
KTH, Electric Circuit Analysis, EI1120

Topic 06 Capacitor, Inductor, switches and steps Practice Exercises

This Topic is mainly about getting familiar with some new definitions and components.

Therefore – as with Topic 1 – there aren’t really any relevant exam questions to practise on,
except occasional lucky cases. Most of the related exam questions need further concepts from
later Topics.

Therefore, the following exercises and the tutorials and homework are the only practice provided
in the course literature. These should be sufficient: if you want more, you can find examples in
books.

The rest of “transients” (Topics 7 and 8) is mainly about sudden (“step”) changes happening in
circuits that contain capacitors and/or inductors, as well as the other components of independent
and dependent voltage and current sources, and resistors. These may be changes in the values of
components (typically independent sources), or changes in the circuit topology (reconnections).

In order to make these changes, we introduce the unit step function and time-dependent
switches. These are essentially simple concepts, but they may need some practice in order to
get confident with them.

The capacitor and inductor are new components in this Topic, and they are central in all the
remaining Topics. Some of the exercises are designed to reinforce the basic relations linking u
and i for these components; differentiation or integration are needed. Other exercises are about
handling series or parallel connection of capacitors or inductors, or calculating stored energy.
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Exercise 1 Unit step: time-shift, addition, negation, etc.

Sketch (draw: skissa) the following time-functions.

Remember: we use the notation that 1( ) is the unit-step function.

a) 1(t)

b) 1(2t)

c) 1(t− 2)

d) 1(−t)

e) 1− 1(t)

f) 2− 3 · 1(2− t)

g) 2 · 1(2t) + 1(5t)

h) −10 · 1(t+ 2) + 20 · 1(t− 3)
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Answer 1

−5 0 5

0
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1

(a)     1(t)

−5 0 5

0
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1

(b)     1(2*t)
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0
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(c)     1(t−2)
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0
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1

(d)     1(−t)

−5 0 5

0
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(e)     1 − 1(t)

−5 0 5

−1

0

1

2

(f)     2  −  3 * 1(2−t)

−5 0 5

0

1

2
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(g)     2 * 1(2*t)  +  1(5*t)
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−10

0
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(h)     −10 * 1(t+2)  +  20 * 1(t−3)
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Supplement to Answer 1:

You might be interested in a Matlab example, to show how we can automate plotting the results
for an arbitrary list of functions. The code that was used to produce the figure on the previous
page is shown below.

On the other hand, as you’re not learning Matlab just now, you’re probably not as interested
as other students in CENMI-̊ak2 who take a similar course . . .

t = -5:0.005:5; % a vector of time-points

ustep = @(t) double( t >= 0 ); % define a unit-step function "ustep"

% "cell-array" holding the question numbers and the equations (as text)
l = {

'a', 'ustep(t)'
'b', 'ustep(2*t)'
'c', 'ustep(t-2)'
'd', 'ustep(-t)'
'e', '1 - ustep(t)'
'f', '2 - 3 * ustep(2-t)'
'g', '2 * ustep(2*t) + ustep(5*t)'
'h', '-10 * ustep(t+2) + 20 * ustep(t-3)'

};

N = size(l,1); % number of rows in "l" (number of questions)
c = 2; r = ceil(N/c); % number of columns rows of plots
% for each question, plot the function in a new subplot in a single window
for n=1:N,

subplot(r,c,n); % set subplot number
eval(['ft = ', l{n,2}, ';']); % evaluate this function for all times
plot(t, ft, '.'); % show the function in this subplot
% set axis limits for this plot (gca is 'get current axes')
set(gca, 'xlim', [min(t),max(t)], 'ylim', [min(ft)-0.15,max(ft)+0.15]);
% make the subplot title out of question-number and function
% (we change "ustep" to "1" to fit with what we use in the typesetting)
title(sprintf('(%s) %s', l{n,1}, regexprep(l{n,2},'ustep','1')));

end

4



Exercise 2

Sketch a plot of u(t) against time, for the following circuit.
Include at least the range −5 s < t < 6 s.

