
KTH, Electric Circuit Analysis, EI1120

Topic 11 Practice Exercises

This file starts with some exercises to practice finding complex power and its various derivative
quantities (pf, θ, |S|, etc). Later longer questions are about maximum power and power
superposition.

Recommended: In view of limited time, and some quite difficult work to get familiar with,
your focus on the following pages should be Exercises 1, 2 and 4. Exercise 1 could seem rather
long, but it’s probably useful to work through several of its parts, to get familiar with the
calculations. Then you have the exam suggestions below, and the homework.

The following are good ac-power practice questions from old exams.
(There are plenty more power-related questions in the old exams, but many of them also require
concepts from later Topics, about transformers or three-phase circuits. Only the basic power
and maximum-power questions are included below.)

2016-10˙IT˙omtenta Q6 nice simple power-calculation

2015-05˙IT˙omtenta Q6 power-factor compensation

2015-03˙EM˙tenta Q6 part-b, and part-c (power superposition is useful)

2014-08˙IT˙omtenta Q6 sources with different frequencies

2015-06˙EM˙omtenta Q6 not classic ac power, but a conceptually interesting part-b

2016-03˙IT˙omtenta Q6 max-power

2015-10˙IT˙omtenta Q6 max-power

2014-03˙EM˙tenta Q7 max-power

2014-05˙EM˙omtenta Q7 max-power

2014-08˙IT˙omtenta Q5 max-power

2014-10˙IT˙omtenta Q5 max-power

2015-03˙IT˙omtenta Q6 max-power

2015-02˙E˙ks2 Q2 Thevenin, for max-power

2015-03˙E˙tenta2 Q8 max-power using numbers, needing ’search’

1

http://kurs.ets.kth.se/ei1120/exams/2016-10_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-05_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-08_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-06_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2016-03_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-10_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-05_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-08_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-10_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_IT_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-02_E_ks2.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_E_tenta2.pdf


Exercise 1 Practice with classic impedance/admittance

Why is this exercise valuable? Well, a very common task is to calculate something like the
active power P into an impedance Z = R + jX, when the impedance is connected to a given
voltage u.

There are various typical mistakes!
One is to write something like P = u2/R, which is wrong for the case where Z = R+ jX 6= R.
Another is to start with S = |u|2/(R − jX) and take the real part (right idea), but assuming
that this is just |u|2/R (which is the wrong arithmetic).

The following should be good training! It also gives practice at handling complex power S, its
rectangular components (P and Q), apparent power, and power factor.

Notice an important difference between admittance and impedance.
When we write an impedance such as Z = R+jX, this can be represented as a series connection
of a resistor R and inductor L = X/ω (or a capacitor if it is R − jX). Then if we know the
current i, we can immediately find the active power (|i|2R) or reactive power (|i|2X) in one of
the series components. But if we know only the voltage, then the powers in the two components
depend on both component values; that makes the equations more complicated.
An admittance Y = G+ jB can be represented as a parallel connection of a resistor R = 1/G,
and a capacitor C = B/ω (or an inductor if it’s G− jB). In that case the powers are easily found
if voltage is known, but not so easily if just the current is known. This is why it can sometimes
seem so much easier and sometimes so much harder to do the power calculations.

The diagrams below show four common types of impedance found in ac circuits. In each, a
voltage and current are marked. Assume these are rms values of phasors (ac steady-state), all
at angular frequency ω.

R L

i1
+− u1

L

R

i2
+− u2

R
C

i3
+− u3

C

R

i4
+− u4

The known quantities are R, L, C, u1, u4, i2 and i3.

For each of the above circuits (1,2,3,4) calculate the following:

i) the phasor of the unknown voltage or current (i.e. i1, u2, u3, or i4).

ii) the complex power S into the total impedance.

iii) the active (‘real’) and reactive (‘imaginary’) powers P and Q.

iv) the apparent power |S|.

v) the power factor pf= cos θ; include whether lagging or leading.

Try to make the results neat: e.g., separate the real and imaginary parts.

