
KTH, Electric Circuit Analysis, EI1120

Topic 08 Time functions Practice Exercises

Suggestion for Study:

Study the notes or chapter as a reminder of the main approaches to finding the time-function.

For an easier warm-up, you could try deriving the results found in Section 5 (pages 6&7) of the
“chapter” file for this topic. These are the time-functions for different combinations of Thevenin
or Norton source connected to a capacitor or inductor. Even if you’ve seen them derived already,
it can be educational to do it independently!

There are lots of old exam questions that are relevant, some of which are linked below. These
are the best guide to the typical level of question. You should certainly practise on plenty of
these.

The exercises on the following pages in this file are not specifically easier or harder than the
old exam questions. They’re perhaps a bit more thoroughly described, and some are numeric.
So you should choose for yourself whether you think they are useful to do also.
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Exercise 1

Find i(t) for t > t0 in the following circuit.

(Assume equilibrium before t0: this is the reasonable choice even if it’s not stated, as we are not
told that the circuit has any earlier changes before t0.)

For variation, this problem has the time of the change being called t = t0 instead of being
defined as t = 0. This is to remind us that changes don’t always have to happen at whatever
time we’ve defined to be zero! We can treat the solution in just the same way, but the solution

will have a time-dependence of e−
t−t0
τ instead of e−

t
τ .

t = t0

R1

L

iL(t)

R2

i(t)

I

+−

U
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Answer 1

At t > t0, U and R1 are irrelevant to i(t) as they are in series with a current source.

For t > t0 we have:

I L

iL(t)

R2

i(t)

As t→∞, we expect iL(∞) = −I and i(∞) = 0 by equilibrium.

The time constant is L
R2

(notice that the above circuit is a Norton source with an inductor
connected: IN = I and RN = R2).

Let’s start by finding the continuous variable iL(t). The initial value, iL(t0) cannot be found
from the circuit above. We need the circuit from before t0. For t < t0 we have:

R1

L

iL(t)

R2

i(t)

+−

U

This, by equilibrium and continuity, shows that iL(t+0 ) = iL(t−0 ) = −U
R1

.

The time function iL(t) is then

iL(t) = −I +

(
−U
R1

+ I

)
e
− (t−t0)

L
R2 ,

so the time function i(t) is

i(t) = −I − iL(t) = −I + I +

(
U

R1
− I

)
e
− (t−t0)

L
R2 .
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Exercise 2

Find u(t) and i(t) in the following circuit at:
t = 0−

t = 0+

t =∞
t = 15 ms

L = 100 mH

+

−

u(t)

i(t)

R1 = 6 Ω

t = 0 +
− U = 24 V

R2 = 6 Ω
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Answer 2

At t = 0−:

Equilibrium =⇒ di
dt = 0,

u(t) = 0 V

i(t) =
−U

R1 +R2
= −2 A

At t = 0+:

i(t) = −2 A by continuity

by KVL, left loop u(t) = −i(0+)R1 = −(−2 A) · 6 Ω = 12 V

At t =∞:

KVL, Ohm’s law, equilibrium =⇒ u(t) = 0 V.
Equilibrium with zero voltage =⇒ i(t) = 0 A.

At t = 15 ms:

This time of t = 15 ms is not one of the special cases of an equilibrium or ‘just after’ an
equilibrium is disturbed. We need to consider how the quantities have changed since the known
state at t = 0+.

For the period t > 0 we know already the initial value (t = 0+) and final value (t→∞) of u(t)
and i(t).

By also determining the time-constant, we can find the complete expressions for these quantities
during t > 0, and evaluate these at the requested time. In the circuit with the switch closed,
the left loop is independent of the right loop; the inductor ‘sees’ a Thevenin equivalent of zero
volts and with resistance of R1. Thus,

τ =
L

R1
=

100 mH

6 Ω
' 15 ms

From this, u(t) = u(0+) e−t/τ and i(t) = i(0+) e−t/τ . These are simple expressions because the
final values are zero. We evaluate them with the previously found values of u(0+) and i(0+), at
t = 15 ms. Notice that this time was chosen equal to the time-constant, so t/τ = 1.

u(15 ms) = e−1 · 12 V ' 4.4 V

i(15 ms) ' −2 A · e−1 = −0.74 A
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Exercise 3

Find u(t) and i(t) for t > 0 in the following circuit:

I = 1 A t = 0

R1 = 10 Ωi(t)

C = 133 mF

+

−

u(t) R2 = 30 Ω
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Answer 3

Equilibrium is u(0−) = −IR2 = −30 V.