+
−5 V · (2 + 1(−t))

R1 = 10 Ω t = 5 s

t = −4 s

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)
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Answer 2

+
−5 V · (2 + 1(−t))

R1 = 10 Ω t = 5 s

t = −4 s

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)
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There are three changes that happen in this circuit, at times −4 s, 0 s and 5 s. Each change is
in a different component: two switches and the source.

Our most reliable plan is to consider the four periods around these changes: i.e., before the
first change, then up to the second, then up to the third change, and after the third. In each of
these periods the circuit is a simple dc circuit like the ones we’ve been solving before. For extra
reliability we can draw each of the four situations (if we want a bigger mental challenge, we can
try doing it without the drawings).

When t < −4 s the left switch is closed, the right switch is open, and the source’s value is 15 V.
This is shown below. By voltage division, u = 15 V · R2

R1+R2
= 7.5 V.

+
−15 V

R1 = 10 Ω

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)
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When −4 s < t < 0 s the left switch is still closed, the right switch is now also closed, and
the source’s value is still 15 V. This is shown below. Now R2 and R3 are in parallel, with an
equivalent value of R2||R3 = R2R3

R2+R3
= 5 Ω. By voltage division, u = 15 V · R2||R3

R1+R2||R3
= 5 V.

+
−15 V

R1 = 10 Ω

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)

When 0 s < t < 5 s the left switch is still closed, the right switch is still closed, but the source’s
value is now 10 V. The circuit has therefore the same topology as above, but with a different
source-value. By voltage division, u = 10 V · R2||R3

R1+R2||R3
= 3.33 V.

+
−10 V

R1 = 10 Ω

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)

When 5 s < t the left switch is open, disconnecting the only source from the rest of the circuit.
The right switch is still closed, and the source’s value is still 10 V (but these make no difference
to the fact that there is no source to drive the circuit on the right of the open switch). There is
no voltage or current anywhere to the right of the open switch. Therefore, u = 0.
(If you want a formal proof, based on the circuit laws, then use KCL to show that the current
must be equal all around the loop of R2 and R3, and then KVL to show that the voltage drops
across the resistors, due to this current, must equal zero: assuming the resistances are positive,
the solution of KVL demands that the current is zero.)

+
−10 V

R1 = 10 Ω

R3 = 10 Ω

R2 = 10 Ω

+

−

u(t)
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Exercise 3

What are the equivalent values of these combinations of similar components?

Try first to answer without doing calculations: you can approximate (e.g. component x has much
greater value than component y) or use symmetries (these have the same value, therefore . . . ).

i
L1 = 15 H L2 = 0.01 H

ii

L1 = 15 H

L2 = 0.01 H

iii
C1 = 10 nF C2 = 10 µF

iv

C1 = 10 nF

C2 = 10 µF

v

L1 = 2 mH

L2 = 2 mH

vi

C1 = 2 mF

C2 = 2 mF
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Answer 3

i) The series 15 H and 0.01 H are approximately 15 H.
This is seen from the additive nature of series inductances, where Leq = L1 + L2.
Since L2 � L1, Leq ' L1.

ii) The parallel 15 H and 0.01 H are approximately 0.01 H.
Parallel inductors add reciprocally, i.e. Leq = L1L2

L1+L2
. The dominant one is therefore the smaller

one (the one that allows more rate-of-change of current for a given voltage).

iii) The series 10 nF and 10 µF are approximately 10 nF.
Series capacitances add reciprocally, i.e. Ceq = C1C2

C1+C2
.

The dominant one is therefore the smaller one.

iv) The parallel 10 nF and 10 µF are approximately 10 µF.
Parallel capacitors add to give the total capacitance, Ceq = C1 + C2.
In this case, C1 � C2 =⇒ Ceq ' C2. The dominant one is therefore the larger one.

v) The parallel 2 mH inductors are 1 mH.

vi) The parallel 2 mF capacitors are 4 mF.
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Exercise 4

Find the voltage u(t), as a time-function.

