
KTH, Electric Circuit Analysis, EI1120

Topic 03: Systematic methods Practice Exercises

This course may use your nodal analysis skills in two distinct ways:

1. As a step within solving a circuit.
The exams don’t usually require a specific method such as nodal analysis or source
transformation. Nodal analysis is often an efficient method when faced with a circuit
in which you don’t see any obviously better path to a solution.
Using simplifications and nodal analysis together is a very good idea, in order to reduce
the number of equations.

2. As a method for writing equations that describe a circuit.
In this type of case, it’s probably best to use what we’ve called the extended method,
where you don’t try any simplifications.
A traditional exam task in this course was “write equations that could be solved for v1, v2

etc, but you don’t need to solve them”. Some examples from old exams are linked below.
However, note that in Canvas-based exams there would not be exactly this task, although
there could be a task of stating which of several options is the correct one.

Both types of skill above should be practised, but particularly the use of nodal analyis to get a
solution. Here follows a suggestion of some exercises to do:

• First, the exercises on the following pages.
These provide some practice to get started with applying nodal analysis within circuit
solutions. Thus, it involves solving the equations, not just writing them.

• Other cases, even if not specifically about nodal analysis!
For many of the circuits that we’ve already seen in this course, nodal analysis would be a
good solution method. A few further exam questions where nodal analysis is useful – and
is suggested in the included solution (facit) – are the following:

2013-06˙EM˙omtenta Q1

2014-01˙IT˙tenta Q1b

2015-10˙IT˙omtenta Q1a finding power in R1

• Writing equations but not having to solve them.
The following past-exam questions are good examples of extended nodal analysis, with no
simplifications needed:

2013-01˙EM˙ks Q3

2014-01˙IT˙tenta Q2

2014-03˙EM˙tenta Q2

2014-05˙EM˙omtenta Q2

2015-03˙EM˙tenta Q2

Common errors are wrong signs in KCL equations, KCL at the wrong nodes, missing
a component from a KCL equation, and confusion about treating a dependent current
source as a dependent voltage source or vice versa!
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http://kurs.ets.kth.se/ei1120/exams/2013-06_EM_omtenta.pdf
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http://kurs.ets.kth.se/ei1120/exams/2015-10_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2013-01_EM_ks.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-01_IT_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-05_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_EM_tenta.pdf


Exercise 1

Use nodal analysis to find the voltage u in the following circuit.
You could check your answer by an alternative method: e.g. current division.

R1 = 5 Ω

R2 = 10 Ω

R3 = 20 Ω

+

−

uI = 5 A
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Answer 1

u = 14.29 V

In order to do nodal analysis, we mark a reference potential (earth). This could be any node.
It is good to choose one with many connections. We make the conventional choice here of the
bottom node.

Then node potentials must be defined. There are only two other nodes. We can initially try
plain nodal analysis without doing simplifications; in that case all the other nodes must have
potentials defined: let’s mark v1 and v2. In this case, the definition of u, and our chosen position
of the earth node, result in v2 = u.

R1 = 5 Ω

R2 = 10 Ω

R3 = 20 Ω

+

−

uI = 5 A

v1
(v2 = u)

The node equations are KCL at the two nodes. No other equations are needed – there are no
voltage sources or dependent sources.

KCL(1)out 0 =
v1

R1
+

v1 − v2

R2
− I

KCL(2)out 0 =
v2 − v1

R2
+

v2

R3

Since we only really want to find u, which is equal to v2, the obvious choice is to eliminate v1

from the above pair of equations. This gives

v2 = u =
R1R3I

R1 + R2 + R3
.

Substitution of the given values gives

v2 = u =
5 Ω · 20 Ω · 5 A

5 Ω + 10 Ω + 20 Ω
= 14.3 V.

* * * *

An alternative method is to treat R2 and R3 as a single branch (equivalent resistor) and find
just the potential v1, with a single equation. Then voltage division could be used to find u from
v1.

The KCL equation is simply

KCL(1)out 0 =
v1

R1
+

v1

R2 + R3
− I,
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from which

v1

(
1

R1
+

1

R2 + R3

)
= I,

and so

v1 =
IR1 (R2 + R3)

R1 + R2 + R3
.

