
KTH EI1120 Elkretsanalys (CENMI) TEN1 2020-06-05 kl. 08–13

Special Situation: This exam is taken remotely, under video supervision. Answers must

be scanned and submitted before leaving the video meeting.

Permitted material: Beyond writing-equipment, up to three pieces of paper up to A4 size can be used,
with free choice of content: handwritten, printed; small, large; text, diagram, image; one or both sides,
etc. These papers do not need to be handed in with the exam.

Unless it is stated otherwise, the final answer to a question should be expressed in terms of the known
quantities given in the question, and any clear simplifications should be done. Component values such
as R for a resistor, U for an independent voltage source, or K for a dependent source, are assumed to
be known quantities. Marked currents or voltages such as ix are assumed to be definitions, not known
quantities.

Clearly drawn and labelled diagrams are a good way to help yourself avoid mistakes, and to make clear
to others what you are doing. By showing clearly your intermediate steps in a solution, you improve
your chance of getting points even if the final result is wrong. You may write in Swedish or English; but
we suggest that writing in either is seldom necessary if you make good use of diagrams and equations!

Determination of exam grade. Denote as A, B and C the available points from sections A, B and C
of this exam: A=12, B=10, C=18. Denote as a, b and c the points actually obtained in the respective
sections, and as ak and bk the points fr̊an KS1 and KS2, and as h the homework ‘bonus’. The requirement
for passing the exam (E or higher) is:

max(a, ak)

A
≥ 40% &

max(b, bk)

B
≥ 40% &

c

C
≥ 40% &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 50%

The grade is then determined by the total including bonus, i.e. the last of the terms above: boundaries
(%) are 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). If the exam misses a pass by a small margin on just
one criterion, a grade of Fx may be registered, with the possibility of completing to E by an extra task
arranged later.

Special for the VT20 round: The optional project-task with up to 6 points substitutes for Question 9 in
this exam if that gives an advantage. In selecting whether to use points from the exam or part-exams
(‘KS’), the selection will be done per question not just per section.

Nathaniel Taylor (08 790 6222)

Section A. Direct Current

1) [4p]

Determine:

a) [1p] the power from source U2

b) [1p] the marked potential v

c) [1p] the power into resistor R3

d) [1p] the power from source I1

I2 R2

−+

U2I1

−+

U1

R4

R1

R3

v
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2) [4p]

Write equations that could be solved
without further information to find the
potentials v1, v2, v3, v4 and v5 in this
circuit in terms of the component values.

(It is not required that you solve or
simplify the equations, although in fact
it should be quite easy in this particular
circuit.) R1

I

R2

R3

−+

K ux

−+

U

+

−

ux

R4

R5

−

+

v1

v2
v3

v4

v5

3) [4p]

a) [3.5p] Determine the Thevenin equivalent of
this circuit at the terminals where quantities u and
i are marked.

b) [0.5p] Comment on the “maximum power”
available from the terminals of this circuit in the
particular case where U = 0.

−+
U

K1 iR1

R2 i

+

−

u

− +

K2 u

Section B. Transient Calculations

4) [5p] Find:

a) [1p] Energy in L2 at t = 0−

b) [1p] Power from I at t = 0+

c) [2p] Power from C2 at t = 0+

d) [1p] Current iL1 as t → ∞

I · 1(t)

R1

−+

U

R4

R3R2

L1

iL1

C1 L2 C2

5) [5p]

a) [4p] Find the current i(t) through
the capacitor for t > 0.

b) [1p] Find the power into R1 for t > 0.

R1 I

t = 0

−
+ U

t = 0

R2

C

i(t)

R3
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Section C. Alternating Current

6) [4p]

The source’s voltage is U(t) = Û sin(ωt).

Determine u(t). −
+U(t)

R1

L R2

+

−

u(t)

7) [4p]

a) [2p] Determine this circuit’s network function

H(ω) =
i(ω)

I(ω)
.

b) [1p] Show that the above H(ω) can be written as

H(ω) =
jω/ω1

(1 + jω/ω2)
.

L1 L2I(ω) R

i(ω)

M

c) [1p] Sketch a Bode amplitude plot of the function H(ω) from part ‘b’.
Assume ω1 ≪ ω2. Mark significant points and gradients.

8) [4p]

The source has angular frequency ω.
Component value C can be chosen.
Other component values are fixed.

n : 1

−
+ U

R1 L1

C R2 L2

a) [3p] What value of C will fully power-factor compensate the load supplied from the right-hand side
of the transformer, i.e. the total load consisting of C, R2 and L2? Express this value of C in terms of
the other components’ values.

b) [1p] What value of C will fully power-factor compensate the entire circuit supplied by source U?
In this part it is sufficient to show an equation that could be solved, without having to solve/rearrange
to a neat expression for C.
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9) [6p]

Consider a balanced three-phase system according to the description below:

A three-phase voltage source provides line-voltage magnitude U at angular frequency ω.
A three-phase load is formed from three resistors each of value R, in star (Y) connection.
The source and load are not directly connected. They are connected through three single-
phase transformers that together form a three-phase transformer. Each of the transformers
has N1 turns on its primary winding and N2 on its secondary. The primaries are connected
with each other in star, and are supplied from the source. The secondaries are connected to
each other in delta, and supply the load.

Advice! Think calmly, and draw carefully. Use symmetry where you can. Write what you know. Simplify.

a) [1p] What is the voltage magnitude across each load resistor?

b) [2p] What complex power is supplied by the source?

c) [2p] What is the magnitude of the current in the transformer secondaries?

d) [1p] One of the transformers has a fault where its secondary becomes fractured (open circuit).
This is no longer a balanced three-phase circuit. What complex power does the source now supply?
Think carefully!