L

+ −
u(t)

i(t) = Î cos(ωt)
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Answer 4

L

+ −
u(t) = ωLÎ sin(ωt)

i(t) = Î cos(ωt)

The current source forces a current i(t) in the inductor. With the definition of u and i in this
circuit, the inductor’s relation of u and i is

u(t) = −Ldi(t)

dt
.

Note the negative sign, which arises because the current i is defined into the side of the inductor
where the voltage is defined as ‘−’. This is the same as with using Ohm’s law in a resistor.1

By differentiating the known time-function of current,

u(t) = −L d

dt
Î cos(ωt) = −LÎω(− sin(ωt)) = ωLÎ sin(ωt).

1One way to remember or confirm the correct relative directions is to consider that Ohm’s law is about a
resistor ‘resisting’ the flow of current by having a voltage that requires the circuit outside to do work to push
current through the resistor; in an inductor, Lenz’s law says that there will be a voltage to oppose the change in
current.
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Exercise 5

Find current i(t).

C = 10 nF

+
− u(t) =

√
2 · 230 V sin(2π · 50 Hz · t)

i(t)
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Answer 5

C = 10 nF

+
− u(t) =

√
2 · 230 V · sin(2π · 50 Hz · t)

i(t) = 1.02 mA · cos(314.2t)

The capacitor’s current and voltage are related by

i(t) = C
du(t)

dt
.

(This is based on the usual assumption that the current i is defined into the terminal where the
voltage u has its + definition. If this is not the case, a negative sign would be needed. This is
just the same as when writing Ohm’s law.)

In our case,

i(t) =
√

2 · 230 V · 10 nF · d

dt
sin(2π · 50 Hz · t) =

√
2 · 230 V · 2π · 50 Hz · 10 nF · cos(2π · 50 Hz · t).

We might like to simplify the numbers to

i(t) = 1.02 mA · cos(314.2t).

(Why the choice of numbers? The 50 Hz is a common frequency for land-based electric power
systems. The standard ‘low-voltage’ supply in Europe is 230 V, but this describes a sinusoidal
alternating current: the peak voltage of this sinusoid is

√
2 times the declared value. The declared

value is called an ‘rms’ value, for reasons that should become clearer in the ac part of the course.)
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Exercise 6

Find i(t) in the following circuit. Assume that the current in the inductor is zero at time t = 0.

C L

+
− u(t) = Û cos(ωt)

i(t)
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Answer 6

C

i1(t)

L

i2(t)

+
− u(t) = Û cos(ωt)

i(t)

This circuit has three components in parallel. One is a voltage source, so it determines the
voltage across each of the others. In this way, the inductor and capacitor are independent: each
sees just a fixed voltage, regardless of what the other is doing (principle of irrelevance). It is
therefore easier than it might look to find the solution.

The capacitor’s u-i relation is defined as i1(t) = C du(t)
dt . Calculating this, with the given function

for u(t), we get

i1(t) = C
du(t)

dt
= −ÛωC sin(ωt).

The inductor’s relation is u(t) = Ldi2(t)
dt . That’s a pity. We wanted to find current, from a

known voltage, not the other way around. Of course, we can re-arrange the equation, but it
then becomes an integral.2 In our ideal case, we should, strictly, consider the integration constant
(initial current).

i2(t) =
1

L

∫
u(t) dt =

Û

ωL
sin(ωt) + iinit.

This equation defines a current that is a sinusoid plus a constant. The value of i2 is specified
at one time, in the question: i2(0) = 0. This can be used to find the integration constant, iinit.

At this given time, t = 0, the equation for i2(t) becomes i2(0) = Û
ωL sin(ωt) + iinit, and because

sin(0) = 0, this implies 0 + iinit = 0.

The total current i(t) can then be written as

i(t) = i1(t) + i2(t) =
Û

ωL
sin(ωt)− ÛωC sin(ωt) = Û

(
1

ωL
− ωC

)
sin(ωt).

