
KTH, Electric Circuit Analysis, EI1120

Topic 13 Practice Exercises

Calculations in BALANCED Three-Phase Circuits

The three-phase topic adds a few further definitions, like what “line-voltage” means. Other than
this, the three-phase analysis only needs the phasor analysis and ac power calculations that were
studied in previous topics, with occasional appearance of transformers.

However, symbolic solutions of three-phase systems “from first principles” would be a lot of
work: there are big advantages in solution simplicity in three-phase circuits if one recognises
symmetries and power-based shortcuts, and knows some useful rules, which often involve

√
3!

Practice is needed, in order to get competence and confidence at using these shortcut methods,
and to become very familiar with how the voltages and currents in ∆ and Y connections are
related. The three-phase exercises also provide a chance to practice more with ac phasor analysis,
ac power and transformers: that’s helpful even for solving non-three-phase problems.

The following exercises work through a range of features of balanced three-phase circuits: vol-
tage and current, power calculation, numeric or symbolic, magnitude-only or complete phasor.
There is a deliberate mix of notation between questions (e.g. ω or f , U denoting phase-voltage
or line-voltage, calling Y-connection ‘star’ or ‘wye’), in order to familiarize you with different
conventions.

Some of the exercises are purely abstract, but others are hoped to feel relevant to practical
situations you might have observed. They range from easy up to harder than any exam question
we’ve made (the last few Exercises).

Some past exam questions are listed below. A common choice is a balanced situation based on
power and compensation, and an unbalanced situation with some voltage or current magnitude
to be found. Something of this sort is expected again.

2014-03˙E˙tenta Q6 balanced line and load: find voltage at load

2012-03˙E-EM˙tenta Q4 balanced; find current phasors

2014-05˙EM˙omtenta Q8 Y-D power-factor correction, and current phasor

2014-03˙EM˙tenta Q8 Y-D power-factor correction, and current phasor

2015-03˙EM˙tenta Q9 more Y-D and power-factors

2016-06˙EM˙omtenta Q9-a more Y-D and power-factors

2016-03˙EM˙tenta Q9-ab more Y-D and power-factors

2015-06˙EM˙omtenta Q9-ab more Y-D and power-factors

2015-06˙E˙omtenta2 Q9 three-phase multichoice

2015-03˙E˙tenta2 Q9 three-phase multichoice

1

http://kurs.ets.kth.se/ei1120/exams/2014-03_E_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2012-03_E-EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-05_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2014-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2016-06_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2016-03_EM_tenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-06_EM_omtenta.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-06_E_omtenta2.pdf
http://kurs.ets.kth.se/ei1120/exams/2015-03_E_tenta2.pdf


Exercise 1

The terminals at the left in this diagram are connected to a three-phase voltage source.

|ia| = I

+

−
u1Z

Z

Z

+

−

ubc

Conventions: unless told otherwise, in these exercises you can assume that:

• A “source” is a voltage source.

• Components are ideal: e.g. a voltage source has no impedance.

• A three-phase source is balanced : the sources of the different phases have the same
magnitudes, and are phase-shifted 120° from each other.

• Impedances used e.g. as loads or lines are also balanced: all equal.

We see that the magnitude of line-current is defined as I.
The impedances in the Y-connected load are all Z.
These are the two ‘known quantities’.

a) Find the magnitude of the load’s phase-voltage |u1|.

b) And find the magnitude of the line-voltage |ubc|.

Yes, the same results for magnitude should be found for any of the three phases of the load
(part a) or between any pair of the three conductors of the line (part b). We just happen to
have chosen a particular phase of the load and a particular pair of lines, on which to mark the
voltages.
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Answer 1

a) This load is Y-connected. That means that each phase of the load connects between one of
the lines and a common node (neutral). The line current and phase current are therefore the
same. This can be seen by KCL, looking at the diagram. Or it can be remembered as a feature
of a Y-connection.

Thus, the magnitude of the load’s phase-voltage is easily found from the magnitudes of phase-
current and impedance1 by Ohm’s law:

|u1| = I|Z|.