Voltage division gives u =
R3

R2 + R3
v1.

By substituting the equation for v1 and rearranging,

u =
R1R3I

R1 + R2 + R3
.

That is the same answer as from the first method, but this way felt rather quicker.
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Exercise 2

Find the current i, by nodal analysis.

+
− U

R1

R2

i

I
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Answer 2

Task: find the current i.

Let’s set the bottom node to be the ground node. We only need to find the potential of the
node above resistor R2 in order to define i; we’ll call this potential v.

+
− U

R1

R2

i

I

v

If a complete KCL equation can be found at the node v, without introducing extra unknowns,
then v can be determined. This problem is the familiar type of case where there are several
branches between a marked node and ground: we just need to find the current in each branch
in terms of v, in order to write KCL.

KCL(v)out :
v − (−U)

R1
+

v

R2
− I = 0

v =
I − U

R1

1
R1

+ 1
R2

=
(IR1 − U)R2

R1 + R2

The sought quantity was actually i, not v.

Since i = − v
R2

, our final answer is

i =
U − IR1

R1 + R2
.
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Exercise 3

Find the value of the current source Is in the following circuit:

R1 = 3 Ω

−

+

u = 3 V

R2 = 2 Ω R5 = 1 Ω

Is

R4 = 4 Ω

R3 = 5 Ω

This is a backward question (‘design question’) where a component value needs to be found, in
order to give a desired value of some other quantity in the circuit.

It should be quite easy to check your answer by using a few steps of KCL and KVL to confirm
that the calculated current makes sense.

7



Answer 3

Is = 2 A

One of the component values (Is) is unknown, but a marked quantity (u = 3 V) is known. This
does not need to change how we write the nodal equations, although it will affect how we have
to rearrange them at the end.

There are several ways that this circuit could be quickly solved by simplifications before and/or
after nodal analysis, or even without formally thinking of nodal equations. Try finding some
ways. For example, nodal analysis between top and bottom (earth) of R3, with three simplified
branches.

Check! Having calculated Is = 2 A, let’s see if this fits with the desired u = 3 V. Notice that
R4 and R5 are irrelevant: the 2 A current comes out of the right branch regardless of their values,
and splits (divides) between the middle and left branches. These middle and left branches each
are equivalent to a 5 Ω resistance, so half of the current flows in each of them (current division:
it should become a habit to see that two equal branches means halving of the current). By
Ohm’s law, u = 3 Ω · 2 A

2 , which is 3 V. That fits with what we wanted.

Example (of an alternative non-nodal method). R4 and R5 are irrelevant because they are
in series with a current source: the complete branch of R4,Is,R5 behaves like a current source
Is towards the rest of the circuit. The series resistors R1 + R2 have equal resistance (5 Ω) to
the parallel-connected resistor R3, so current-division and Ohm’s law tells us that u

R1
= Is

2 , i.e.

Is = 2·3 V
3 Ω = 2 A.
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Exercise 4

Find the current i in the following circuit:

+
−U = 48 V

R1 = 10 Ω R2 = 5 Ω

R3 = 15 Ω

i

R4 = 20 Ω

R5 = 10 Ω
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Answer 4

i = 0.44 A

We’ll work on the principle of “use simplifications where possible, unless you have a computer
to do the algebra”!

If we mark an earth node and a single other potential v, as shown below, then we have a circuit
with just three branches between v and earth. Solving for v then allows i to be found easily by
Ohm’s law.

Why not another choice of node v — for example, above R3, to give an even simpler use of
Ohm’s law to find i? The reason is that there is then not such a simple way to write KCL: the
circuit to the left of this point does not have an obvious way of behaving as a single branch
(try!).