2Why don’t we like integrals? In general they can be more work than derivatives (needing educated guesses:
but this case is simple – we can handle a cosine!); more importantly, they introduce the ‘integration constant’.
That’s not just an annoying feature of the maths: it’s an unavoidable physical feature of this situation. If an
inductor has been connected to a voltage source, the current in the inductor has been changed by an amount
that depends on the source’s voltage during this time, and so the actual value of current depends on this change
and current that it had at the start. In real circuits there will surely be some resistance, and any initial value
of current will gradually decay to zero. (Sometimes it is nevertheless necessary to consider initial currents in
inductors, or voltages on capacitors, in circuits where we care about the values shortly after making a change.)
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Exercise 7

Find ic(t) and il(t) in the following circuit, for t ≥ 0. Assume that il(0) = 0.

(You don’t need to consider what has happened before t = 0; this initial condition gives all the
information that is needed about the circuit, to solve for times starting at 0.)

+
− U

τ t L

il

C

ic
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Answer 7

+
− u(t) = U

τ t L

il

C

ic

(This is basically the same as the question about a cosine voltage source with parallel C and
L. The only difference is the time-function of the source, and the requirement to answer with
the two currents separately.)

The time-function is a ramp: the voltage is increasing at a constant rate, given by U/τ . The
initial condition of the inductor current is given. By the equations for current and voltage in a
capacitor and inductor,

ic(t) = C
du(t)

dt
= C

d

dt

U t

τ
= CU/τ

il(t) =
1

L

∫
u(t)dt =

1

L

∫
U

τ
t dt =

U

τL

t2

2
+ iinit.

Given that il(0) = 0 = U
τL

02

2 + iinit, we see that iinit = 0. Hence,

ic(t) = CU/τ

il(t) =
U

τL

t2

2
.

Regarding these two currents, what can be said about their shape and the difference between
them? The capacitor’s current is constant: the voltage rises at a constant rate, so a fixed amount
of extra charge flows into the capacitor in each unit of time. The inductor’s current rises at a
faster and faster rate! Even a constant voltage would push the inductor’s current to keep rising,
so an increasing voltage makes it rise with increasing speed. This circuit could be a good model
for a real circuit over some short timescale, but it is not something that could happen for a
very long time! In reality, other effects, such as resistance in wires and inideality of the sources,
would soon become significant, resulting in different equations.
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Exercise 8

Find uc(t) and ul(t) in the following circuit.
Assume that at time t = 0, uc(t) = u0, where u0 is a known value.

i(t) = Î cos(ωt)

L1

C1

L2

+

−

ul

C2

+

−
uc
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Answer 8

i(t) = Î cos(ωt)

L1

C1

L2

+

−

ul

C2

+

−
uc

This probably looks nastier than it really is. The two capacitors are in parallel: they can therefore
be replaced with an equivalent, C = C1 +C2. The two inductors are also in parallel, and so can
also be replaced by an equivalent, L = L1L2

L1+L2
. The circuit is then reduced to a series connection

of the source i(t) with an inductor L and capacitor C.

i(t) = Î cos(ωt)

L

+ −
ul

C

+ −
uc

The series connection ensures that the source’s current is flowing in each of the components.
Thus, the voltages across the components can be calculated separately: each L or C component
is irrelevant to what happens in the other one.3 Taking the relations of current and voltage for
the capacitor and inductor, the voltages can be found.

ul = L
di(t)

dt
= L

d

dt
Î cos(ωt) = −ÎωL sin(ωt)

uc =
1

C

∫
Î cos(ωt)dt =

Î

ωC
sin(ωt) + u?

Given the information that uc(0) = u0, we can find the constant u?, by equating

uc(0) = u0 =
Î

ωC
sin(ω0) + u? = 0 + u?

from which u? = u0.

It is also necessary to replace L and C (which we defined) with the given quantities L1 etc.
After these substitutions, the answers can be given as

ul = −Îω L1L2

L1 + L2
sin(ωt)

uc =
Î

ω(C1 + C2)
sin(ωt) + u0

(This is a ‘dual’ of other exercises that had parallel L and C components and a voltage source.
The equations are similar, if i and u, L and C, parallel and series, etc, are swapped.)

