R/2.

b) 1
2

(

(I1 + I2)
R1R2
R1+R2

− U1
R2

R1+R2
+ U2

)

= 3
4U +-terminal to ‘a’.

As also stated above, the maximum power condition is when the terminal voltage is half of its open-
circuit value. So we need to connect a voltage source whose value is half of the circuit’s open-circuit
(Thevenin) voltage.

Two efficient ways to find this circuit’s Thevenin voltage are superposition for each source at a time, or
nodal analysis with supernodes, which results in just one KCL equation.

Another way is repeated source-transformation. The pair R1 and I1 are parallel so they form a Norton
source that can be replaced with its equivalent Thevenin source of I1R1 and R1 in series: the question
tells us that all current sources had value U/R and all resistors had value R, so we can immediately
write this Thevenin source as U in series with R. After re-drawing the circuit, the new Thevenin source
is in series with U1 and has its voltage in the oppostive direction, so those voltages cancel: the three
components U1,I1,R1 therefore reduce to just R. This R is in parallel with R2, so together they form
a resistor R/2, which is the equivalent for all four leftmost components of the original circuit. The
open-circuit voltage between a-b can then be found by KVL passing through the R/2 resistor (in which
all of I2 must flow downwards when a-b is open-circuit) and then through the source U2.
Thus: uab(oc) =

R
2
U
R + U = 3

2U .
This value is halved to find value of the external voltage-source that will extract the maximum power
from the shown circuit’s terminals a-b.
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Q4.

At t = 0−

Equilibrium. Switch open. The circuit can in this case
be drawn as shown on the right.

It can be directly seen that: uC1 = 0 and iL2 = 0.

Ignoring the open-circuit branches, this circuit has
three parallel branches between the top and bottom
nodes. It is a good case for nodal analysis or
superposition.

R1

iL1+

−
uC1

I

+
−U

R2

+

−
uC2

iL2

By superposition, iL1 = U
R1+R2

+ IR2
R1+R2

= U+IR2
R1+R2

.

By KCL, the current down through R2 is I − iL1 .

So, by Ohm’s law and KVL, uC2 = (I − iL1)R2, which simplifies to uC2 = IR1−U
R1+R2

R2.

From the above we have the continuous variables that could be useful for t = 0+, and we now can answer
the questions about t = 0−:

a) PR1(0
−) =

(

U + IR2

R1 +R2

)2

R1, b)WC2(0
−) =

1

2
C2

(

IR1R2 − UR2

R1 +R2

)2

.

At t = 0+

Continuity from the previous equilibrium.
The current source is shorted by the switch.

The continuous variables of the four energy-
storing components can be represented as
sources, whose values are valid just for this
instant when the switch has closed. The
voltage source of zero (C1) and the current
source of zero (L2) are more clearly written
as a short and open circuit.

R1

iL1(0
−)(C1)

I
+
−U

R2

+
− uC2(0

−)

(L2)

From this rewritten diagram for t = 0+ we can answer the remaining questions.

The stored energy in L2 at t = 0+ must be the same as at t = 0−. We already saw that the current in
L2 was zero then, so its energy is zero.

c)WL2(0
+) = 0.

The current in R2 is different now, as the current source is short-circuited by the closed switch. By KVL
around the loop of U , R2 and the switch, the full voltage U is across R2.

d) PR2(0
+) =

U2

R2
.

The quantity u2 is marked across C2 in the original circuit. It is in the opposite direction from the uC2

that we marked. In this case it doesn’t matter about the direction, as the answer is zero.
This follows because continuity of the current in L2 holds the current in C2 to zero at t = 0+, and a
capacitor has the relation i = C du

dt .

e)
du2(0

+)

dt
= 0
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Q5.

Before t = 0 the current source has current I. From t = 0 onwards, it has zero current, so it can be
treated as an open circuit.

The marked current i(t) is the continuous variable of the inductor, so we’ll solve for this.

Initial condition. At t = 0− there is equilibrium with the current source active. The inductor, in
equilibrium, has zero voltage so it can be treated as a short circuit. The current can then be found
by KVL and Ohm’s law in U and R1, plus current division of I between R2 and R3. By continuity,
this current is the same just after the current-source changes. Hint: draw the circuit carefully for the
equilibrium state, in order to be sure of this.

i(0+) = i(0−) =
U

R1
+

IR3

R2 +R3
.

Final state. As t → ∞, we again consider an equilibrium, so the inductor is treated as a short-circuit.
This equilibrium is different in that the current source is an open circuit.

i(∞) =
U

R1
.

Time-constant. During the time t > 0, the Thevenin equivalent of the rest of the circuit seen from the
inductor’s terminals has a resistance of the parallel combination of R1 and the series-branch R2 +R3.

RT =
R1 (R2 +R3)

R1 +R2 +R3
.

The circuit’s time-constant is therefore τ = L/RT .