+
−U = 48 V

R1 = 10 Ω R2 = 5 Ω

R3 = 15 Ω

i

R4 = 20 Ω

R5 = 10 Ω

v

At node v, KCL gives

KCL(v)out :
v − U

R1 + R4
+

v

R5
+

v

R2 + R3
= 0

which gives v as

v =
U

(R1 + R4)
(

1
R1+R4

+ 1
R5

+ 1
R2+R3

)
We have to admit that this is expression is a bit nasty-looking; it can be manipulated further
to try to simplify it, but without great improvement. When actual values are available to us, it
can be worth including them to reduce the long expressions to single numbers. For example, in
the language format of Matlab or Octave,

U=48, R1=10, R2=5, R3=15, R4=20, R5=10
v = U / ( (R1+R4) * ( 1/(R1+R4) + 1/R5 + 1/(R2+R3) ) )

8.7273
i = v/(R2+R3)

0.43636

That is the solution for i, using the given numbers. You might have used a calculator instead.
Alternatively, if working symbolically, the expression for v would be substituted into i = v

R2+R3
.
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Exercise 5

The “component value” of the dependent source (CCVS) is defined here as h.

Write the KCL equation for the node marked v, in terms of the component values.

Now assume that v = 5 V: what must h be in this case?

+
−U = 10 V

R1 = 5 Ω R3 = 5 Ω

+
− hiR2 = 10 Ω

i

v
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Answer 5

h = 5 Ω

The controlling variable i can immediately be written as v
R2

.

By the supernode approach (or equivalently, by treating the circuit as three branches), one KCL
equation can be written,

KCL(v)out :
v − U

R1
+

v

R2
+

v − h v
R2

R3
= 0.

Rearranging,

vR1

(
1

R1
+

1

R2
+

1

R3
− h

R2R3

)
= U.

We know all values except h. Rearranging in terms of h,

h = R2R3

(
1

R1
+

1

R2
+

1

R3
− U

vR1

)

Substituting the given numbers,

U=10, R1=5, R2=10, R3=5, v=5

h = R2*R3 * ( 1/R1 + 1/R2 + 1/R3 - U/(v*R1) )
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Exercise 6

Find the marked voltage u.

[The values of all components are assumed, as usual, to be known. Notice that the current
source at the left (a dependent source: in fact a VCCS) has a component value of g, meaning
that its current is gu where u is the controlling variable.]

gu R1

+−

U

I R2

+

−

u
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Answer 6

Introduce names for the node potentials, and an earth node.

gu R1

+−

U

I R2

+

−

u

v1 v2

Let’s use the supernode approach. The top two nodes form one supernode. Their potentials are
related by v1 = v2 − U . Let’s choose v2 as the unknown: then we will write v2 − U instead of
v1. The marked voltage u that is the controlling variable for the VCCS can be defined easily in
terms of the other potentials: we see that u = v2.

We only have to write one KCL, for this supernode.

KCL(1,2)out 0 = −gv2 +
v2 − U

R1
+ I +

v2

R2
.

This can be solved for v2, and thus for the requested u,

u = v2 =
U − IR1

1 + R1
R2
− gR1

.
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The exercises after this page are not strongly recommended.
That is, unless you want extra challenge, it’s probably more efficient at this point to look at
some past exams (see front page).

Ex7 is more about power.

Ex8 and Ex9 are not well checked for their answers.

Ex10 is a little tedious for the algebra if you do it by hand.

See the first page about other sources of examples.
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Exercise 7

Find the current ir, the voltage ur, and all the powers in the following circuit:

+
−U1 = 2 V

R = 2 Ω

+ −
vr

ir

I2 = 3 A

+−

U2 = −3 V

I1 = 2 A

This is a case that can also be handled quite easily by direct use of KCL and KVL, without
following any particular nodal-analysis rules. But try starting with the supernode method, and
see how simple it becomes. Check your results.
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Answer 7

If we try the supernode method of nodal analysis, we find that all three nodes form one
supernode, because all nodes are linked through voltage-sources. If we define one node as earth,
then all potentials are known, because of the voltage sources. So this is a trivial case, but it’s
helpful for forcing us to mark the nodes and to make in the values of the voltages.

This voltage and current are already marked on the diagram,

ir = 2.5 A

vr = 5 V

For the powers, let’s calculate for each component the power into it from the circuit.

