
KTH, Electric Circuit Analysis, EI1120

Topic 12 Practice Exercises

In this topic the past exam questions provide several good exercises that are quite easily
approachable if you write the equations of the components (transformer or general mutual
inductance) and the rest of the circuit, and do the necessary arithmetic.

So it’s suggested you start with the following list when you’ve studied the lecture/chapter
material a bit. (The Exercises on the following pages of this file are not all simpler; they can be
used as further practice material.)

2014-03˙E˙tenta Q2 simple mutual inductors

2014-02˙E˙ks Q3 max-power with transformer and generic Z impedances

2014-03˙E˙tenta Q5 general mutual inductance, two-terminal equivalent

2013-06˙E˙omtenta Q3 fun puzzle with mutual inductance

2015-03˙EM˙tenta Q8 max-power with transformer and specific R and C

2015-06˙IT˙omtenta Q6 quite like 2015-03 EM tenta Q8, but no L

2015-06˙EM˙omtenta Q8 another variation, but using mutual inductance

2015-03˙E˙tenta2 Q6 power transfer: compare transformer and mutual inductance

2015-06˙E˙omtenta2 Q8 circuit with mutual inductance, “write but don’t solve”
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Exercise 1

Ideal transformers and Equivalent Circuit.

ideal

N1 N2

+
−u1 = Û π/3

R L
a

+

−

uab

b

a) Find the Thevenin equivalent of this circuit, seen between the terminals a and b.

b) Do the same again, but with the inductor L in parallel (instead of in series) with the
winding N2 and the output a-b.
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Answer 1

Ideal transformers and Equivalent Circuit.

ideal

N1 N2

+
−u1 = Û π/3

R i1
L iab a

+

−

uab

b

+

−

ut1

+

−

ut2

a) Find the Thevenin equivalent of the above circuit, seen between the terminals a and b.

1) A verbal step-by-step approach.

We’ll start by finding the open-circuit voltage, which is the Thevenin source voltage: uab = UT.

With a-b open, there is no current in L: therefore iab = 0 and uab = −ut2.

By the transformer current equation,

iab = 0 → i1 = 0.

This means that no current flows through R, so u1 = ut1. By the transformer voltage equation,
noting the dots and being careful about voltage definition directions,

ut2 =
N2

N1
ut1.

This leads to

uab = UT = −N2

N1
u1.

Substituting the given u1 = Û π/3, and simplifying the angle and negative sign,

UT = −N2

N1
Û π/3 =

N2

N1
Û 4π/3

Now find the source impedance. There are no dependent sources, so we can look at the impedance
between terminals a-b when the source (u1) is set to zero.

By the rule for translating impedances from one side to the other side of a transformer, the
resistor R (which is in series with the primary of the transformer) can be replaced by a resistor

R′ =

(
N2

N1

)2

R

in series with the secondary side, without changing how the circuit behaves at the terminals a-b.
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Then the total source impedance seen at a-b is

ZT = (N2/N1)2R+ jωL.

2) A more equation-based approach.

KVL (primary): ut1 = u1 − i1R,
KVL (secondary): uab = −ut2 − jωLiab,

Transformer (voltage): ut2 = N2
N1
ut1,

Transformer (current): iab = −N1
N2
i1.

(1)

The above are 4 equations in 5 unknowns: i1, ut1, ut2, iab, uab.
This undetermined nature is expected, as we haven’t specified anything about what is connected
to a-b.

We have two popular methods available to deal with this (recall some methods from the dc
topic of two-terminal equivalents).

One is to reduce the equations to a single equation relating two unknowns (terminal voltage
and current), then to identify the Thevenin voltage and resistance from this equation. You can
do this as an exercise if you like. . .

The other is to find the Thevenin equivalent from solving for two points on the circuit’s u, i
line: we often find the short-circuit and open-circuit cases to be the most convenient pair.
To find open-circuit voltage, set iab = 0, solve for uab(oc).
To find short-circuit current, set uab = 0, solve for iab(sc).