We have no further information about Z, so we can’t express this any more clearly than by
writing the magnitude symbol, |Z|.

b) The load where u1 is defined is Y-connected to the line, so the familiar number
√

3 will
relate the phase-voltage magnitude to the line-voltage magnitude |ubc|:

|ubc| =
√

3 |u1| =
√

3 I |Z|.

Unless asked to ‘prove’ this, it’s reasonable just to state the above solution by using the well-
known ratio

√
3 between the line and phase voltages in a star-connection (Y-connection).

If you do want to prove it from more basic ac principles, then start by defining voltages across
the three impedances (e.g. u1, u2, u3, with respect to the middle-point of the load), and noting
that these voltages have phase-shifts of 120° due to connection of a balanced load to a balanced
3-phase source.

We can define uP as the phase-voltage magnitude (uP = |u1|), then any line voltage can be
expressed as uP φ − uP φ−120°, or equivalently as uPejφ − uPej(φ−2π/3), where φ is the angle
of one of the phase voltages with respect to whatever we’ve chosen as the reference angle (we
aren’t given any specific phase angles in the question).

This magnitude, by application of a little trigonometry, is
√

3uP .

1You might be worried by the claim that one can ignore the phase angles when multiplying magnitudes to
find a magnitude? If we had an expression like ux + uy then the magnitude of the result does depend on the
phase-angles of these quantities: |ux + uy| cannot be assumed to be |ux|+ |uy|. But when we multiply or divide
complex numbers, the magnitudes and angles can be treated separately: A α/B β = (A/B) α− β.

3



Exercise 2

At the left (not shown), a three-phase source provides a line-voltage with magnitude U .

Z

i3

Z

ic
Z

+

−

|uL | = U

Find:

a) The marked phase-current magnitude in the load |i3|.

b) The line-current magnitude, |ic|.

4



Answer 2

(This is a sort of dual case to the Y-connection question.)

a) For this ∆-connection, the voltage across each phase of the load (each impedance Z) is the
same as the line voltage. This can be seen by KVL.

Thus, |i3| is found from the magnitude of the voltage and of the impedance:

|i3| =
U

|Z|
.

We can’t express the magnitude of the impedance2 any better than |Z|, since we have no further
information about it.

b) The load where i3 is defined is ∆-connected, so the familiar number
√

3 will relate this
phase-current’s magnitude to the line-current magnitude |ic|:

|ic| =
√

3 |i3| =
√

3U

|Z|
.

As in the previous question, if you want to ‘prove’ that this factor of
√

3 arises, you can do so by
noting that each line-current is a difference between two phase-currents (if we define all phase
currents going the same way around the ∆), and that the phase-currents are phase-shifted from
each other by 2π

3 .

The factor
√

3 then appears by the same reasoning as in the previous question, because

√
3 =

∣∣ 1 φ+ 0 − 1 φ− (−120°)
∣∣.

This is true for any value of φ, and for +120 degree or −120 degree shifts between the two
phasors.

Further notes:

Due to the assumption of balanced three-phase conditions, the above magnitudes would be valid
for any of the line currents (ia, ib, ic) and any of the phase currents (i1, i2, i3).

2We often see impedances in rectangular form, for example Z = R + jωL. Sometimes it’s instead desirable
to express them as magnitude and phase, i.e. in polar form, as we also sometimes do with phasors. Despite the
similarity of how we represent phasors and impedances, there is a fundamental difference between them: a phasor
represents the magnitude and phase of a steady-state sinusoidally time-varying quantity (like voltage or current),
whereas an impedance expresses the relation (magnitude ratio and phase-shift) between a voltage and current.

5



Exercise 3

A three-phase generator supplies a voltage of 440 V and its maximum rated current is 657 A.

a) What is its apparent power output when it is running at its maximum current?

b) How much active power (sometimes called real power or true power) would it supply to a
load that has pf = 0.8, if loaded to its maximum current?

Notes:
You can assume the stated voltage is a line-voltage; in fact, 440 V is a common line-voltage,
giving a line-neutral voltage (phase-voltage3) of around 250 V.
The voltage and current are sure to be rms values; that’s what is always used in power
applications.