The End. Please don’t waste remaining time . . . check your solutions!
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Översättningar:

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet eller
datorutskrift; text, diagram, bild; stor eller liten textstorlek, o.s.v. Dessa måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter och förenklas.

Var tydlig med diagram och definitioner av variabler. Du f̊ar skriva p̊a svenska eller engelska, men vi rekommenderar
att diagram och ekvationer används i stället i de flesta fall.

1. [4p] Bestäm följande:
a) [1p] effekten fr̊an källan U2

b) [1p] potentialen v
c) [1p] effekten in till motst̊and R3

d) [1p] effekten fr̊an källan I1

2. [4p] Skriv ekvationer som skulle kunna lösas, utan vidare information, för att bestämma de fem potentialerna
v1,2,3,4,5 som funktioner av kretsens komponentvärden. Det rekommenderas inte att du försöker lösa dem!

3. [4p]
a) [3.5p] Bestäm kretsens Theveninekvivalent med avseende p̊a polera där u är markerad.
b) [0.5p] Kommentera om maximaleffekten som kan levereras fr̊an polerna i fallet U = 0.

4. [5p] Bestäm:
a) [1p] Energin lagrad i L2 vid t = 0−

b) [1p] Effekten levererad fr̊an I vid t = 0+

c) [2p] Effekten levererad fr̊an C2 vid t = 0+

d) [1p] Strömmen i
L1

vid t → ∞

5. [5p]
a) [4p] Bestäm strömmen i(t) genom kondensatorn, för t > 0.
b) [1p] Bestäm effekten till R1, för t > 0.

6. [4p] Källans spänning är U(t) = Û sin(ωt). Bestäm u(t).

7. [4p]
a) [2p] Bestäm kretsens nätverksfunktion, i/I.
b) [1p] Visa att funktionen fr̊an deltal ’a’ kan skrivas jω/ω1/(1 + jω/ω2).
c) [1p] Skissa ett Bodeamplituddiagram av H(ω) fr̊an deltal ’b’. Antag ω1 ≪ ω2. Markera viktiga punkter och
lutningar.

8. [4p] Källan har vinkelfrekvens ω. Komponentvärdet C kan väljas, men andra komponentvärden är fasta.
a) [3p] Bestäm värdet av C som fullt effektfaktorkompenserar effekten levererad genom transformatorn.
b) [1p] Bestäm värdet av C som fullt effektfaktorkompenserar effekten levererad fr̊an källan U . Du m̊aste inte
lösa hela vägen: den räcker med ekvation som g̊ar att lösa.

9. [6p] Betrakta följande balanserade trefassytemet: En trefas spänningskälla levererar huvudspänning U vid
vinkelfrekvens ω. Tre enfasiga transformatorer som har N1 varv p̊a sina primäralindningar och N2 varv p̊a sina
sekundäralindningar kopplas för att skapa en trefastransformator. Primäralindningarna stjärnkopplas, och matas
fr̊an källan. Sekundäralindningarna deltakopplas och matar en last som best̊ar av tre most̊and R i stjärnkoppling.
a) [1p] Vad är det för spänningsmagnitud över varje fas i lasten (varje motst̊and R).
b) [2p] Bestäm den komplexeffekt som källan levererar.
c) [2p] Bestäm magnituden av strömmen i de sekundäralindningarna av transformatorna.
d) [1p] Obalanserat fall: sekundärlindningen av en av de tre transformatorna blir en öppenkrets, för att ett brott
har skett i anslutningen. Bestäm den komplexeffekt som källan nu levererar till lasten. Tänk försiktigt.
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Solutions (EI1120 TEN1 VT20, 2020-06-05)

Q1.

a) By KCL at the node marked v, the current out of the +-terminal of source U1 is I1 + I2.
The product of the source’s voltage and this current is then the power delivered from the source.

PU2 = U2 (I1 + I2) .

b) The current up through R2 is I1 + I2, which can be seen from KCL as in ‘a’.
This gives a voltage (I1 + I2)R2 on the bottom relative to the top part of that resistor.
Starting from zero potential, and summing the voltages as we pass through R2 and U2,

v = − (I1 + I2)R2 + U2.

c) R3 and R4 are connected in parallel. Although they’re not drawn as parallel-lying components, you
can check that they connect between the same pair of nodes. R1 is then in series with these.

The branch formed from these three therefore has resistance R123 = R1 +
R3R4
R3+R4

. That branch is in
parallel with source U1, so the voltage across it is fixed to U1.

We can find the current through R3 by finding the current that passes through R1, which is the current
through the whole branch, then using current division between R3 and R4,

iR3 =
R4

R3 +R4
· U1

R1 +
R3R4
R3+R4

=
U1R4

R1R3 +R1R4 +R3R4
.

Or we can find the voltage across R3 by voltage division of U1 between R1 and the parallel R3 and R4,

uR3 =
R3R4
R3+R4

U1

R1 +
R3R4
R3+R4

=
U1R3R4

R1R3 +R1R4 +R3R4
.

One of the relations for a resistor’s power, P = i2R or P = u2/R, can then be used to find PR3 ,

PR3 =
R3U

2
1R

2
4

(R1R3 +R1R4 +R3R4)
2 .

d) The power from this source is found by the product of its value (I) and the voltage across it. The
voltage should be marked in the direction with + at the terminal where the current I comes out: else a
negation is needed in order to find the power out from the source.