3This would not be true if the components were in parallel, connected to a current source, or in series, connected
to a voltage source. Those cases would lead to interaction between the components’ voltages or currents, leading
to second-order differential equations. We’re carefully avoiding such cases at this stage!
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Exercise 9

For each of these four circuits, i – iv, find how many times more energy is stored in component
1 than in component 2 (this ratio might be < 1). E.g. in circuit ‘i’, if WLx is the energy in
inductor x, then the sought ratio is WL1/WL2 .

i

L1 = 10 mH L2 = 1 mH

I = 1 mA

ii

C1 = 1 µF

C2 = 10 µF

+
−U = 12 V

In the second pair of circuits (diagrams below), it might not be so obvious what each component’s
voltage or current are. With similar types of component, like two inductors, you can use the
same principle as voltage or current division in resistors (you might be able to derive this by
considering KCL and KVL and the relations of i and u for the components). Remember that
capacitances in series or parallel add like conductances, not resistances.

In both circuits, iii and iv, you can assume that the circuit started with the source set to zero,
and no energy in the capacitors or inductors; then the source was increased to the stated value
(does this really matter? did it matter in the previous circuits?).

iii

C1 = 50 nF C2 = 5 nF+
−U = 500 V

iv

L1 = 0.1 H

L2 = 1 H

I = 5 A
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Answer 9

The source-value (voltage or current) is not relevant to the answer in any of these circuits: only
the ratio of energies was requested, and the energies in both components vary in the same way
with the source value. For the sake of practice, we’ll do some calculations of the energies in the
separate components, with the given source values, as well as the requested ratios.

i) The energy in an inductor L carrying current i is 1
2Li

2. The same current I = 1 mA flows in
both inductors, L1 and L2. The ratio of their energies is thus just the ratio of their inductances,

WL1

WL2

=
1/2 · L1I

2

1/2 · L2I2
=
L1

L2
=

10 mH

1 mH
= 10

The actual values of energy are WL1 = 5 nJ and WL2 = 0.5 nJ.

ii) The energy in a capacitor C that has a voltage u is 1
2Cu

2. The same voltage U = 12 V is
across both capacitors, C1 and C2. The ratio of their energies is the ratio of the capacitances.

WC1

WC2

=
1/2 · C1U

2

1/2 · C2U2
=
C1

C2
=

1 µF

10 µF
=

1

10
.

The actual values of energy are WC1 = 72 µJ and WC2 = 720 µJ.

iii) This is trickier, as the voltage across each capacitor needs to be found in order to calculate
the energy. Define the voltages as u1 and u2 on C1 and C2 respectively. The capacitors are in
series: while they have been in this circuit, both have experienced the same current, so their
charge has changed by the same amount, which we can call q.

Given that the capacitors started with no charge when the source was 0 V (an important piece of
information), we can calculate how much charge must have passed in order to charge the series
pair to the source’s present value U .

U = u1 + u2 =
q

C1
+

q

C2
=⇒ q = U

C1C2

C1 + C2

Not surprisingly, expression is quite similar to the equivalent capacitance of series-connected
capacitors: we are charging a series-connected pair.

From this charge, the voltage on each capacitor can be found, and the stored energy calculated.
On C1,

WC1 =
1

2
C1u

2
1 =

1

2
C1

(
q

C1

)2

=
1

2
C1

(
1

C1
U

C1C2

C1 + C2

)2

=
C1

2

(
UC2

C1 + C2

)2

.

The same expression is expected for WC2 , after swapping all the {1,2} subscripts. The ratio of
energies is then

WC1

WC2

=
C1

2

(
UC2

C1 + C2

)2/C2

2

(
UC1

C1 + C2

)2

=
C2

C1
=

5 nF

50 nF
=

1

10
.

Notice that this is the opposite way up compared to the earlier case: here, a smaller capacitor
will store more energy than a bigger one, when they are in series. That’s because the energy is
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proportional to the capacitance but also to the square of the voltage; and the voltage is inversely
proportional to the capacitance.

The actual values of energy are WC1 = 51.7 µJ and WC1 = 517 µJ.

iv) This is the dual case of ‘iii)’. A difference is that we don’t have a convenient name, with
obvious meaning, to give to the time-integral of voltage (the time-integral of current is charge).