If you want extra work, try swapping which currents and voltages are the known and the
unknown. Then you’ll have 4 more cases to solve . . . but not all with model solutions available.
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Answer 1

Case 1: Series RL, u1 known.

i) i1 = u1/Z1 = u1/(R+ jωL).

ii ) S = u1i
∗
1 = u1u

∗
1/Z

∗ = |u1|2 /(R− jωL) = |u1|2
R2+ω2L2 (R+ jωL).

iii) Solution ‘b)’ is in a convenient form: P = <{S} = |u1|2
R2+ω2L2R, Q = ={S} = |u1|2

R2+ω2L2ωL.

iv) Sapp =
√
P 2 +Q2 = |S| = |u1|2√

R2+ω2L2
.

v) pf = P
|S| = R√

R2+ω2L2
= R
|Z| . Lagging, because the circuit is inductive (Q > 0).

Case 2: Parallel RL, i2 known.

i) u2 = i2Z2 = i2
1

1
R
+ 1

jωL

= i2
jωLR
R+jωL .

ii) S = u2i
∗
2 = i2i

∗
2

jωLR
R+jωL = jωLR|i2|2

R+jωL = jωLR|i2|2
R2+ω2L2 (R− jωL) = ωLR|i2|2

R2+ω2L2 (ωL+ jR).

iii) P = ω2L2R|i2|2
R2+ω2L2 , Q = ωLR2|i2|2

R2+ω2L2 .

iv) Sapp = ωLR|i2|2√
R2+ω2L2

.

v) pf = ωL√
R2+ω2L2

= ωL
|Z|

[
= 1/R

1/|Z| = G
|Y |

]
. Lagging, because the circuit is inductive.

Case 3: Series RC, i3 known.

i) u3 = i3Z3 = i3
(
R− j 1

ωC

)
.

ii) S = u3i
∗
3 = i3Z3i

∗
3 = |i3|2

(
R− j 1

ωC

)
.

iii) P = |i3|2R, Q = − [i3|2
ωC .

iv) Sapp = |i3|2|Z| = |i3|2
√
R2 + 1

ω2C2 .

v) pf = R√
R2+ 1

ω2C2

= R
|Z| . Leading, because the circuit is capacitive (Q < 0).

Case 4: Parallel RC, u4 known.

i) i4 = u4/Z4 = u4Y4 = u4
(
1
R + jωC

)
.

ii) S = u4i
∗
4 = u4u

∗
4/Z

∗
4 = u4u

∗
4Y
∗
4 = |u4|2

(
1
R − jωC

)
.

iii) P = |u4|2/R, Q = −|u4|2ωC.

iv) Sapp = |u4|2
√

1
R2 + ω2C2.

v) pf = 1/R√
1

R2+ω2C2
= 1/R

1/|Z| = G
|Y | . Leading, because the circuit is capacitive.

You will note that the power factor is not dependent on whether the voltage or current is the
known variable, or what value of voltage or current is applied. The power factor is entirely
determined by the components and their connection, so the ix or ux terms cancel if we calculate
pf from P and |S|.
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For a series connection, pf is easily found from impedances; and for a parallel connection, pf
is easily found from admittances.

In an exam the answer should be given in terms of known values, such as R, L, C and ω in the
above problems. In the above answers, some other expressions for pf have been given too, in
order to show the duality more clearly.

The lagging or leading power factor can be deduced in several ways: double-check the following
points in the above examples!

The answer ‘i)’ shows the phasor relation between the voltage and the current: when the
current’s reference direction is into the +-side of the voltage’s reference direction, then
the current lags the voltage if the impedance has an inductive part, or leads it if the
impedance has a capacitive part, or is in phase if the impedance is purely resistive.

The answer ‘iii)’ shows the reactive power into the impedance: because of the convention
that S = ui∗ (instead of S = u∗i), we know that an impedance with an inductive part
will ‘consume reactive power’, i.e. the reactive power input is positive.