Pr = 12.5 W

PU1 = 5 W

PI1 = −4 W

PI2 = −15 W

PU2 = 1.5 W

Quick check: fortunately, these values sum to zero. They should, as they are the entire set of
components that deliver power to or consume power from the circuit; what goes in should also
go out.
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Exercise 8

Find the power delivered by source I.

+
−ku = 2u

R1 = 1 Ω R2 = 2 Ω

R3 = 3 ΩI = 3 A
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Answer 8

The power from source I can be found as v1I if we mark v1 and an earth node in the following
way:

+
−ku = 2u

R1 = 1 Ω R2 = 2 Ω

R3 = 3 ΩI = 3 A

v1 v2

One way:

KCL at v1:
v1 − kv2

R1
− I +

v1 − v2

R2
= 0.

KCL at v2:
v2 − v1

R2
+

v2

R3
= 0.

then substitute to solve v1.

Another way:

Make the right-hand branch into an equivalent:

KCL at v1:
v1 − kv2

R1
− I +

v1

R2 + R3
= 0.

Then solve for v1.
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Exercise 9

Find what value G the dependent source in this circuit must have in order to make the marked
voltage u be 12.5 V.

(It’s a “backward” question: find a component from a known marked quantity. The same
principle can be used: if you find an expression for u as a function of the component values,
then you can rearrange it to find one unknown component from a given marked value.)

+
−U = 125 V

R1 = 10 Ω
Gux

R3 = 5 Ω

R4 = 20 Ω

+−
u

R5 = 5 Ω

R2 = 10 Ω

+

−

ux
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Answer 9

G = 0.014 S.

One way of seeing this circuit is as three branches between the top and bottom nodes. We can
mark those nodes as potentials zero and a. (In this circuit, this value a is equal to the marked
ux, so we won’t really need to mark a or even decide on an earth node; but we do it in order to
follow the usual procedure instead of making a special case that might feel confusing.)

+
−U = 125 V

R1 = 10 Ω
Gux

R3 = 5 Ω

R4 = 20 Ω

+−
u

R5 = 5 Ω

R2 = 10 Ω

+

−

ux

a

The current in R4 is the same as from the dependent source Gux. Therefore, if we can find ux,
we can find u by Ohm’s law: u = R4Gux. The value u isn’t needed in the nodal analysis (it isn’t
a controlling variable, and we only need KCL at the node ‘a’). So we’ll start by just looking for
ux.

Bearing in mind a = ux, we can write KCL at a, simplifying the three outgoing branches where
possible, e.g. by realising that the current in R3 and R4 is independent of these resistors’ values.

ux − U

R1 + R5
+

ux
R2

+ Gux = 0.

Substituting ux = u
R4G

,

u

R4G(R1 + R5)
+

u

R2R4G
+

u

R4
− U

R1 + R5
= 0,

then rearranging for G,

G =

1
R4(R1+R5) + 1

R2R4

U
(R1+R5)u −

1
R4

=
1

R1+R5
+ 1

R2

UR4
(R1+R5)u − 1

=
1

10 Ω+5 Ω + 1
10 Ω

125 V·20 Ω
(10 Ω+5 Ω)·12.5 V − 1

=
1

74 Ω
' 0.014 S.

(The unit S is siemens: 1 S = 1 Ω−1. That is expected for the component-value of a VCCS, since
it it the ratio of the source’s output current to its controlling voltage.)
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Exercise 10

Find the value of Req in order for it to be equivalent to the set of 5 resistors shown in the left.

If it helps, assume some specific values of R1 = R4 = 2 Ω, R2 = R3 = 1 Ω and R5 = 3 Ω.

v0

v1 v2

v3

R
1 R 2

R 3
R
4

R5

−

+

u

i

−

+

u

i

Req =???

Would there have been an easier approach if R1 = R2 = R3 = R4 ?
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Answer 10

This is a problem where we want to find the relation between u and i.