We know this is a first-order circuit (just one capacitor or inductor within a linear dc circuit), so its
response is a decaying exponential to the new equilibrium.

i(t) = i(∞) +
(

i(0+)− i(∞)
)

e−t/τ .

Putting the above three values together,

i(t) =
U

R1
+

IR3

R2 +R3
e
−t

R1(R2+R3)
L(R1+R2+R3) (t > 0).

a) The solution here is i(t) as given above.

b) To answer this, we need somehow to find the voltage across the inductor. This voltage determines
the voltage across R1. As an alternative view, the current that flows in R2 contributes to the current in
R1, and depends on the inductor voltage.

Define u(t) of the top relative to the bottom of the inductor. Then:

u(t) = L
di(t)

dt
= L · −R1 (R2 +R3)

L (R1 +R2 +R3)
· IR3

R2 +R3
e
−t

R1(R2+R3)
L(R1+R2+R3) = −I

R1R3

R1 +R2 +R3
e
−t

R1(R2+R3)
L(R1+R2+R3) .

The power in R1 is then:

PR1 =

(

U − u(t)
)2

R1
=

(

U + I R1R3
R1+R2+R3

e
−t

R1(R2+R3)
L(R1+R2+R3)

)2

R1
(t > 0).
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Q6.

In this question the coupling of the coupled inductors is described in terms of their coupling coefficient
k. The mutual inductance that we usually work with in the circuit equations is found from the relation
M = k

√
L1L2.

The ‘secondary’ of the coupled inductors (L2) is open-circuit: it therefore has no current, so there is no
contribution of the mutual inductance term M di2

dt for the voltage across L1. That makes the solution
simple, as we can analyse the left part of the circuit independently of L2.

We’ll use ac analysis. Let’s take peak-value reference and cos(ωt + 30◦) as our angle reference: so we
describe the source as a phasor U(ω) = Û 0.

Then the current clockwise around the left loop is

i(ω) =
U(ω)

R+ jωL1 +
1

jωC

=
Û

R+ j
(

ωL1 − 1
ωC

) .

This current flows into the dotted side of L1. No current flows in L2. Therefore, by the equations of
mutual inductors, the marked voltage is

u(ω) = jωL2 · 0 + jωMi(ω).

In terms of given quantities,

u(ω) =
jωk

√
L1L2Û

R+ j
(

ωL1 − 1
ωC

) =
ωk

√
L1L2Û

−jR+
(

ωL1 − 1
ωC

) .

In order to find the corresponding time-function, the magnitude and angle are needed.

|u(ω)| =
ωk

√
L1L2Û

√

R2 +
(

ωL1 − 1
ωC

)2
.

u(ω) = −atan
−R

ωL1 − 1
ωC

= atan
R

ωL1 − 1
ωC

.

Putting these as the magnitude and additional angle, into the time-function u(t) = |u| cos (ωt+ 30◦ + u),

u(t) =
ωk

√
L1L2Û

√

R2 +
(

ωL1 − 1
ωC

)2
cos

(

ωt+ 30◦ + atan
R

ωL1 − 1
ωC

)

.

We should also murmur something about checking that ωL1 > 1
ωC , and adding π to the result of the atan function

if it’s not. . . . We could have avoided that issue by not ‘simplifying’ so far: we could have kept the j in the top of
the expression for u(ω), and thereby have kept R as the real part at the bottom, leading to an alternative form of

solution with a cosine of ωt+ 30◦ + 90◦ + atan
1

ωC
−ωL

R .
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Q7.

a) The two parts of this circuit do not affect each other through the one node that joins them (no
current can flow between them). Only a one-way effect happens, with the current ix in the left part
controlling the source in the right part. We can analyse each part in turn.

Left: ix = U

(

1

R1
+

1

jωL

)

= U
R1 + jωL

jωLR1
, Right: u = Kix

R2
1

jωC

R2 +
1

jωC

= Kix
R2

1 + jωCR2
.

Thus, chaining the two expressions together to eliminate ix,

u

U
= K · R2

1 + jωCR2
· R1 + jωL

jωLR1
=

KR2 (R1 + jωL)

jωLR1 (1 + jωCR2)
=

1 + jωL/R1

jω L
KR2

(1 + jωCR2)
.

The final version of the answer was not required to be in a specific form, so any of the above rearrang-
ments, or similar, would be acceptable.

b) The Bode amplitude diagram at the right
is an example.

Important details are the marking of gradients
(the zero gradients do not require this) and
the 10 dB level for ω < ω1, which follows from
20 log10

√
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Q8.

The question makes clear that this is a classic ac maximum power situation, where we choose the load
Z, and the rest of the circuit is the source.