In case you’re interested: the above details are from a specification of generators [pdf-link] of
the sort that are hired for temporary power, building sites, etc. There are some quite large ones,
e.g. with 3.3 kA currents. The document helpfully explains how to calculate three-phase power:
notice their factor 1.732, which we call

√
3. The word ‘alternator’ is often used for ac generators.

3Line-neutral voltage is often called phase-voltage when we’re considering networks, cables, connections, etc.
But at this stage in the exercises, we’re still trying to keep a textbook-style terminology where ‘phase’ voltages
or currents are strictly the voltages and currents of the single-phase sources or impedances that make up the
three-phase sources or impedances.
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Answer 3

a) The standard formula for balanced three-phase apparent power is4

|S| =
√

3IU,

where I and U are magnitudes of line current and line voltage. Hence

|S| =
√

3 · 440 V · 657 A = 500 kVA.

b) The power factor is the ratio pf= P
|S| . The maximum active power P available from this

generator (within its rated maximum current) is then 0.8|S|:

P = 0.8 · 500 kVA = 400 kW.

4This is equivalent to 3 1√
3
UI, which helps explain where the equation comes from. For example, if you have

a 400 V system, then each phase of a Y-connected load will get 230 V, and will have the same current as the line
current; each phase in the load then has apparent power IU/

√
3 where I and U are line quantities, so we write

the total power for the three phases as
√

3UI.
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Exercise 4

Given the stated values of the marked voltage u1 and the phase-impedances Z of the load, find:

a) The voltage magnitude of phase ‘a’ of the source, |ua|.

b) The current magnitude in line ‘c’, |ic|.

c) The total active power consumed by the three-phase load.

d) The voltage uc as a phasor (angle as well as magnitude).

e) The current ib as a phasor.
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Answer 4

Notice that these are just a balanced Y-connected source and Y-connected load, with no line-
impedance between. Each phase of the source therefore has the same voltage and current as the
corresponding phase of the load.

a) By 3-phase symmetry of the source and load, we expect the middle points (‘star-points’ or
‘neutral points’) of the source (node at left) and of the load (node in the centre of the load) to
have the same potential.

Thus, by KVL, u1 = ua, so |ua| = 100 V.

If you want to prove it better, try calling the left node zero potential, and writing a nodal
equation (KCL in the middle of the load) to find the potential vn at the middle of the node:
vn−ua
Z + vn−ub

Z + vn−uc
Z = 0. With the voltages ua,b,c being a balanced three-phase set, so that

ua + ub + uc = 0, we see that vn = 0, the same potential as the left node.

b) The current in line ‘c’, ic, is the same as in the load impedance at the bottom right.
By similar reasoning to subquestion ‘a’, we know the voltage across that impedance is uc, and
so the current is ic = uc/Z. We don’t need to include the angles, because we only were asked
about the magnitude.

Using the given numbers, |ic| = |uc|
Z = 100 V

10 Ω = 10 A.

c) The complex power into a single impedance Z subjected to voltage magnitude (rms, as
usual) u, is S = u2/Z∗. We have 3 identical impedances, each purely real, subjected to voltage
magnitude 100 V. The solution is therefore purely real, being only active power.

Hence, the load’s power is P = 3 (100 V)2

10 Ω = 3 kW.

Alternatively, work with the current found in subquestion ‘b’.
The source is Y-connected, so the line voltage magnitude is

√
3 · 100 V = 173 V.

The line current magnitude is 10 A.
The apparent power (skenbar effekt) to a balanced three phase load is |S| =

√
3ui, where u and

i are the magnitudes of line voltage and current.
Thus, |S| =

√
3 (
√

3 · 100 V) 10 A = 3 kVA.
Knowing that the load is purely resistive, we can state P = |S| = 3 kW.

d) Only one phase-angle is defined in the question: u1 = 0.
This let us know that ua = 0 (subquestion ‘a’).
The diagram states that ua = uc + 240°, which tells us that uc = (100 −240°) V.

e) By similar reasoning to subquestion ‘d’, we see ub = (100 −120°) V.
The system is balanced, so it has the same potential at the neutral points of the source and
load (even though there is no neutral conductor). The source ub the resistor it connects to will
therefore have the same voltage, so by Ohm’s law the current ib is

ib =
ub

10 Ω
=

(100 −120°) V

10 Ω
= (10 −120°) A.