Again, the initial conditions were zero. Let’s define the voltage across the inductors as u. The
current in inductor ‘x’ is then given by ix(t1) = 1/Lx

∫ t1
t0
udt, where t0 is the time when the

source started to increase from zero, and t1 is the time when the source reached its final value
I. The parallel connection of the inductors ensures that the integral of voltage is the same for
both: therefore,

I = i1(t1) + i2(t1) =

(
1

L1
+

1

L2

) ∫ t1

t0

udt =⇒ f = I
L1L2

L1 + L2
,

where f is the integral of voltage, which can be eliminated later as was done with charge in the
previous question.

The current in each inductor can then be found, and thereby its energy. For inductor L1,

WL1 =
1

2
L1i

2
1 =

1

2
L1

(
f

L1

)2

=
1

2
L1

(
1

L1
I
L1L2

L1 + L2

)2

=
L1

2

(
IL2

L1 + L2

)2

.

The ratio of energies is then
WL1

WL2

=
L2

L1
=

1 H

0.1 H
= 10.

The actual values of energy are WL1 = 1.03 J and WL1 = 0.103 J.
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Exercise 10

What can you say about the energy stored in each of the four L or C components shown here?

i

L1 = 10 mH L2 = 1 mH
+
−U = 100 V

ii

C1 = 1 µF

C2 = 10 µF

I = 2 µA
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Answer 10

“What can you say about the energy stored in each of the four L or C components?”

i

L1 = 10 mH L2 = 1 mH
+
−U = 100 V

ii

C1 = 1 µF

C2 = 10 µF

I = 2 µA

Answer: not much, except that after a “sufficiently long time” the energies will all be increasing,
and will never stop increasing (in this idealised circuit).

Notice that the energy depends on the continuous variable in the component, meaning the
variable that cannot have step-changes, i.e. the current in the inductor, or the voltage on the
capacitor.4 In other questions we have been able to determine the value of the continuous
variable, because the sources have defined it directly: e.g. we saw a current-source connected to
the inductors.

But in this question, the sources define the other variable, which does not directly relate to
stored energy: this is the inductor voltage or capacitor current. The energy can be found by
integrating this variable to find the continuous variable. This is shown, for a capacitor then
for an inductor, in the following equations. We can think of the time t0 as being when the
component started to be in the circuit, at which point the continuous variable was known; then
we find the continuous variable at a time t by integrating the other variable between t0 and t.

u(t) = u(t0) +
1

C

∫ t

t0

i(x) dx

i(t) = i(t0) +
1

L

∫ t

t0

u(x) dx

The sources in our case have constant value. Hence, the integration gives just a constant increase.
Can we not then say that the energy is always increasing, even at the start? No, because we
don’t know the initial value of the continuous variable. For example, if a capacitor started with
a very negative voltage, and the current in the circuit caused this voltage to keep increase, then
the voltage would pass through zero: in that case, the stored energy would have been high at
the start, then decreasing, reaching zero when the voltage is zero, and then going up again as
the voltage continues rising.

What’s the point of this not-very-numeric question? It is hoped to induce more thought about
the continuous and non-continuous variables, and about how the difficulty of the questions
depends a lot on the type of source.

4These variables are the continuous ones exactly because they are associated with stored energy: it takes time
to transfer energy between the component and the circuit in order to change these variables.
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Exercise 11

Determine ix(t).

+
− Û cos(ωt)

C

R

Î sin(ωt)

ix(t)
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Answer 11 (this is from IT-program exam 2015-10, Q4)

The solution is
ix(t) =

(
Î − ωCÛ

)
sin(ωt).

It might help to re-draw the circuit, to make clear that the two sides are independent of each
other: they are two loops, with the bottom node as a common node, and the marked ix(t) is
the sum of the currents in these two loops.

Î sin(ωt)

R

+
− Û cos(ωt)

C

ix(t)

The two branches (R and C) can be analysed independently.

The resistor is in series with the current source, so its current is already determined as

iR = Î sin(ωt),

and the resistance R is not relevant to this current.