Just look at whether there’s a capacitor or inductor in the load: leading power-factor if
it’s a capacitor, lagging if it’s an inductor!
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Exercise 2

Don’t waste ages on the algebra if you get stuck. Try attacking it another way, or just look at
the answer a few times. This is quite a useful ‘result’, about series or parallel equivalents of
impedances: it’s relevant to some of the past exam questions, and in some real situations.

Find the necessary inductance Lp and resistance Rp, in the parallel circuit on the right, to make
it behave exactly like the series circuit on the left, at a given ω.

i(ω)

Rs

Ls

+

−

u(ω)

i(ω)

Rp Lp

+

−

u(ω)

In other words, express Lp and Rp in terms of Ls, Rs, and ω, so that the relation u/i (impedance)
is the same in both circuits.
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Answer 2

We want to find Lp and Rp in terms of Ls, Rs, and ω, so that the parallel impedance Lp ‖ Rp

is equal to the series impedance Ls +Rs at frequency ω.

Let’s start by finding the admittance of the series circuit. We can expect that to be a good
choice, as we know that Rp and Lp in the parallel circuit are the components that respectively
determine the real and imaginary part of the admittance.

Ys =
1

Zs
=

1

Rs + jωLs
=

Rs − jωLs

R2
s + ω2L2

s

.

This has to be made to equal the admittance of the parallel circuit, which is

Yp =
1

Rp
− j

1

ωLp
.

To achieve this, equate the real and imaginary parts between Ys and Yp,

Rp =
R2

s + ω2L2
s

Rs

Lp =
R2

s + ω2L2
s

ω2Ls

We can also show this in the other direction: find the components needed in the series circuit
on the left, in order to make it behave like some given component values in the parallel circuit
on the right.

For that case, it’s easier to equate the impedances, since the sought variables are series compo-
nents and are therefore easily written in impedance form. A similar approach to the calculation
gives the following:

Zs = Rs + jωLs

Zp =
1

Yp
=

1
1
Rp

+ 1
jωLp

=
jωLpRp

Rp + jωLp
=

(Rp − jωLp) jωLpRp

R2
p + ω2L2

p

=
ω2L2

pRp + jωLpR
2
p

R2
p + ω2L2

p

.

By having got the final answer for Zp in pure rectangular form, its real and imaginary parts
can be equated with those from Zs, to give

Rs =
ω2L2

pRp

R2
p + ω2L2

p

,

Ls =
LpR

2
p

R2
p + ω2L2

p

.

Some general ramblings about series/parallel conversion

As was seen in Exercise question 1, it is easier to calculate currents and powers with a known
voltage for parallel-connected RL or RC components: the R component then entirely determines
the active power, and the L or C entirely determines the reactive power. We don’t have
to handle a complex number in the denominator as we would have to for series-connected
components. The opposite is true if the current is the known quantity: the series connection
becomes simpler. Another way of thinking of this is that series components are conveniently seen
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as impedances (they sum to the total impedance), and parallel components are conveniently
seen as admittances (they sum to the total admittance).

We know that any group of R, L and C components with two terminals can be reduced to a single
impedance at a particular frequency ω. This follows from how multiple resistors (dc) can be
made into an equivalent: this is simply extended to the case of complex numbers (impedances).
The same result can be found from thinking of a Thevenin equivalent: the equivalent source’s
voltage is clearly zero if there is no independent source, so the Thevenin equivalent is just an
impedance. The impedance will be “in the right half-plane”, i.e. its real part will be non-negative;
we would need to have dependent sources in order to get a negative resistance.

Any impedance with non-negative real part can be represented with (at most) one resistor and
one inductor or capacitor, in series or in parallel. (The values of the two components will need
to be different depending on whether the series or parallel connection is chosen.)

So, it should be possible to convert a series pair of components to a parallel pair (or vice versa),
that have the same impedance. Note that the conversion is valid at just one frequency; it’s based
on the assumptions of sinusoidal steady state that are used for the phasors method.
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Exercise 3

Assume the components in Exercise 1 have the following values:
R = 100, L = 133e-3, C = 13.3e-6 and let the known inputs to the circuit be these

phasors at angular frequency ω,
u1 = 1e3, u4 = exp(4.605+2j), w = 2*pi*60 .