The outer loop of the circuit is a good path for KVL to determine the voltage across source I. It contains
just the unknown voltage across the current source, the two known values of voltage sources, and one
resistor R2. The current through R2 is already known from part of the solution of ‘b’.

uI1 = U1 + (I1 + I2)R2 − U2.

The sought power is therefore

PI1 = I1

(

U1 − U2 + (I1+I2)R2

)

.
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Q2.

Extended nodal analysis.

The plain, not-forced-to-think-very-hard way.
Simple rules to follow for writing the equations, but not so nice to solve!

Start with KCL at all five nodes other than the reference.
KCL can be written directly for nodes 1 and 5, based on currents defined by a current source or open-
circuit, or currents in resistors that can be expressed in terms of the potentials and resistance. KCL at
nodes 2, 3 or 4 meets the problem that there are unknown currents in voltage sources.

The circuit contains two obvious voltage sources: the independent U , and the dependent K ux. It also
has an opamp, whose output can be considered as one side of a voltage source whose other side connects
to the reference node. The currents in these are not known: we define them as new unknowns, which we
can call iα into the +-terminal of U , then iβ into the +-terminal of Kux, and iγ into the opamp output.

KCL(1): 0 = I +
v1
R1

(1)

KCL(2): 0 = −I +
v2
R2

+ iβ (2)

KCL(3): 0 = −iβ +
v3
R3

+ iα (3)

KCL(4): 0 = −iα +
v4
R4

+ iγ + 0 (4)

KCL(5): 0 =
v5
R5

+ 0 (5)

The above are 5 equations, in 8 unknowns. The unknown currents in the three voltage sources are the
reason for this difference. The same sources provide the further necessary equations, as they set relations
between pairs of node-potentials. The opamp is a special case: its negative feedback and high gain result
in its input potentials being equal, which may seem surprising given that the output current is the
unknown . . . but it works.

v3 − v4 = U (6)

v2 − v3 = K ux (7)

v4 − v5 = 0 (8)

The first of these introduced a new unknown, ux, as the controlling variable of the dependent source.
There are now therefore 9 unknowns and 8 equations. The controlling variable has to be defined as an
equation, in order to convey the same information as the diagram tells us about them; otherwise the
equations don’t provide enough information to solve the shown circuit, since the result of course depends
on how the controlling variable is defined.

ux = v4 − 0. (9)

The above 9 equations in 9 unknowns should be able to be solved. We can be confident of this because
of having followed a particular procedure: beware of writing linearly-dependent equations if not being
systematic!

Step-by-step solution.

This circuit is unusually easy to solve for the potentials without using a systematic method or simulta-
neous equations. As with many puzzles, finding the right starting-point makes it much simpler.

No current can pass through R5, as this resistor connects only to an opamp input. With zero current
through it, Ohm’s law says this resistor has zero voltage. So v5 = 0.

The ideal opamp with negative feedback must have its inputs at the same potential, so v4 = 0.
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The voltage source U forces v3 = v4 + U , so v3 = U .

Similarly, the dependent voltage source K ux determines that v2 − v3 = ux. The definition of ux across
R4 shows that ux = −v4. With the value of v4 = 0, we this gives ux = 0. Putting this into the equation
for the dependent source, v2 = U .

Finally, the current through R1 is determined by the source I, and one side of R1 connects to the
reference node (0). Taking into account the directions, v1 = −IR1.

All the five unknown potentials have been determined in the above. The same could have been done
quite easily from the equations found in the nodal analysis method, taking equations (5), (8), (6), (9),
(7) and (1).

Q3.

The voltages across the two resistors can be determined in terms of the marked current i.
In R2 the current is i.
In R1 it is the difference between i and K1i, by KCL above the current-source.

−+

U

K1 iR1

+

−

(K1 − 1) i R1

(K1 − 1) i
R2

−+
i R2 i

+

−

u

− +

K2 u

Using these voltages, KVL can be written around the outer loop,

−K2 u+ U +R1 (K1i− i)−R2 i− u = 0,

which directly gives a relation between the two terminal-quantities (u & i) in terms of the known
component values:

u =
U

1 +K2
− (1−K1)R1 +R2

1 +K2
i.

a) The Thevenin parameters are as shown on the right.
They can be found by comparison of the above with the
equation of a Thevenin source, u = UT −RT i.

Alternatively, short-circuit and open-circuit conditions
can be studied to find short-circuit current isc and open-
circuit voltage uoc = UT , and their ratio RT = uoc/isc.

−
+ UT = U

1+K2

RT = (1−K1)R1+R2

1+K2

+

−

u

In short-circuit u = 0, so the dependent voltage-source is fixed to zero, i.e. a short circuit. Drawing the
rest of the circuit, with the terminals shorted, and writing KVL around the outer loop similarly to the
above (but without u or K2 u), we get U +R1(K1 − 1)i−R2i = 0, from which isc =

U
(1−K1)R1+R2

.

In open-circuit i = 0, so the dependent current source is fixed to zero, i.e. an open circuit, and can be
omitted. Just one loop remains, and its current is i, so it is zero. By Ohm’s law the resistors then have
zero voltage. By KVL around the loop, −K2u+ U + 0 + 0− u = 0, from which uoc =

U
1+K2

.

b) If U = 0 then UT = 0. The circuit then behaves like just a resistor RT , and if this has a positive value
the circuit can only absorb, not supply, power. Depending on the parameters K1 and K2, RT could be
negative: in this case the circuit will supply power to the current that passes through it, but there’s no
maximum to the power, as increased current will always mean increased power.
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Q4.