9



Exercise 5

A 400 kV overhead transmission line carries 1200 MW from a large power station.

What is the current in this line if the power is transferred at unity power-factor (pf = 1)?

Yes, we assume it’s a three-phase line, and that it’s running at its rated voltage, and that that’s
a line-voltage magnitude, and that it’s in rms scale, . . .
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Answer 5

Unity pf implies P = |S|.

So,

I =
P√
3U

=
1.2×109 W√
3 · 4×105 V

= 1732 A.
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Exercise 6

This is a “single-line diagram” (SLD) of a 3-phase system.

Each drawn line (e.g. the horizontal line where ‘A’ is marked) represents a set of three (or
four, if there’s a neutral) conductors that form a three-phase circuit — for example, a cable or
overhead line. We assume it’s all balanced: balanced source, balanced lines, balanced loads.

There are two transformers, shown by symbols made from two linked circles.

Three loads are connected, with complex powers S1, S2 and S3 defined in the diagram.

The source is shown at the left (this is a common way to show a three-phase or single-phase
voltage source in a SLD).

The lines can be treated as having no impedance, and the transformers as being ideal.

Four points are marked on the lines: A, B, C and D.

For each of these points, calculate the complex power flowing in the direction shown by the
arrow, and the line-current magnitude.
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Answer 6

To make it easy to sum the different loads, it is convenient to convert all the loads to rectangular
form, i.e. complex power expressed as S = P + jQ.

The definitions of apparent power, power factor and power factor angle are that:

|S|2 = P 2 +Q2

pf =
P

|S|
= cos θ P

Q
|S|

θ

from which various other popular relations can be derived, such as

Q

P
= tan θ, Q = P

√
1

(pf)2
− 1, Q = P tan

(
cos−1(pf)

)
, Q = S

√
1− (pf)2

From such relations, we find the complex powers as:

S1 = 400 kVA (pf 0.9 lag) = 360.0 kW + j174.4 kvar

S2 = 500 kW − 50 kvar

S3 200 kW + j40 kvar

Notice the convenience that, assuming ideal transformers, the powers on both sides of the
transformer are the same: what goes in comes out. So, for power flows we don’t need to consider
the transformer’s details, such as its ratio or its Y or ∆ connections.

All that is needed is to find the power flow at each marked point, from the sum of the
‘downstream’ (to the right) powers. Then the line current magnitude can be found by the
usual relation of apparent power to line voltage and current magnitude, |S| =

√
3ui,

A) SA = S1 + S2 + S3 = (1060+j164.4) kVA, |IA| = |SA|√
3 · 480 V

= 1290 A

B) SB = S2 + S3 = (700−j10) kVA, |IB| = |SB|√
3 · 480 V

= 842.1 A

C) SC = S2 + S3 = (700−j10) kVA, |IC| = |SC|√
3 · 3.3 kV

= 122.5 A

D) SD = S3 = (200+j40) kVA, |ID| = |SD|√
3 · 3.3 kV

= 35.7 A

E) SE = S3 = (200+j40) kVA, |IE| = |SE|√
3 · 400 V

= 294.4 A
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Exercise 7

On the left is a three-phase voltage source. On the right is a three-phase current source: we don’t
often consider current sources in three-phase circuits, as most power-related sources are good
approximations of voltage sources; but current sources do have some relevance, particularly in
situations with power-electronic converters.

Let Ua = U 0, and I1 = I 0. The other sources are phase-delayed (lagging) by radian angles of
2π/3 (sources b and 2) and 4π/3 (sources c and 3).
The known quantities to use in the solutions are U and I, not Ua, I1, etc. You can assume these
are rms values.

a) Find the phasor ia.

b) Find the phasor u1.

c) What complex power S is delivered (sent out) by the 3-phase voltage source?

d) Express this (complex-)power S as apparent power and power-factor.

e) What complex power is delivered by the source I2?