Using these two results, the Thevenin equivalent is:

UT = uab(oc) =
−N2

N1
u1 =

N2

N1
Û 4π/3,

ZT =
uab(oc)

iab(sc)
=

N2
2

N2
1

R+ jωL.
(2)

+
−UT

ZT

a

b

These are – fortunately – the same results as were found by the first approach.

Rather than going through a step-by-step derivation of the final equations (2) from the initial
circuit equations (1), let’s show how useful a symbolic-algebra computer program can be for
this purpose! See the next page.

4



Using the symbolic-algebra program we can keep the equations in their original form (with clear
relation to the circuit) and make modifications easily then recompute the result. (Yes, it’s not
available in the exam: this is mentioned for “real” use in later courses, projects, jobs!)

% the equations of the circuit
eqns = { ...

'ut1 = u1 - i1*R', ...
'uab = -ut2 - sqrt(-1)*w*L*iab', ...
'ut2 = (N2/N1)*ut1', ...
'iab = -(N1/N2)*i1' }

unknowns = 'ut1, i1, ut2, uab, iab'

% solve for the unknowns, with the extra condition of an OPEN-circuit
soc = solve( eqns{:}, 'iab = 0', unknowns )
uaboc = soc.uab
%> uaboc = -(N2*u1)/N1

% solve for the unknowns, with the extra condition of a SHORT-circuit
ssc = solve( eqns{:}, 'uab = 0', unknowns )
iabsc = ssc.iab
%> iabsc = -(N1*N2*u1)/(L*w*N1ˆ2*i + R*N2ˆ2)

Ut = simplify( uaboc )
%> Ut = -(N2/N1)*u1

Zt = simplify( uaboc / iabsc )
%> Zt = R*(N2/N1)ˆ2 + 1j*w*L
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b) Do the same again, but with the inductor L in parallel (instead of in series) with the
winding N2 and the output a-b.

ideal

N1 N2

+
−u1 = Û π/3

R i1 i2 iab a

+

−

uab

b

+

−

ut1 L

Let’s use the equation approach, and modify the equations (1) to suit the new situation,

KVL (primary): ut1 = u1 − i1R,

KCL (secondary): iab = i2 −
uab

jωL
,

Transformer (voltage): uab = −N2
N1
ut1,

Transformer (current): i2 = −N1
N2
i1.

(3)

Then the same short/open circuit procedure as before gives the Thevenin equivalent,

UT = −u1
N2

N1

 jωL
N2

2

N2
1
R+ jωL

 =

(
jωLN1N2

N2
2R+ jωLN2

1

)
Û 4π/3

ZT =
jωL

N2
2

N2
1
R

N2
2

N2
1
R+ jωL

=
jωLR

R+ jωL
N2

1

N2
2

The above equations, particularly when expressed in the intermediate form before “simplifying”,
show how one could have come to the same conclusion by a more step-by-step method. The
impedance is a parallel connection of the inductive reactance and the resistance after moving the
resistor to the secondary side. The voltage is found by the same principle, using voltage division.
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Exercise 2

Ideal transformers: practically relevant example.

This question gives practice at:
* Handling transformers in circuit analysis.
* Taking advantage of complex notation and computers, for making the calculations very easy.
* Calculating with Octave/Matlab (surely useful in later courses).
* AC power calculations.
It also introduces some genuine-looking numeric values, and demonstrates the value of high
voltage transmission.

The following diagram shows an ac generator, modelled as voltage source ug with series impe-
dance Zg. It is connected to what we will call the primary side of a transformer T1, which has
a turns ratio of 1:r (r on the other side). We’ll assume the transformers are ideal.

This 1:r format is a common way of specifying a transformer when one does not care about
actual numbers of turns, but just about the ratio: the actual number of turns even in an inideal
transformer is anyway not very meaningful unless one also knows details of the magnetic circuit.
If T1 instead had N1 defined on the left, and N2 on the right, then r = N1/N2.