The original circuit, describing all times, is the following:

I · 1(t)

R1

−+

U

R4

R3R2

L1

iL1

C1 L2 C2

At t = 0−, the step function makes the current-source have zero value, so it can be represented by an
open circuit. Equilibrium implies that capacitors have no current (open) and inductors have no voltage
(short).

R1

−+

U

R4

R3R2

iL1

+

−
uC1 iL2

+

−
uC2

Just the energy stored in inductor L2 is requested, for this time t = 0−.

Because C1 behaves as an open circuit, R3 and R4 are in series. From KVL around { U , L2, R3, R4 },
the voltage across this series pair is U , so the current through R3 is U

R3+R4
.

There is no current in the components to the left of L2, as all that part is connected across the zero
voltage of L2 and has no active source. So no current flows in R2. If a more rigorous demonstration is
wanted, the zero current in R2 can be shown by KVL around { R2, L1, R1, L2 }, after using KCL to
show that the currents in R1 and R2 are the same.

By KCL between R2 and R3, the current in L2 is therefore the same as the current through R3. Putting
this into the formula for energy in an inductor, we get the solution to ‘a’:

a) WL2(0
−) = 1

2 L2

(

U
R3+R4

)2
.

Before moving onto t = 0+ and the next sub-question, we should analyse the state at t = 0− further
in order to find the continuous quantities in the capacitors and inductors. (We probably aren’t sure yet
whether all of these quantities will actually be needed for solving the later questions. But the circuit at
t = 0− looks as if it’s quite easy to find all four continuous quantities, so we’ll do that anyway.)

From the above analysis, there is no current in R1 or R2, so:

By KCL, iL1 = 0.

By KVL, uC1 = 0.

The current already determined in R3 and R4 leads to:

As found earlier by KCL, iL2 = U
R3+R4

.

By voltage division, uC2 = −UR4
R3+R4

.
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At t = 0+ the step function gives the current-source a value I. Continuity implies that the capacitors
and inductors maintain, respectively, the voltage and currents that they had previously. (These values
will change over time, but are not changed in the negligible time between ‘just before’ and ‘just after’
the step function.)

We can represent these still-unchanged values by replacing capacitors with voltage sources and inductors
with current sources, with values matching the continuous variables found at t = 0−.

I

R1

−+

U

R4

R3R2

iL1 −
+ uC1 iL2 −

+ uC2

When putting in the values, we note that iL1 = 0 describes a zeroed current-source, which can more
simply be written as an open circuit. Similarly, the zeroed voltage-source uC1 = 0 can be written as a
short circuit. The negative sign in the expression for uC2 can be avoided by swapping the direction of
that source.

The result is a simpler diagram for t = 0+, that is clearer to think about.

I

R1

−+

U

R4

R3R2

(L1) (C1)
U

R3+R4

−
+ UR4

R3+R4

The power delivered from source I depends on the voltage across this source. KCL shows that the full
current I passes through R1. Taking KVL around the loop of { I, R1 (C1) }, this shows that the voltage
across the current source is IR1, with its reference direction (+-side) being the upper terminal of source
I. Multiplying this with the source current gives the power delivered from the source,

b) PI(0
+) = I2R1.

Similarly, the power delivered from C2 can be found by first finding this component’s current.

Define a current i downwards, out of the +-
terminal of the source that represents C2.

The source U/(R3+R4) is in parallel with R2, so
these can be source-transformed to a Thevenin
source.

The circuit on the right can then be analysed to
find i.

−+

U

R4

−
+UR2

R3+R4

R2
R3 i

−
+ UR4

R3+R4
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Writing KCL at the node below the capacitor C2 (represented by the source UR4/(R3+R4)), the current
i is expressed as the sum of the currents passing to the left and to the right. Each of these loops is a
series connection of voltage sources and resistors, in which KVL can be used to find the currents.

i =
UR4

R3+R4
− U − UR2

R3+R4

R2 +R3
+

UR4
R3+R4

R4
.

The components I and R1 were neglected in all of this analysis, as they connect by only on one node
to the part of the circuit that we are studying, so they cannot affect the currents or voltages beyond
that node. If you aren’t happy with the above justification for ignoring part of the circuit, you could
use nodal analysis on the right part of the circuit without doing a source transformation. For example,
take the potential above or below R4 as the reference: then the only unknown potential that is needed
in order to find i is at the node between R2 and R3. KCL at this node doesn’t require I or R1, as the
potential at the left of R2 is the same as the known potential at the left of U .

Taking the above expression for i and putting it over a common denominator,

i = U
R2

4 −R3R4 −R2
4 −R2R4 +R2R4 +R3R4

(R3 +R4) (R2 +R3)R4
= 0.

This result may come as a surprise. It means that there is no power out of C2, because C2 has no current
at t = 0+. (There was also no current in C2 at t = 0−, but current is not the continuous variable of a
capacitor, so we can’t in general assume it to be unchanged.)

In fact, we didn’t need to do all this algebra to see that i would still be zero: there was a shortcut. But
we did the long way anyway, to show that it’s anyway possible to find the solution by hard work and
rule-following.

The shortcut comes from noticing that the only change that happens in the circuit is the current source
at the left getting a different value at t = 0. Between that source and the region we’re interested in
with C2, there is a capacitor C1 connected in parallel. That capacitor, by continuity, prevents a change
in its voltage between t = 0− and t = 0+. By this behaviour, like a voltage source in parallel with
the part we’re studying, C1 prevents the change at I from being ‘seen’ by the components to its right,
immediately after the change. So we could have predicted that the capacitor’s current would have been
unchanged from its value at t = 0−, even though it is not continuous variable.