For circuits 1 and 4 shown in Exercise 1, find the numerical values of parts |S| and pf.

You are encouraged to use a computer. and to ignore the symbolic solutions you got in the
previous question. Instead of using those solutions, you can work in steps, defining intermediate
variables as necessary.

For example, for circuit 2 (parallel R,L with known current i2), we could define1 the known
current as i2 = 4+3j, then calculate in the following way.

% total impedance: easily found by summing admittances
Y2 = 1/R + 1/(1j*w*L)
Z2 = 1/Y2
% voltage across this impedance
u2 = Z2 * i2

% calculate complex power into circuit
S2 = u2 * conj(i2)

% now find the derived quantities of apparent power and pf
P = real(S2)
Q = imag(S2)
Sapp2 = abs(S2) % ONE OF THE REQUESTED SOLUTIONS
pf2 = P/Sapp2 % THE OTHER REQUESTED SOLUTION
% and let's be terribly clever and automatic! (neglecting if Q==0)
if imag(S2)<0, disp('leading PF'); else disp('lagging PF'); end

% and it's sensible to compare this to the result from
% the expression that we derived,
Sapp2ex = w*L*R*abs(i2)ˆ2 / sqrt(Rˆ2+wˆ2*Lˆ2)
pf2ex = w*L/sqrt(Rˆ2+wˆ2*Lˆ2)

Results: both ways of calculating |S| and pf give the same solution, of |S| = 1120.5 VA and
pf = 0.448 (lagging). The unit ‘VA’ (volt ampere) is commonly used for apparent power, in
contrast to writing watts for active power; this is to indicate that it doesn’t represent an overall
transfer of energy per cycle. We’re assuming here that all the numeric values of inputs and
components were in unprefixed SI units.

The idea is to show that it’s quick and easy to do ac power calculations in the everyday,
practical way that people tend to, without symbolic calculations on paper. The symbolic way is
sometimes useful for showing a general principle, or finding a value that isn’t easily obtained by
step-by-step solutions, for getting more understanding of how the circuit’s components affect
the solution. That’s why we study it in the basic course. But it’s good to realise that ac analysis
in practice is not something to be scared of as a time-consuming and complicated process!

1None of the results should depend on the phase of the current; the power factor won’t even depend on the
magnitude of the current. The reason we choose a not-very-simple value is in order to demonstrate that when
we’re using the computer we are not inconvenienced by situations where the angles aren’t specially chosen to be
simple!
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Answer 3

The following shows just the equations taken from the symbolic solutions. It’s encouraged that
you also check this by a calculation in the style of the example that was after the question, for
circuit 2. This sort of check helps to catch errors in our derivation of the symbolic solution.

% set the parameters
u1 = 1e3, u4 = exp(4.605+2j), w = 376, R = 100, L = 133e-3, C = 13.3e-6

% circuit 1: apparent power and power-factor
mS1 = abs(u1)ˆ2 / sqrt( Rˆ2 + wˆ2*Lˆ2 )

8944.0
PF1 = R / sqrt( Rˆ2 + wˆ2*Lˆ2 )

0.89440

% circuit 4: the same
mS4 = abs(u4)ˆ2 * sqrt( 1/Rˆ2 + wˆ2*Cˆ2 )

111.77
PF4 = (1/R) / sqrt( 1/Rˆ2 + wˆ2*Cˆ2 )

0.89440
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Exercise 4

Maximum [active-]power.

The voltage source in this diagram is ac with angular frequency ω and rms magnitude U .
Let’s define it as the phase reference, i.e. its phase can be called zero.
A source-impedance Zs = Rs + jωLs is in series with the voltage source.
A load consisting of two parallel components Rl and Cl is connected to the output, as shown.

+
−U

Rs Ls

Cl Rl

+

−

ul

a) Find Rl and Cl to give maximum power to the load (i.e. maximise the active power in Zl),
given that U , ω, Rs and Ls are fixed.