Notation conventions: Some people show complex power (a complex value) as S, and
apparent power (skenbar effekt, a real value) as S. Here, we’re using S for complex power, and
including an explicit ‘magnitude’ symbol, |S|, for apparent power.
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Answer 7

a) Find the phasor ia.
By KCL in the top node, ia = I1−I3. Using the given details about phase-angles and magnitudes,

ia = I1 − I3 = I 0− I −240° = I 0 + I −60° =
√

3I −30°.

You can see this by sketching a diagram. If you prefer rectangular (kartesisk) thinking, consider
that

ia = I1 − I3 = I · (1− cos (−240°)− j sin (−240°)) = I

(
3

2
− j

√
3

2

)
,

from which

|ia| = I

√√√√(3

2

)2

...+

(√
3

2

)2

=
√

3I and ia = tan−1 −1√
3

= −30°.

b) Find the phasor u1.
By KVL, u1 = Ua − Ub.
A similar reasoning to the above can be used, but remembering that phase b is shifted by −120°
from phase a (not −240° as in the above),

u1 = Ua − Ub = U · (1− cos (−120°)− j sin (−120°)) = U

(
3

2
+ j

√
3

2

)
=
√

3U 30°.

c) What complex power S is delivered (sent out) by the 3-phase voltage source?
For the a-phase of the voltage source (Ua), the complex power output Sa is

Sa = Uai
∗
a = UI

(
3

2
− j

√
3

2

)∗
= UI

(
3

2
+ j

√
3

2

)
=

3UI

2
+ j

√
3UI

2
.

By symmetry5 we expect the same complex power from the other two phases of the three-phase
source. The phase-angles of voltage and current are different for these sources (120° shifts) but
the voltage and current are both shifted the same angle, so the relation ui∗ is unchanged.6 The
total complex power is then just three times that of one phase of the source,

S = 3Sa = 3
UI

2

(
3 + j

√
3
)

=
9UI

2

(
1 + j

1√
3

)
.

d) Express this power S as apparent power and power-factor.
Note that we can define active and reactive power as S = P + jQ. Then,

|S| =
√
P 2 +Q2 =

9UI

2

√
32 +

√
3

2
= 9
√

3UI,

5Notice that in a classic “source and impedance” system, symmetry just means balanced source and balanced
impedance loads. But in this system, where two sources are connected, symmetry requires that both sources
were connected with the same “phase rotation”. If, for example, any two single-phase voltage sources or any
two current sources were swapped, then both the three-phase sources would still be balanced, but they would
be connected to each other with opposite phase-rotation: the resulting powers would be different in the different
phases, as the complete system would not be symmetric.

6No change in complex power when phase-shifting u and i equally: S = ui∗, and let u = |u| α and i = |i| −β.
Then if both angles change by δ, S = |u| α+ δ · |i| −β − δ, simplifying to S = |u||i| α− β + δ − δ = |u||i| α− β.

15



and

pf =
P

|S|
=

3√
32 +

√
3

2
=

√
3

2
= cos(30°) lagging.

It is seen to be a lagging power factor because the phase current from the voltage source’s
a-phase (see subquestion ‘a’) has a phase of −2π/6 relative to that source’s a-phase voltage.
Alternatively, notice that the reactive power output is positive, as if feeding an inductive load.
The choice of phase-angles of the two sources is responsible for this.

e) What power is delivered by the source I2? (Let’s call this S2.)

This source is one of the phases of a three-phase source. By symmetry, each of the phases of a
balanced source in a balanced system has the same complex power: 1

3 of the source’s total.

By conservation of complex power (total complex power generated equals total consumed, in a
circuit) the three-phase current source in our circuit receives all the power that the three-phase
voltage source delivers. Or, we could instead say that the current source delivers all the power
that the voltage source receives: it means the same thing, as we don’t know the actual direction
of complex power flow until we’ve thought about the phase-angles.

So, using the result from subquestion ‘d’,

S2 = −1

3
S = −1

3

9UI

2

(
3 + j

√
3
)

=
9UI

2

(
−1− j

1√
3

)
,

which means that this source is in fact absorbing active and reactive power, not delivering it.
Seen from the voltage source, it “looks like” a resistive-inductive load. (But if the voltage source
phase or magnitude were to change, the load could look different, e.g. like a capacitor, or a power
source, or a pure resistor, depending on the relative phase of the sources).