Continuity =⇒ u(0+) = −30 V.

Final value u(∞) = 0 V.

Time constant when t > 0 is C R1R2
R1+R2

= 7.5 Ω · 133 mF = 1 s.

So: u(t) = −30 V · e
−t
1 s , i(t) = u(t)

10 Ω = −3 A · e
−t
1 s
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Exercise 4

Find u(t) and i(t) for t > 0 in this circuit.

I = 6 A

t = 0

Ro = 2 Ω

L = 1 H

+

−

u(t)

R1 = 2 Ω

i(t)

R2 = 2 Ω
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Answer 4

At t > 0, the circuit is:

I = 6 A

L = 1 H

+

−

u(t)

R1 = 2 Ω

iL(t)

i(t)

R2 = 2 Ω

Let’s solve for the inductor’s current, then find other quantities from there. Try the “intuitive”
method with a Thevenin equivalent. The inductor sees a Thevenin source:

+
−UT

RT

L = 1 H

iL(t)

where

UT = −IR2 = −12 V

RT = R1 +R2 = 4 Ω

The time constant is L
R

T
= 0.25 s

The final value (equilibrium) of inductor current, iL(∞), is
U
T

R
T

= −3 A.

We can check this by current division in the original circuit!

The initial value cannot be found from the t > 0 state of the circuit or its Thevenin equivalent:
it depends on what energy was stored in the inductor before the change happened, so it has to
be calculated from the circuit before that change, i.e. t = 0−.

At that time, current-division between three similar resistors gives iL(0−) = −6 A · 1
3 = −2 A.

By continuity, iL(0+) = iL(0−).

Now we know the initial value, time-constant and final value, for iL(t).

• From the above, iL(t) = −3 A + 1 A · e
−t

0.25 s .

• Then u(t) = L
di

L
dt = −1 A·1 H

0.25 s · e
−t

0.25 s = −4 V · e
−t

0.25 s ,

• and i(t) = −I − iL(t) = −6 A + 3 A−1 A · e
−t

0.25 s = −3 A−1 A · e
−t

0.25 s .
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Exercise 5

A question in two parts:
a) the familiar principle of finding a time-function after disturbing an equilibrium,
b) a further change, before a new equilibrium has been reached.

a) Find uc(t) for t > 0.

RI

I

Rc

C

+

−
uc

ic

Rs

RU +
− U · 1(t)

b) A ‘Sequential switching’ exercise.

This type of problem, with a change happening before equilibrium is reached, won’t be asked
in the exams (at least 2015, when this is written!). However, it is only a new combination of
principles that you are supposed to know, so it may be useful and interesting practice.

Now we take the same circuit, but connect also a switch in parallel with Rs, closing at time
t = T .1

RI

I

Rc

C

+

−
uc

ic

Rs

RU

t = T

+
− U · 1(t)

We’ll assume T is positive, i.e. this switch changes after the step-function of the voltage source.

The question, again, is: find uc(t) for t > 0.

1Note that this switching is equivalent to changing Rs to be 1(t− T ) ·Rs.
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This is a “sequential switching” type of problem.
First there was equilibrium (t < 0).
Then it was disturbed by a step function at t = 0.
And then a switch at t = T disturbs the circuit again, before a new equilibrium is reached.

That is an important difference: it means we cannot use the equilibrium method (open-circuit
capacitors, short-circuit inductors) to calculate the state at t = T−, and we therefore can’t use
just equilibrium+continuity to find quantities at t = T+. How can we find the initial conditions,
then?

We can still solve the circuit for all t > 0. But the differential equation from part ‘a)’ will
be needed. One reason is that it tells us uc(t) for the period where our solution is valid: that
is when 0 < t < T . Another reason is that this equation’s value at t = T− allows us, by
continuity, to know the initial condition uc(T

+) just after the switch closes. Then we can find
a new differential equation solution for the circuit at times t > T , after this second change in
the circuit.

You have to handle the switching event by using the time-function from ‘a)’ to calculate the
capacitor’s state at time t = T−; that is because you cannot assume equilibrium at t = T−,
since T may be a significantly long time compared to the circuit’s time-constant. Then, use
continuity in the usual way, to say that uc(T

+) = uc(T
−). Then you simply use this as a new

initial value, and find the time-constant of the new circuit (after the switching), to find the
time-function that is valid for t > T .