Later, after t = 0+, the capacitor C1 will have had time to change its voltage with the new current
coming in through R1. Then C2 and other components can get different voltages and currents.

c) PC2(0
+) = i UR4

R3+R4
= 0 UR4

R3+R4
= 0.

As t → ∞, a new equilibrium is reached, differing from the case at t = 0− in that the current source is
now I instead of 0.

By KCL, the currrent down L1 is the
sum of I and the current out of the
right terminal of R1. The current in
R1 is zero. This can be seen from
KVL around { R1, L2, R2, L1 },
bearing in mind that by KCL the
same current must flow around both
of these resistors.

I

R1

−+

U

R4

R3R2

iL1

+

−
uC1 iL2

+

−
uC2

The solution is therefore that all the source current I, and nothing more, passes through L1.

d) iL1(∞) = I.
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Q5.

The circuit for all times is this:

R1 I

t = 0

−
+ U

t = 0

R2

C

i(t)

R3

The equilibrium at t = 0− allows us to find the initial condition
of the capacitor’s continuous variable, which is needed in the
solution of what happens for t > 0. The simplified circuit for
t = 0− is shown on the right.

At t = 0−, the switch to the voltage source is closed, and the
other switch is open, preventing components I and R1 from
affecting the capacitor. The capacitor in equilibrium is an open
circuit.

−
+U

R2

(C)
+

−
u(0−)

i(0−)

R3

Voltage division finds the voltage u across the capacitor in this equilibrium. From the above circuit, and
continuity,

u(0+) = u(0−) =
R3

R2 +R3
U.

After the switches have operated, the voltage source U is disconnected, but the Norton-source of { I
& R1 } is connected to the rest of the circuit. This is shown at the left, below. At the right, all of the
circuit except the capacitor has been replaced by its Thevenin equivalent.

R1 I

R2

C

+

−

u(t)

i(t)

R3 −
+ UT = R1R3

R1+R2+R3
I

RT = R3(R1+R2)
R1+R2+R3

C

+

−

u(t)

i(t)

Notes on deriving the Thevenin equivalent: The capacitor is not included, so it can be treated as removed
(open). R2 and R3 are then in series, and this branch is in parallel with R1 and with I. Current division
finds the proportion of I passing to the right, which is multiplied by R3 to find the open-circuit voltage
between the nodes where the capacitor will connect. The Thevenin resistance is found by setting source
I to zero, so it’s open circuit. Then R3 is in parallel with R1 +R2, when seen from the nodes where the
capacitor will connect.

Using the quick method to find the ODE in a circuit with just one C or L,

u(0+) =
R3

R2 +R3
U, u(∞) = UT =

R1R3

R1 +R2 +R3
I, τ = CRT = C

R3 (R1 +R2)

R1 +R2 +R3
.

which gives u(t) for t > 0 as

u(t) = u(∞) +
(

u(0+)− u(∞)
)

e−t/τ =
R1R3I

R1 +R2 +R3
+

(

R3U

R2 +R3
− R1R3I

R1 +R2 +R3

)

e
−t

R1+R2+R3
C R3(R1+R2) .
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a) The first task was to find the current i(t). We initially found the voltage instead, as a capacitor’s
voltage is its continuous variable, so its value just after the change is the same as in the equilibrium just
before that.

Now we use the equation of a capacitor, and insert the above expression for u(t),

i(t) = C
du(t)

dt
= C

− (R1 +R2 +R3)

C R3(R1 +R2)

(

R3U

R2 +R3
− R1R3I

R1 +R2 +R3

)

e
−t

R1+R2+R3
C R3(R1+R2) .

Trying to simplify a bit,

i(t) =
R1 +R2 +R3

R1 +R2

(

R1I

R1 +R2 +R3
− U

R2 +R3

)

e
−t

R1+R2+R3
C R3(R1+R2) ,

i(t) =

(

R1I − R1+R2+R3
R2+R3

U

R1 +R2

)

e
−t

R1+R2+R3
C R3(R1+R2) (t > 0).

Any form of simplification that cancels the C should be accepted, as there is not a really obviously much
neater way to express this result.

b) Now we should find the power into R1 for t > 0. It looks as if finding the current in this resistor is
a good way to start.

If i1 is the current down R1, KCL gives

i1(t) = I − i(t)− u(t)

R3
.

The above can be seen as KCL taken on currents into or out of the entire top part of the circuit. Or it
can be seen as a KCL on the top right node to find the current through R2, followed by KCL on the top
left.

(An alternative to finding the current in R1 is to find the voltage across R1, based on the current in R2

found from KCL in the top right node, and the known voltage u(t). But we’ll go with the current, as it
doesn’t require the expression for u(t) to be written out twice.)

Putting in the earlier calculated values of u(t) and i(t),

i1(t) = I−R1+R2+R3

R1+R2

(

R1I

R1+R2+R3
− U

R2+R3

)

e−t/τ− 1

R3

(

R1R3I

R1+R2+R3
+

(

R3U

R2+R3
− R1R3I

R1+R2+R3

)

e−t/τ

)

.