Hint: The question is a clear “maximum power” one. The aim, then, is to make a “load”
and a “source” have impedances that are complex conjugates. But be careful about the load
impedance: remember the components are in parallel, not series.

b) Take U = 230, w = 2*pi*50, Rs = 5, Ls = 10e-3 .
(You can assume SI units, if you want to write units.)
What are the numeric values needed for Rl and Cl, from part ‘a’?
What is the active power to the load at maximum power?
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Answer 4

Maximum [active-]power.
The ac voltage source has angular frequency ω and rms magnitude U .
Define the source-impedance Zs = Rs + jωLs.
The load is two parallel components, Rl and Cl, which are the unknowns.

+
−U

Rs Ls

Cl Rl

+

−

ul

a) Task: Determine both load components for maximum active power transfer to the load.

The maximum [active] power criterion is that the load impedance must be the complex conjugate
of the source impedance: Z∗s . The load impedance here is the parallel combination of the two
load components, so we cannot just say that e.g. Rs needs to be equal to Rl.

We can, however, say that if Zl = Z∗s , then 1/Zl = 1/Z∗s . This means we can work with the
admittances instead of the impedances: the maximum power criterion is Yl = Y ∗s . The advan-
tage of using admittance is that the real and imaginary parts of load admittance correspond
respectively to the resistor and capacitor (in their parallel connection),

Yl =
1

Rl
+ jωCl,

so we can directly equate these with the real and imaginary parts of Y ∗s , to get the solution.

First, find Ys,

Ys =
1

Zs
=

1

Rs + jωLs
=

Rs − jωLs

R2
s + ω2L2

s

,

then conjugate it and equate it to the sought Yl,

1

Rl
+ jωCl =

Rs + jωLs

R2
s + ω2L2

s

.

By separating the real and imaginary parts in the above equation,

Rl =
R2

s + ω2L2
s

Rs
Cl =

Ls

R2
s + ω2L2

s

b) Take U = 230, w = 2*pi*50, Rs = 5, Ls = 10e-3 .

Find the numeric values of Rl and Cl from part ‘a’, and the load’s active power at this maximum-
power point.
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U = 230, w = 2*pi*50, Rs = 5, Ls = 10e-3,
Rl = (Rsˆ2 + wˆ2*Lsˆ2) / Rs
Cl = Ls / (Rsˆ2 + wˆ2*Lsˆ2)
Zs = Rs + 1j*w*Ls % source impedance
Zl = 1 / ( 1/Rl + 1j*w*Cl ) % load impedance
Ul = U * Zl / ( Zl + Zs ) % load voltage (by voltage division)
Pl = abs(Ul)ˆ2 / Rl % load active power (one method)
Pl = real( abs(Ul)ˆ2 / Zl ) % load active power (another method)

% the following are the results:
Rl = 6.9739
Cl = 2.8678e-04
Zs = 5.0000 + 3.1416i
Zl = 5.0000 - 3.1416i
Ul = 115.000 - 72.257i
Pl = 2645.0
Pl = 2645.0

Note the advantage of defining all the input numbers as variables, then working in small steps.
This makes it possible to redefine a variable without rewriting all the equations, and to check
intermediate values, and to keep each single expression short and readable. We see for example
that Zs and Zl are indeed complex conjugates, as expected.

Numerical/graphical check of the maximum-power point.

We could check further, numerically, to ensure we did find a maximum-power point instead of
having just messed up the equations.

Here, we take higher and lower values of the load resistance and capacitance, and do a surface
plot, to check that the maximum is indeed at the calculated values. We find that it is indeed
at the calculated values (relative resistance or capacitance equal to 1) that the maximim power
occurs.
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 P

m
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The code used is the following.
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clear all

U = 230, w = 2*pi*50, Rs = 5, Ls = 10e-3,
Zs = Rs + 1j*w*Ls; % source impedance

% values needed for maximum power, according to our calculations
Rl = (Rsˆ2 + wˆ2*Lsˆ2) / Rs; % the believed Rl for max power
Cl = Ls / (Rsˆ2 + wˆ2*Lsˆ2); % the believed Cl for max power
% calculate the maximum power
Zl = 1 / ( 1/Rl + 1j*w*Cl );
Ul = U * Zl / ( Zl + Zs );
Pl = abs(Ul)ˆ2 / Rl