A good approach is just to define one of these unknowns, then find the other as a function of
it. (One way to think of this, in a more physical way than just the equations, is “what if we
connect a voltage source across the terminals and measure the current” or “what if we connected
a current source and measure the voltage”.)

v0

v1 v2

v3

R
1 R 2

R 3
R
4

R5

−

+

u

i

Let’s take the first of those methods. We’ll do nodal analysis. Define the bottom node as earth:
hence v0 = 0. If we set a voltage u at the input, then v3 = u. There are just two unknown
potentials, v1 and v2. At these nodes, the KCL equations are:

v1

R1
+

v1 − u

R3
+

v1 − v2

R5
= 0

and
v2

R2
+

v2 − u

R4
+

v2 − v1

R5
= 0

We can solve the equations for v1 and v2, then calculate the current,

i =
u− v1

R3
+

u− v2

R4
.

But the solution is very messy with these symbolic variables. Cheating with a computer-algebra
program is a nice idea. We wouldn’t put questions like this in the exam: we don’t want to waste
lots of time on manipulation of simultaneous equations. The following is done in the Matlab
symbolic toolbox.

s= solve( 'v1/r1+(v1-u)/r3+(v1-v2)/r5=0', ...
'v2/r2+(v2-u)/r4+(v2-v1)/r5=0', ...
'R=u/((u-v1)/r3+(u-v2)/r4)', ...

'v1,v2,R')
simplify(s.R)

The unpleasant output from this is:

( r1*r2*r3 + r1*r2*r4 + r1*r2*r5 + r1*r3*r4 + r2*r3*r4
+ r1*r4*r5 + r2*r3*r5 + r3*r4*r5 ) /

( r1*r3 + r1*r4 + r2*r3 + r1*r5 + r2*r4 + r2*r5 + r3*r5 + r4*r5 )
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It’s certainly helpful to assume some specific values, such as R1 = R4 = 2 Ω, R2 = R3 = 1 Ω and
R5 = 3 Ω. That would make it much easier to solve the simultaneous equations above (try!).

But now that we’ve already done it the general, symbolic way, and got a long solution, we can
substitute the values,

r1=2, r4=2, r2=1, r3=1, r5=3
subs(s.R)

This gives a solution of Req = 1.44 Ω.

* * * *

Would there have been an easier approach if R1 = R2 = R3 = R4 ?
Yes! In fact, in any case where R4

R2
= R3

R1
, the solution is easy. In those cases, the two sides

form equal voltage-dividers. The horizontal resistor is therefore connected between points that
have identical potential, so no current flows in it: it can be ignored when analysing the circuit’s
behaviour when seen from the terminals1 In that case, the circuit is easy: it is two series branches,
and these branches are in parallel with each other. Hence, Req = (R1 + R3)||(R2 + R4), where
the || symbol means “parallel connection”, i.e.,

Req =
(R1 + R3)(R2 + R4)

R1 + R2 + R3 + R4
(with no R5).

We could also consider some special cases where one or more resistors become very much higher
or lower resistance than the others, so that the equivalent can be approximated by a simpler
method.

* * * *

Several other methods can be considered, beyond nodal analysis (or mesh analysis, which we
don’t study). Those that are included in this course are mainly in the topic on Circuit Theorems.
The star-mesh transformation (specifically, its simplest case of a wye-delta transformation)
would allow one set of three resistors to be replaced with an equivalent but differently connected
set, which could then be simplified in series or parallel with the other resistors. The Helmholtz
equivalents (e.g. Thevenin or Norton) would allow the two “voltage divider” sides to be modelled
as a sources: e.g. remove R5, then see points v1-v0 as a Thevenin equivalent, and similarly v2−v0,
then reconnect R5 between these equivalents to find the potentials in the real circuit.

1If the horizontal resistor R5 were not connected, then under the condition of equal-ratio voltage dividers at
both sides, the voltage between nodes 1 and 2 is v2 − v1 = 0. If we now connect R5 between these nodes, we
would not expect a current to start flowing in it, since there was no voltage there to push any current. With no
current flowing in that branch, it has no effect on the rest of the circuit, so there is no reason that its presence
would affect the potentials of the points it connects to; we can assume that the solution without R5 is the same
as the solution with R5.
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