The capacitor has a voltage Û cos(ωt) across it, which determines its current,

iC = C
du

dt
= ωCU(− sin(ωt)) = −ωCU sin(ωt).

Since these two currents both are a constant multiplied by a sin(ωt) function, their sum is easily
written. This sum is the solution, as both currents return via the marked point of ix.
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Exercise 12

Find i(t). Assume that at time t = 0 the current in the inductor is zero.

+−
U2(t) = Û sin(5ωt)

+−

U1(t) = Û cos(ωt)

C

i(t)

L

You probably feel you have not yet had enough background to be able to solve this situation,
where there are multiple sources with different frequencies.

But you can: think superposition! It’s true for linear systems, regardless of whether we’re doing
dc, transient or ac analysis. You can calculate the result for each source separately, then add
them.

Notice also that the capacitor and inductor currents (when the same voltage is across both
components, as in this parallel connection) are 180° apart, so the sine or cosine terms are easily
added.
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Answer 12

The capacitor and inductor are independent: KVL determines that their voltage is determined
only by the voltage sources. Their currents can therefore be calculated separately and added by
KCL to find i(t).

To use superposition we find a result for each source, with the other set to zero (short-circuited
in this case).

There are thus four calculations to consider: current in each component { inductor , capacitor
} due to each source { U1(t) , U2(t) } acting alone.

Source 1 active, Source 2 zeroed.

In this superposition case, the capacitor has a voltage u(t) = U1(t) = Û cos (ωt) at its upper
node relative to its lower node. The current downwards through the capacitor is therefore

i
C(1)

(t) = C
du(t)

dt
= −ωCÛ sin (ωt).

As this was based on a derivative (not an integral) there is no unknown constant.

The inductor has the same voltage, as it’s in parallel with the capacitor.
Its current (downwards) can be expressed as

di
L(1)

(t)

dt
=

1

L
u(t)

which is less easily solved, because the inductor’s continuous variable (current) is dependent on
the history of what the source (voltage) did to it: an integral is needed,∫

di
L(1)

(t)

dt
dt =

∫
1

L
u(t)dt

i
L(1)

(t) =
1

L

∫
u(t)dt =

Û

L

∫
cos (ωt)dt =

Û

ωL
sin (ωt) + k1

We were given an initial condition from which the integration constant can be found: but we
need to do this with both superposition cases combined, so we leave an unknown k1 for the
moment.

Source 1 active, Source 2 zeroed.

A similiar procedure to the previous case can be followed, but noting that the frequency of
Source 2 is 5 times as high (substitute 5ω instead of ω) and the voltage is now defined in the
opposite direction and is based on a sine instead of a cosine. The voltage u(t) at top relative to
bottom of the capacitor is now u(t) = −Û sin(5ωt).

i
C(2)

(t) = C
du(t)

dt
= −5ωCÛ cos (5ωt)

i
L(2)

(t) =
1

L

∫
u(t)dt =

Û

L

∫
cos (5ωt)dt =

Û

5ωL
cos (5ωt) + k2
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Combine the superposition states.

The sought quantity i(t) is the sum of the four currents calculated above: superposition sums the
currents due to the different independent sources, and KCL sums the currents of the capacitor
and inductor.

i(t) = −ωÛC sin (ωt) +
Û

ωL
sin (ωt) + k1 − 5ωÛC cos (5ωt) +

Û

5ωL
cos (5ωt) + k2.

Let us now find the constant term, k1 + k2. The inductor current alone is

iL(t) =
Û

ωL
sin (ωt) +

Û

5ωL
cos (5ωt) + k1 + k2,

and we know from the given initial condition, at t = 0, that

iL(0) = 0 =
Û

ωL
sin 0 +

Û

5ωL
cos 0 + k1 + k2 =

Û

5ωL
+ k1 + k2, ∴ k1 + k2 = − Û

5ωL
.

Substituting this for k1 + k2 in the expression for i(t), and rearranging,

i(t) = Û

((
1

ωL
− ωC

)
sin (ωt) +

(
1

5ωL
− 5ωC

)
cos (5ωt)− 1

5ωL

)
.
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