The transformer’s secondary winding is connected through a power transmission line with series
impedance Zt to the primary of another transformer T2, with ratio r:1. The secondary of T2 is
connected to a load, which is an impedance Zl.

T1

1 r

T2

r 1

+
−ug(ω)

Zg

+

−

ut1

Zt il

Zl

+

−

ul

This is a good (simple) model of how most of our electric power gets to us: it is generated at
one voltage, then “stepped up” to a higher voltage for transmission, then “stepped down” to a
low voltage for final use.

We will use the following values of the impedances:
Zg = j1 Ω.
Zt = (2 + j20) Ω.
Zl = 25 Ω.

The line impedance Zt has been chosen to be representative of a 400 kV overhead line of 100 km
length, from UK-NG system data. This type of line would normally carry a higher power than
we consider here, such as 1 GW (and it would be a three-phase line (another Topic). The load
has been chosen as a nice convenient number; you will notice it is entirely resistive, perhaps by
including ideal power-factor correction! The generator impedance is reactive, which is a good
approximation of a real generator.

In the following, you are welcome to work efficiently to find a numeric answer. You don’t need
to develop a fully simplified complex expression that gives the sought variable directly from

7

http://gnu.ets.kth.se/~nt/elecpow/gb_ng_par/gb_trans_ng


just the given variables. In my opinion, the most efficient way to do this sort of calculation is
to use an environment such as Octave/Matlab, and define helpfully named variables for all the
given information; then do your calculation in several small steps, defining further intermediate
variables, until you reach the solution. This way, the program handles the complex numbers,
and you see a symbolic view of what the calculation does, so you can easily change an input
value or modify the calculation, or check the result at intermediate stages. It’s convenient to
put the commands in a script, and run it all at once.

a) Let r = 1. Assume that a power of 100 MW is delivered to the load Zl.
This is a convenient type of question. You will see that the information allows you to find
the currents and voltages at the right-hand side of the circuit; then you can successively work
towards the left, filling in the currents and voltages in other places to find the requested values.
Part ‘d’ is a more difficult situation.

i) Find the active power that is being lost in the line impedance Zt.

ii) Find the voltage magnitude of the generator, |ug|.
Find also the phase-angle ug, using the load voltage as the reference angle, i.e. define ul = 0;
for this you can assume “dots” at the top of all four transformer-windings.

b) Now we change just one thing, compared to task ‘a’: Let r = 4.
Calculate the same two things as in task ‘a’, assuming that the generator voltage has now been
adjusted so that there is still a power of 100 MW delivered to the load.

c) Comparing the answers to tasks ‘a’ and ‘b’, do you see that the transformers and high-voltage
transmission serve a useful purpose? Bear in mind that power losses in the line’s resistance are
proportional to the square of the current, and that transforming to r times higher voltage
therefore reduces current by r and power loss by r2.

d) Let |ug| = 50 kV, and r = 2. Use the voltage ug as the phase reference (zero).
What are the voltage, current and complex power at the load: ul, il and Sl?
Assume, as before, that there are dots at the tops of the windings: this is necessary for calculating
phase angles, but not important for the power.

This is harder than the earlier parts, because you can’t just work sequentially from one side to
the other. You have to consider the right parts of the circuit in order to find the current at the
left part . . . and the left part in order to find what happens in the right part!

It can be done by converting impedances to the other sides of transformers, to find the current
from the source, then working from left to right. Alternatively, it can be done by writing and
solving equations for each of the three separate electric circuits and the relations that the
transformers impose between them.
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Answer 2

Ideal transformers: practically relevant example.