% make vectors of other Rl and Cl values above and below
% the values that we calculated as giving "maxpower"
CL=Cl *(0.02:0.03:4);
RL=Rl *(0.02:0.04:4);
S = NaN*ones(numel(RL),numel(CL)); % initialise matrix for powers
% the following could be done in matrix form in one line ... this is simpler
for i=1:length(RL), for j=1:length(CL);

Cl=CL(j); Rl=RL(i);
Zl=1/(1/Rl+1j*w*Cl);
Ul = U * Zl / ( Zl + Zs );
S(j,i)=abs(Ul)ˆ2 / Zl;

end ; end
% 3d surface plot, load active power against relative Rl and Cl
mesh( RL/Rl , CL/Cl , real(S)/Pl )
xlabel('Rl / Rlmaxpow');
ylabel('Cl / Clmaxpow');
zlabel('P / Pmaxpow');
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Exercise 5 Power superposition.

Power superposition is not going to a major part of exam tasks. But it’s a simple and funda-
mental principle, which can be convenient to understand conceptually as well as to use as a
shortcut in calculations. This question gives some more practice with ac analysis and ac power,
as well as with power superposition.

+
−U1(t)

+−

U2(t)

R

iR(t)

V (t)
C

I(t)

The time-functions of the three independent sources are:

U1(t) = Û1 cos(3ωt+ φ)

U2(t) = Û2 sin(2.2ωt− φ)

I(t) = −
√

2 Irms cos(5.56ωt+ 27.4°).

a) What is the mean power dissipated in resistor R? (Assume this is the “mean” over a
sufficiently long time that many cycles of the ac waveforms have happened.) Power superposition
gives a quick solution. Irrelevance can also be useful.

b) What is the mean power out of source U1(t)?

c) If you feel a little crazy for work, you could try repeating part ‘a’, but not using the principle
of power superposition or irrelevance (i.e. find a time-solution for iR(t), then integrate it over a
suitable time-period, and check against ‘a’. Quite difficult and time-consuming. . . .
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Answer 5

The studied circuit has three indepen-
dent sources, whose time-functions are
the following:

U1(t) = Û1 cos(3ωt+ φ),

U2(t) = Û2 sin(2.2ωt− φ),

I(t) = −
√

2 Irms cos(5.56ωt+ 27.4°).

Many of these values will not be
important for the solution.

+
−U1(t)

+−

U2(t)

R

iR(t)

V (t)
C

I(t)

a) Find the [long-term] mean power dissipated in resistor R.

Irrelevance tells us we can throw away C and I(t) from the start: the voltage across R is fixed
by the series pair of voltage sources, V (t) = U1(t) + U2(t). The current in R is therefore

iR(t) =
Û1 cos(3ωt+ φ) + Û2 sin(2.2ωt− φ)

R

We could square this and multiply by R to get instantaneous power, then integrate (in the
time-domain) to get a mean value of power; some of the resulting cos() sin(), cos2(), etc. terms
could be eliminated as having zero mean.

A quicker way to see the concept is power superposition. The frequencies of the two relevant
sources are different, so power superposition can be used.

The mean power due to U1(t) alone is
Û2
1

2R , and the mean power due to U2(t) alone is
Û2
2

2R .

Therefore, the total mean power in R, by power superposition, is

P =
Û2
1 + Û2

2

2R

The factor 2 is there because Û1 and Û2 are peak values.

b) What is the mean power out of source U1?

This is simply the power out of source U1 with the other sources set to zero. In that case the
source U1 is connected only to R, as U2 is a short-circuit and I is an open-circuit. The power out
of the source is thus P = Û2

1 /(2R). With the other sources active instead, and U1 set to zero,
there can be no power in or out of source U1, as it has zero voltage. A way of seeing this same
idea without power superposition is to realise that the current in source U1 has three different
frequencies, but only the current with the same frequency as the source will give a mean power
over a long time.

Solution: P =
Û2
1

2R , out of source U1.
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