Considering the source to be everything except the load Z, the impedance of the source at its terminals
is the parallel resistor and inductor (the capacitor is not seen, as it is in series with the current source).

a) By the ac maximum power principle, the impedance Z should be chosen as the complex conjugate
of this source impedance:

Z =

(

R jωL

R+ jωL

)∗

=
RωL

ωL+ jR
.

b) To find the active power to the load in the maximum power condition, it’s probably most convenient
to consider a load in which Z is formed from a parallel resistor R and capacitor 1

ω2L
. (This parallel pair

would have the same impedance as the Z that was found in part ‘a’.)

Then we see that the inductor (in the source) and capacitor (in the load) cancel each other’s currents.
What remains in the circuit is just two parallel resistors R across the current source. The load resistor
therefore receives half of the source current. Thus,

Pmax =
(

1
2I
)2

R = 1
4I

2R.

One must be careful to draw a good diagram and think clearly! The above is good if the load and source
impedances are parallel connections of resistor and other component, which fits well with thinking of admittance
(its real and imaginary part describe the resistor and the other component respectively). On the other hand, an
impedance such as the load Z, has real and imaginary parts that describe a series resistor and other component.
An easy mistake is to think of the real part of impedance as describing the resistor in a parallel model. As in some
earlier exam solutions, we here have taken advantage of the fact that maximum power is a feature of the source,
so to find the maximum power we can select a load in the form that’s most easy to analyse, without having to do
it the long way by calculating the load impedance and then further calculating what parallel components would
have this impedance.

Q9.

The balanced delta load can with advantage be transformed to a star equivalent, in which each phase
has impedance (R/3 + jωL/3). Then each capacitor is in series with a phase of the load. The system
is balanced three-phase, so the neutral point of the load has the same potential as the neutral of the
source.
In this case we haven’t defined any potential, as it’s only the voltages that matter for results such as
powers, currents etc. The symmetry tells us that the voltage of each phase of the source is the same as
the voltage of that same phase of the line and star-connected load.

a) In the transformed (Y-connected load) circuit described above, each phase of the source is connected
to a series combination of 1

jωC + R/3 + jωL/3. Each phase of the source has a voltage magnitude of

Up = U/
√
3. Therefore, for the entire three-phase source, the complex power supplied is

S = 3
U2
p

Z∗
tot

=
3
(

U√
3

)2

(

R/3 + jωL/3 + 1
jωC

)∗ =
U2

R/3 + j
(

1
ωC − ωL/3

) =
3U2

R+ j
(

3
ωC − ωL

) .

It’s not strictly necessary to convert this to a clean rectangular form here, but later it will anyway be
necessary to separate the imaginary part. Let’s get it into a neat form now:

S =
3U2

R2 +
(

ωL− 3
ωC

)2

(

R+ j

(

ωL− 3

ωC

))
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b) The requirement here is to have no reactive power supplied by the source. In other words, the
imaginary part of the complex power found in part ‘a’ should be zero. The condition for this is

3

ωC
− ωL = 0 =⇒ C =

3

ω2L
.

c) This is still a balanced situation of source and load. The above method of a Y-connected load
equivalent is still useful.

Looking at just the middle phase (number 2), the voltage u2 is applied across one of the phases of the
load, so

i2 =
u2

R/3 + jωL/3 + 1
jωC

.

In view of the line-voltage, phase-rotation and reference angle, u2 =
U√
3
−120◦. Therefore,

i2 =

U√
3
−120◦

R/3 + jωL/3 + 1
jωC

=

√
3U −120◦

R+ jωL+ 3
jωC

=

√
3U

√

R2 +
(

ωL− 3
ωC

)2
−120◦ − atan

ωL− 3
ωC

R .

d) Now it is an unbalanced case: the source is no longer a balanced three-phase source. The load is
still balanced, so the balanced ∆-Y transformation is still valid. However, the marked ia is in one phase
of the original ∆-connected load, and there is no clear advantage to using the transformed load for this
solution.

With phase 2 of the source open-circuit, we can rub out this and the middle capacitor. Redrawing, the
two further-left phases of the ∆-connected load are now in series, and that series pair is in parallel with
the other phase that connects between the top and bottom line. We don’t immediately know the voltage
across the load phases, as there are capacitors between the source and the load phases.

Let’s define Zc =
1

jωC and Zp = R+ jωL. Then the total current passing from source u1 is

i1 =
u1 − u3

2Zc +
2Z2

p

2Zp+Zp

=
U 30◦

2Zc +
2
3Zp

.

What we want is ia, which is the part of this current i1 that divides into the left of the two paths
through the load, i.e. through the two series-connected phases of the load. By current division this is

i1Zp

2Zp+Zp
= i1/3, which gives:

ia =
i1
3

=
U 30◦

6Zc + 2Zp
=

U 30◦

6
jωC + 2R+ jω2L

=
U 30◦

2R+ j
(

2ωL− 6
ωC

) .

Getting this into polar form,

ia =
U

√

4R2 +
(

2ωL− 6
ωC

)2
30◦ − atan

ωL− 3
ωC

R .

13 / 13 KTH EI1120 Omtentamen SOLUTIONS, 2019-06-07