Trying to improve this mess, we separate the constant parts and the exponentially decaying parts,

i1(t) =

(

1− R1

R1+R2+R3

)

I+

(

(

R1+R2+R3

(R1+R2) (R2+R3)
− 1

R2+R3

)

U+

(

R1

R1+R2+R3
− R1

R1+R2

)

I

)

e−t/τ ,

then do some simplifications by combining fractions,

i1(t) =
R2 +R3

R1+R2+R3
I +

(

R3

(R1+R2) (R2+R3)
U − R1R3

(R1+R2) (R1+R2+R3)
I

)

e
−t

R1+R2+R3
C R3(R1+R2) .

The solution is then
PR1(t > 0) = i1(t)

2R1.

There’s no obvious advantage to copying the full expression for i1 into this, as that will just get even
worse to understand, especially if we expand out the squared part.
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Q6.

−
+U(t) = Û sin(ωt)

R1

L R2

+

−

u(t)

The aim is to determine u(t), by ac analysis.

L and R2 are in parallel, then in series with R1 across a known voltage. We want to find the voltage
across one of these series parts. This is a good case for voltage division.

The inductor’s impedance is Z = jωL.

We’ll represent the source’s voltage as a phasor U(ω) = Û 0. This uses sine-reference for angle, and
peak-value for magnitude; the same choices must be made later, when transforming the result back to
a time-function. We don’t really need to write the 0 part, but it helps remind that this is a phasor
although it has zero phase.

Now we can do the same as we would in a dc circuit with a voltage source and three resistors:

u(ω) =

ZR2

Z +R2

R1 +
ZR2

Z +R2

U(ω) =
ZR2 · U(ω)

R1R2 + Z (R1 +R2)
.

Having simplified a bit with the simpler symbols above, we can put in the values,

u(ω) =
jωLR2 Û 0

R1R2 + jωL (R1 +R2)
=

jωL/R1 · Û 0

1 + jωLR1+R2
R1R2

.

The final form above, with a 1+jω/ω0 type of term, would be good for Bode plotting. It’s not necessarily
going to be better for our purposes here, but it looks about as good as any.

Now, in order to write the time function u(t), we must find the magnitude and angle of u(ω) and put
them into an equation based on the peak-magnitude sine-reference that we used to convert from U(t)
to U(ω),

u(t) = |u(ω)| sin
(

ωt+ u(ω)
)

.

The magnitude, based on either of the two expressions for u(ω) above, is

|u(ω)| = ÛωL/R1
√

1 +
(

ωLR1+R2
R1R2

)2
or |u(ω)| = ωLR2Û

√

(R1R2)
2 + (ωL (R1+R2))

2
.

The phase can be found by directly taking the phase of the top and bottom parts,

u(ω) = atan
ωL/R1

0
− atan

ωLR1+R2
R1R2

1
=

π

2
− atanωLR1+R2

R1R2
,

or by first dividing both by j to make the top part real and thereby avoid multiple atan terms,

u(ω) = 0− atan
−1

ωLR1+R2
R1R2

= atan
1

ωLR1+R2
R1R2

= atan
R1R2

ωL (R1 +R2)
.

The final answer is then:

u(t) =
ÛωL/R1

√

1 +
(

ωLR1+R2
R1R2

)2
sin
(

ωt+ atan R1R2
ωL(R1+R2)

)

.
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Q7.

L1 L2I(ω)

+

−

u1

+

−

u2 R

i(ω)

M

a) For this mutual-inductor pair we could write the usual two equations, for the voltages u1 and u2 at
both sides, in terms of the two currents. For the inductor L2, the equation would be

u2 = jωL2(−i) + jωMI,

where the negative sign on the current i is because of the relative direction of the marked voltage u2,
the dot on L2, and the current i.

Then we could write further expressions for how these voltages and currents are related in the circuits
that connect to the inductors. On the right, this relation is

u2 = i R.

In this circuit it is not necessary to write equations for the left side of the circuit. This is because the
current-source completely determines the current in the coil L1, regardless of what happens at the other
side of the circuit. Thus, the influence of the left side on the right side is a constant, independent of
what’s connected at the right.

(Notice that this would not be the case if there were for example a voltage source or Thevenin or Norton
source on the left: in that case, the current in L1 would depend on the voltage u1, which would depend
also on the current in L2, which would depend on the current in L1, leading to simultaneous equations.)

In order to solve for the marked i, we can take the above two equations, use one to eliminate u2 in the
other, and thereby get one equation for i in terms of known quantities,

i =
jωMI

R+ jωL2
, H(ω) =

i

I
=

jωM

R+ jωL2
.

b) The above equation can be simply modified by dividing through by R, giving

i

I
=

jωM/R

1 + jωL2/R
=

jω/ω1

1 + jω/ω2
, where ω1 =

R

M
and ω2 =

R

L2
.

c) A Bode amplitude plot of the function from ‘b’
is shown on the right. The parts for numerator and
denominator terms alone are not required, but are
simply included to show a way of making the total
function from these parts.

The +20 dB/decade slope for f < f2 should be
marked. The zero slope at higher frequencies can
be considered obvious (not required).

The 0 dB level and the crossing of |H(ω)| through
this at frequency f1 should both be clear.

The horizontal axis can be marked with a frequency
f or angular frequency ω, with the assumption that
e.g. f1 here corresponds to ω1 in the equation of ‘b’
by ω1 = 2πf1.

numerator

f

denominator
     alone

alone

|H|  total+20 dB/decade

f f
1 2

0 dB

|H|  (dB)
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Q8.

n : 1

−
+ U

R1 L1

C R2 L2

a) First, we aim to choose C to give perfect power-factor compensation of the total load supplied by
the transformer.