The following diagram shows an ac generator, modelled as voltage source ug with series impedan-
ce Zg. It is connected to what we will call the primary side of a transformer T1, which has a turns
ratio of 1:r (r on the other side). The transformer’s secondary winding is connected through
a power transmission line with series impedance Zt to the primary of another transformer T2,
with ratio r:1. The secondary of T2 is connected to a load, which is an impedance Zl.

T1

1 r

T2

r 1

+
−ug(ω)

Zg ig

+

−

ut1

Zt it il

Zl

+

−

ul

This is a good (simple) model of how most of our electric power gets to us: it is generated at
one voltage, then “stepped up” to a higher voltage for transmission, then “stepped down” to a
low voltage for final use.

The impedances are: Zg = j1 Ω, Zt = (2 + j20) Ω, Zl = 25 Ω.

We will assume that there are “dots” at the tops of all the transformer windings. This does
not matter for the main questions about power loss, but it does matter for getting phase-angles
correct.

a) Start with ratio r = 1, which means the ideal transformers change nothing in the circuit:
the voltages or currents are the same on both sides.

A power of 100 MW is delivered to the load Zl.
The complex power into an impedance Zl with current il flowing in it is |il|2Zl.
The given value of Zl is purely resistive (real), so there is no reactive power.
From this, we see that 100 MW = |il|225 Ω, so il = 2 kA.

i] Find the active power lost in the line impedance.
This can be found through the same equation as was used for the load power, by taking the
real part of |it|2Zt. This is |it|2<{Zt}. The transformer equation for T2 tells us that it = il/r.
Substituting this, the power loss in the line is

Pt,loss = |it|2 <{Zt} =

∣∣∣∣ ilr
∣∣∣∣2 <{Zt} =

(
2 kA

1

)2

2 Ω = 8 MW.

ii] Find the voltage magnitude and phase-angle of the generator, ug.
Use the load voltage ul as the reference angle (zero).

We know the load’s impedance and current and therefore also its voltage,

ul = ilZl = 2 kA · 25 Ω = 50 kV.
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Then the transformer equations for T2 and T1, along with KVL in the middle loop, give the
voltage ut1 and current ig,

ut1 =
1

r
(rul + Ztit) =

1

r
(rul + Ztil/r)

ig = (il/r)r = il

One more step of KVL leads to the voltage at the source,

ug = ut1 + Zgig =
1

r
(rul + Ztil/r) + Zgil.

Using the relation ul = ilZl, the expression for ug can be expressed in terms of ul,

ug =
1

r

(
rul + Zt

ul

rZl

)
+ Zg

ul

Zl
= u1

(
1 +

Zt

r2Zl
+
Zg

Zl

)
.

The load voltage is known to be ul = 50.0 0 kV.
Inserting the numeric value, the above expression gives ug = 68.4 37.9° kV.

In Octave/Matlab, this is calculated as:

Zg = 1j, Zt = 2 + 20j, Zl = 25, Sl = 100e6, r = 1
ul = sqrt( conj(Zl) * Sl )

% ONE WAY: using the formula derived above
ug = ul * ( 1 + Zt/Zl/rˆ2 + Zg/Zl )
abs(ug), angle(ug)*180/pi
%> 68.4 kV, at +37.9 degrees.

% OTHER WAY: working step by step
ul = sqrt( conj(Zl) * Sl )
% 50000
il = ul/Zl
% 2000
u T2pri = r*ul % primary (left) of T2
% 50000
it = il/r
% 2000
u T1sec = u T2pri + it*Zt
% 5.4000e+04 + 4.0000e+04i
ig = it*r
% 2000
ut1 = u T1sec / r
% 5.4000e+04 + 4.0000e+04i
ug = ut1 + ig*Zg
% 5.4000e+04 + 4.2000e+04i
abs(ug), angle(ug)*180/pi
%> 68.4 kV, at +37.9 degrees
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b) Now the ratios are r = 4. There is still 100 MW delivered to the load.

i] Using the same reasoning as in part ‘a’,

Pt,loss =

∣∣∣∣ ilr
∣∣∣∣2 <{Zt} =

(
2 kA

4

)2

2 Ω = 0.5 MW.

ii] Using the same program as in ‘a’, but with r = 4, the result is that ug = 50.45 5.1° kV.