The final result will be the function from part ‘a)’, which is valid for 0 < t < T , and the new
function found here in part ‘b)’, valid T < t. As usual, we needn’t bother about defining what
happens exactly at t = T or t = 0.
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Answer 5

a)

The only thing about the circuit that changes is the voltage source, which is zero before t = 0
and constant U afterwards.

In order to find what is happening at the start of our function, uc(0
+), we need to know the

voltage on the capacitor . . . which depends on charge . . . and is the continuous variable . . . and
therefore is the same as before the change: uc(0

+) = uc(0
−).

Let’s start by removing the components RU and RI, which cannot have any effect on the
capacitor, due to being “hidden” by voltage or current sources.

Then we have the following diagram, which still is a correct description of what is “seen” by
the capacitor at all times (before and after 0).

I

Rc

C

+

−
uc

ic

Rs

+
− U · 1(t)

At t = 0− the circuit has had constant inputs for “a very long time”: this is therefore an
equilibrium situation with constant values of all voltages and currents.2

So the equilibrium voltage uc(0
−) can be found by replacing C with an open circuit, and the

voltage source with a short circuit because U · 1(0−) = 0.

I

Rc

(C)

+

−
uc

Rs

In this circuit, all the current I passes through Rs, so the voltage across the branch of Rc and
C must have magnitude IRs. As no current flows in C, Ohms law gives Rc = 0. Therefore,
taking into account the directions of definitions, uc(0

−) = −IRs, and thus uc(0
+) = −IRs by

continuity.

When the voltage source changes, it is clearly helpful to replace everything except the capacitor
with a “two terminal equivalent”.

2The existence of this equilibrium depends on certain conditions, e.g. not having the classic “voltage source
parallel with inductor”; we can check these, but we also have a promise [this year] only to have well-behaved
cases in exams.
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I

Rc

+

−

uab

Rs

+
− U

+
−UT

RT

+

−

uab

By node analysis or simply KVL in the only loop (with open-circuit instead of the capacitor),
UT = −U − IRs. This can be seen from the voltage across U and Rs when no current flows in
Rc. By “setting the independent sources to zero” we find that RT = Rc +Rs. The more general
method of finding open-circuit voltage and short circuit current is not needed, as we have no
dependent source.

The resulting circuit is a simple series RC circuit. The differential equation is

RC
duc(t)

dt
+ uc(t) = UT

by KVL, where C duc(t)
dt is the current in the loop.

+
−UT

RT

C

+

−
uc(t)

This has the general solution uc(t) = UT + ke−t/τ , where τ = CRT.

From our earlier knowledge of the initial conditions,

uc(0
+) = −IRs = UT + ke0 = −U − IRs + k,

and therefore k = U . This gives the function

uc(t) = −U − IRs + Ue−t/τ ,

so
uc(t) = −IRs − U

(
1− e−t/τ

)
.

b)

This is the same circuit as in ‘a)’, but now a switch shorts out Rs at t = T , which is equivalent
to changing Rs to be 1(t− T ) ·Rs).

Before time T there is no difference from ‘a)’. So we can use the solution from ‘a)’ to find uc(t)
in the period 0 ≤ t < T .
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Also — importantly — we can use that equation the capacitor’s voltage at t = T−. That is the
continuous variable, so the value will be true also at t = T+. It gives us the initial condition for
a new equation that will be valid for the changed circuit after the switch closes (t > T ).

From the solution to ‘a)’, uc(T
−) = −IRs − U

(
1− e−T/τ

)
.

The new circuit is simpler when t > T , because the voltage source is now parallel with the other
two branches: the current source therefore becomes irrelevant, and the Thevenin equivalent
becomes the following.

+
−UT = −U

RT = Rc

C

+

−
uc(t)

This time let’s use the idea of initial and final values and time-constant, to find the function
uc(t) for t ≥ T .

The initial value is uc(T
+) = −IRs − U

(
1− e−T/τ

)
, by continuity.

The final value is uc(∞) = UT = −U .

The new time-constant is τ ′ = CRc.

The function valid after T is therefore

uc(t) = −U +
(
−IRs − U

(
1− e−T/τ

)
+ U

)
e−t/τ

′
(t > T ).

You could even write the result as a single time-function if you really wanted, by using unit-steps
to “enable” the different calculated functions in the regions where they are valid: for example,

f1(t) · (1− 1(t− T )) · 1(t) + f2(t) · 1(t− T ),

where f1 and f2 are the functions valid for 0 < t < T and t > T respectively.
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