In other words, no reactive power should flow between the right-hand side of the transformer and the
set of three components to the right of it.

Or in another form, ℑ{ZC ‖ ZR ‖ ZL2} = 0, where ‖ denotes a parallel connection and ℑ{·} the imaginary
part of a complex number.

The requirement of a purely real total impedance of the three components implies also that the total
admittance (reciprocal of impedance) is real. Admittance is probably easier to handle here, as the
components are in parallel. The admittance of the three parallel components is

Y‖ =
1

R2
+ jωC +

1

jωL2
=

1

R2
+ j

(

ωC − 1

ωL2

)

.

The imaginary part of this is zero if

C =
1

ω2L2
.

b) Now the power-factor compensation should make the source see a unity power factor (no reactive
power). This is different from ‘a’ in that the reactive power in the inductor L1 must also be compensated;
or in other words, the total impedance of everything seen by source U must be purely real.

The solution gets a bit messy because the compensation is done with a component C that lies on the
other side of L1 from the source: if we change C to try to compensate for the reactive power in L1, our
action changes the current through L1, which changes the reactive power in L1 and thus the needed
value of C. It would be simpler if C were in parallel with the source. Instead we end up with C in several
places in the equations.

Let’s write the total impedance seen by the source U . First take the reciprocal of the Y‖ found in ‘a’,
then refer it to the primary side of the transformer by scaling by n2, then add the series impedances
from the primary side:

Ztotal = R1 + jωL1 + n2

(

1
1
R2

+ jωC + 1
jωL2

)

.

In view of the question’s instructions, it’s ok to leave it as above. It won’t look much neater with
rearrangement. The C appears only in one place. The most practical way to solve it, outside an exam,
would be to plot the imaginary part of the expression as a function of C for given values of the other
parameters, and check what C gives a zero imaginary part.

If one wants to go further, the following is an example.

Ztotal = R1 + jωL1 +

(

n2 jωL2R2

R2 (1− ω2L2C) + jωL2

)

= R1 + jωL1 +

(

n2ωL2R2

ωL2 + jR2 (ω2L2C − 1)

)

Now get rid of imaginary parts on the bottom of the rightmost term, by multiplying top and bottom by
the complex conjugate,

Ztotal = R1 + jωL1 +

(

n2ω2L2
2R2 − jn2ωL2R

2
2

(

ω2L2C − 1
)

ω2L2
2 +R2

2 (ω
2L2C − 1)2

)
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The required condition is a zero imaginary part. This means that jωL1 must be cancelled by the
imaginary part of the term on the right.

Expressing just these imaginary parts as equal and opposite, we get

ωL1

(

ω2L2
2 +R2

2

(

ω2L2C − 1
)2
)

= n2ωL2R
2
2

(

ω2L2C − 1
)

After more fooling around, this can become a quadratic in C,

ω2L2C
2 −

(

2 + n2L2/L1

)

C +

(

L2

R2
2

+
n2

ω2L1
+

1

ω2L2

)

= 0

to be solved with the quadratic formula.

Q9.

For all except the final part of this question, the described circuit can be modelled with the following
diagram. Note that connections are only at triple-points: cross-overs of straight lines are not connected.
The transformers are identical. The angles shown for the sources are just examples that were not specified
in the question: any arbitrary angle could be added to all three and they would still be a balanced three-
phase set.

N1 N2

i1a

− +

ua = U√
3
0

i
1b

− +

u
b
= U√

3
−2π
3

i1c

− +

uc =
U√
3

−4π
3

+

−
u1a

+

−
u

1b

+

−
u1c

+

−
u2a

+

−
u

2b

+

−
u2c

neutral connection (if present)

i2a

i
2b

i2c

iRa

R

+ −uRa

i
Rb

R

+ −u
Rb

iRc

R

+ −uRc

The situation in the first three questions is balanced three-phase. Magnitudes therefore come in threes:
they will be the same in each of the three source-phases, resistors, primary windings etc. Angles between
the three phases will be ±120◦.

continued . . .
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a) Voltage magnitude across each load-resistor R.

As it’s a balanced three-phase situation, we can use standard relations between phase- and line-quantities.
It’s made simpler by the fact that we are only asked about magnitudes.

The transformer primaries are star-connected to a line-voltage of U , so each gets voltage magnitude U√
3
.

Each transformer secondary has voltage magnitude UN2√
3N1

, according to the transformer voltage equation.

The transformer secondaries are delta-connected, so they produce a line-voltage magnitude equal to
their individual magnitudes. The line voltage applied to the resistive load is therefore UN2√

3N1
.

The load resistors are star-connected, so each gets 1√
3
of the line-voltage: 1√

3
· UN2√

3N1
. Thus,

∣

∣

∣
u

R{a,b,c}

∣

∣

∣
=

UN2

3N1
.

b) Complex power supplied by the source.

The transformers are assumed ideal, so they consume or produce no active or reactive power.

The three-phase source therefore delivers the same complex power as goes into the resistors. Each resistor
has a voltage as found in ‘a’.

Ssource = 3
|uR |2
R

= 3

(

UN2
3N1

)2

R
=

U2N2
2

3RN2
1

.

c) Current magnitude in transformer secondaries.

One method: each load resistor’s current magnitude is |iR | = UN2
3N1R

, based on the solution to ‘a’.

The resistors are star-connected, so this is also the line-current magnitude from the transformer to the
resistors.