Zg = 1j, Zt = 2 + 20j, Zl = 25, Sl = 100e6, r = 4
ul = sqrt( conj(Zl) * Sl )
ug = ul * ( 1 + Zt/Zl/rˆ2 + Zg/Zl )
abs(ug), angle(ug)*180/pi
%> 50.45 kV, at +5.1 degrees.

c) Comparison of answers (mainly losses) to tasks ‘a’ and ‘b’.

Simply increasing the voltage by 4× reduced the power losses in the long line by 16×. When
400 kV is used for bulk transmission of electricity, instead of the 400 V that is used for normal
consumers, the overall transformation ratio is r = 1000. The effect on losses is therefore very big:
r2 = 106. High voltages clearly have a great advantage for long-distance power transmission. On
the other hand, high voltages demand more expensive equipment, and result in more power-loss
around the wires in the air (the “crackle” sound, particularly when wet). This is why it is worth
paying for several transformers between different voltage levels in the system, so that each level
has a suitable voltage for the power it handles and its geographic extent; the choice of voltage
is a compromise between various factors, including losses in the line-resistance, cost and size of
cables, switches, etc.

The voltage magnitude and angle at the source were also interesting to compare. With a higher
voltage in the transmission part of the system, the excess voltage (above 50 kV) and the angle
became smaller. We can see this by moving the line impedance Zt to the other side of one of
the transformers: it would be scaled by the factor 1/r2. This expression shows that a higher
choice of r rapidly reduces the effective line-impedance seen from the lower-voltage sides of
the transformers. Note that in our simple case with no parallel components, and with the
two transformers having inverse ratios, we could have replaced the whole circuit with just the
following:

+
−ug

Zg Zt/r
2

Zl

+

−

ul

i

d) Let |ug| = 50 kV, and r = 2. Use the voltage ug as the phase reference (zero).
What are the voltage, current and complex power at the load: ul, il and Sl?

One approach is to do the same as in the equation-based solution of Q3: write and solve the
equations imposed by KVL, KCL, Ohm’s law and the transformer equations.
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However, a simplified equivalent has already been suggested (see the diagram above, in part
‘c’), where the transformers have been eliminated; let us try this first, as it is easy to solve.

We have ug = 50.0 0 kV, and r = 2. The current around the loop is

i =
ug

Zg + Zt/r2 + Zl
=

50 kV

1j Ω + (2+20j)Ω
22

+ 25 Ω
= 1.909 −13.2° kA.

The voltage across the load is

ul = iZl = 25 Ω× 1.909 −13.2° kA = 47.7 −13.2° kV

The complex power in the load is |i|2Zl, which is

Sl =

∣∣∣∣ ug

Zg + Zt/r2 + Zl

∣∣∣∣2 Zl =

 50 kV∣∣∣1j Ω + (2+20j)Ω
22

+ 25 Ω
∣∣∣
2

× 25 Ω = 91.1 MW.

There are various other ways of doing the calculation, without using the idea of simplifying
away the transformers, or of writing all the equations. One is to define a voltage or current
at the load, then express the source voltage from this; the equation can then be rearranged to
find the variable at the load from a known voltage at the source. In our case, the solution has
already been done in part ‘a’, to find ug from ul. Rearranging the equation to get ul,

r = 2, ug = 50e3, Zg = 1j, Zt = 2+20j, Zl = 25
ul = ug / ( 1 + Zt/Zl/rˆ2 + Zg/Zl ) % 47.7 kV at -13.2 degrees (w.r.t. ug)
il = ul / Zl % 1.909 kA at -13.2 degrees
Sl = ul * conj(il) % 91.1 + j0 MVA
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