The transformer secondaries are delta-connected, so each has a current magnitude of 1√
3
of the line

current:

|i2 | =
1√
3
|iR | =

UN2

3
√
3N1R

.

d) Complex power supplied by the source, when one transformer secondary is open-circuit.

Due to the initial symmetry, it doesn’t matter which transformer’s secondary becomes disconnected.
If we choose a different one, the situation will be the same except for the different phase angles. The
sum of power on all three phases will therefore not be affected by the choice of which transformer is
disconnected.

The principle from ‘b’ can still be used: whatever complex power leaves the source is the same as what
goes in to the resistors.

If one winding in an ideal transformer is open-circuit, the other must behave also as an open circuit,
since I1 = I2N2/N1. The transformer with an open-circuit secondary can therefore be removed from the
circuit, since it will behave as an open circuit at both sides.

Now there are two possibilities: were the source and transformer-primaries in a 3-wire or 4-wire (with
neutral) connection? In the balanced conditions this would make no difference. But now it does. This
was not specified in the question, because: i) identifying the issue was one possible way of getting credit
in this question, ii) one or other choice could be made, and will get full credit for a correct answer for
the specified choice.
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1. If there is a neutral from the source to the primaries:

Let’s choose the middle transformer (see earlier diagram) as the one with an open-circuit. After removing
this transformer, the middle phase of the source is left unconnected, so can also be removed as it no
longer does anything in the circuit. This leads to the diagram on the left. On the right, the diagram
has been simplified by replacing the transformer secondaries by the sources that were connected to the
primaries, scaled by the transformer ratio. By drawing the voltage sources the other way up, the crossing
of connections is avoided.

N1 N2

−
+U√

3
0

−
+U√

3
−4π
3

R

R

R −
+ N2

N1
· U√

3
−4π
3

−
+ N2

N1
· U√

3
0

R

R

R

In this case the load gets exactly the same voltages, currents and powers as without the open-circuit!

The answer is therefore the same as for part ‘b’: the source delivers

U2N2
2

3RN2
1

.

Reasoning: if we look at voltages between the pairs of line-conductors going to the load, two of these
are the voltages across transformer secondaries that still have the same voltage as in the balanced
case, because the primaries are still connected directly across phases of the source. The sum of these two
voltages appears between the remaining pair of line-conductors. As these voltage were part of a balanced
three-phase set, their sum equals the voltage that the now-missing transformer secondary would have
had. So in fact, the voltage seen by each phase of the load remains the same. The load power must
therefore be the same, and so the power supplied by the source must also, as the circuit has no other
component where power can be supplied or absorbed. (The power in each of the two remaining phases
of the source must increase so that each produces 50% more than before.)

2. If there is NOT a neutral from the source to the primaries:

Again, we remove the middle transformer, and one phase of the source thereby becomes disconnected.
This is shown on the left, after removal of open or disconnected components and connections. Without
the neutral at the primary side, the two remaining phases of the source are in series, connected across
the transformer primaries, which are also in series.

N1 N2

− +

U√
3
0

− +

U√
3

−4π
3

R

R

R

N1 N2−
+U −π

6

R

R

R
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The diagram on the right is after drawing some of the windings the other way up in order to simplify
the ‘nodal spaghetti’, and combining the two series sources into one, using the relation

U√
3
0− U√

3
−4π
3 = U −π

6 .

This is a standard relation, showing that the difference between two phase-voltages of a star-connected
source gives a line-voltage. The angle is not needed in this solution, but is included here for completeness.

By KCL on the primary side, the current into the dotted-end in the upper transformer must equal the
current out of the dot on the lower transformer. The transformers have the same ratio, so in view of the
equal-and-opposite primary currents, the transformer equation demands that the currents going into the
dots on the secondary side are likewise equal and opposite, but scaled by N1/N2. By KCL, the upper
and lower resistor carry these same currents, and the middle resistor carries twice this (both currents
together).

The transformer secondaries can be represented as in the below left figure, as voltage-sources where half
of the primary source voltage is transformed by N2/N1 on each secondary. Warning! – this replacement
of secondaries by voltage sources was rigorous in the previous case with the neutral conductor present,
because each primary was fed directly by a voltage source. In the present case, however, the simplified
circuit below is only valid because of the symmetry of the circuit on the secondary side. If the horizontal
resistors had different values, the primary voltage could divide non-evenly between the two primary
windings, so there would not be the simple factor 1

2 in each secondary voltage.

−
+1

2 · N2
N1

· U −π
6

R

−
+1

2 · N2
N1

· U −π
6

R

R
−
+1

2 · N2
N1

· U −π
6

R/2

R

As the points above the sources in the left diagram have the same potential, by symmetry, we could
combine the resistors in parallel to one such source, as shown on the right.

The complex power from the source, equal to the complex power to the resistors, is then

(

1
2
N2
N1

U
)2

3
2R

=
U2N2

2

6RN2
1

,

which is half as much as in the original balanced three-phase circuit or the case where one transformer-
winding is broken but a neutral connection is used from the sources to the primaries.

If the rather graphical-thinking solution above is not appealing, you could go back to the original diagram
that defines many voltages and currents, and study the case where the neutral is not present and one
winding is open so that for example i

2b
= 0.

Then write the knowledge of this circuit using the familiar rules, not worrying about specific three-phase
methods. For example, six transformer-equations relate the voltages and currents of the primary and
secondary windings. KVL on the primary side gives −uc + ua = −u1c + u1a . Nodal analysis on the
secondary side would define one node as a reference, e.g. the load’s star-point. Then algebra, rather than
the graphical thinking, can be used to get a solution.
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