Many choices could be made for the way of expressing the above solutions. As long as any
obvious big simplifications have been made, it doesn’t matter which form you choose.

16



Exercise 8

The known quantities here are phasors Ua, Ub and Uc (forming a three-phase source), and
impedance Z. Let the magnitude of each of the phasors be U , i.e. U = |Ua| = |Ub| = |Uc|.

a) Find the magnitudes of u1, i2 and vx.

b) Repeat the above question, but with the following circuit.
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Answer 8

a) Magnitudes of the marked quantities in the upper circuit:

Phase-voltage magnitude in load: |u1| = U/
√

3.

The source is ∆-connected, so the line voltage (magnitude) equals the voltage (magnitude) of
each phase within the source. The load is Y-connected to the line, so its phase voltage is 1√

3
of

the line voltage.

Line current magnitude: |i2| = U√
3Z

.

The current magnitude in each phase of the load is |u1|/Z. Due to the Y-connection of the load,
the line-current and phase-current have the same magnitude.

The magnitude of the marked potential: |vx| = U/
√

3.

Since the zero potential is defined as the middle-point (‘star-point’ or ‘neutral-point’) of the
Y-connected load, the marked potential is just the phase voltage of the lowest phase of the load!
This can be seen by ‘potentialvandring’.

. . . continued on next page . . .
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b) Magnitudes of the marked quantities in the lower circuit:

Phase-voltage magnitude in load: |u1| = U/
√

3.

Line current magnitude: |i2| = U√
3Z

.

The magnitude of the marked potential: |vx| = 0.

The reasoning for these answers is the following.

The two loads are the same, in the first and second circuit. And the two sources are also the
same, when seen from their three terminals.7

Thus, with identically behaving load, source and connection, we would expect the circuits to
have the same solutions. The only worry is that the earth node is defined differently between
these circuits. But each circuit had only one node marked as earth, so the actual voltages,
currents and powers are not affected by the earth node: the earth node only determines how we
define potentials.8

The new circuit has the earth point on the node where vx is defined – so, “by definition”, vx = 0.

The other quantities are a voltage and current. For the reasons given above, these are identical
between the two circuits.

7This may not be obvious! But, bear in mind that a ∆-connected voltage source only makes sense when the
sum of the three single-phase sources is zero: otherwise it would be contradicting KVL. In balanced three-phase
conditions this condition of Ua + Ub + Uc = 0 is fulfilled; thus, the voltage of any one of the single-phase sources
is equal to the voltage that would be found at that point due to the other two sources. If it’s removed, the
three-phase source’s terminals still have the same relative voltages. Another way of seeing this is that between
three terminals (of the three-phase three-wire source) there can only be two independent voltages, as KVL will
determine the remaining third voltage. So these two independent voltage can always be produced by just two
sources. In contrast, for a four-wire system (with neutral) one might have to use three sources, as there are three
independent voltages between the four wires. The only difference between the first and second diagram is the way
that the line currents split between the different single-phase sources: this is a “hidden detail” of the three-phase
source, not important for the circuit outside it. We normally draw all three sources in order to imply “balanced
three-phase”, and because in real applications the sources are typically transformer windings (coils) or generator
windings, each one contributing its fair share of the delivered power.

8It would be different if there had been two earth nodes in a single circuit-diagram, and they had been changed
to be on different nodes between the two diagrams. All earth points shown in a diagram are assumed to be joined
together, as part of the same node. There would then be a different connection within the circuit, not just a
different definition of which potential is called zero. The definition of potential does not affect the key circuit
quantities of voltage.
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Exercise 9

For each circuit, (i) to (vi), the impedances with open symbols are resistors of value R, and
those with shaded symbols are resistors of value xR, where x is a scaling factor; the voltage
sources each have magnitude U , and form a balanced 3-phase set. We can think of the R being
a load, and the xR being the impedance of the source and line.

Find, in each circuit: the magnitudes of the marked current i and voltage u; and the total
active power supplied to the load resistors, i.e. the three with value R.

(We could have been more general, by using impedances Z and xZ, and asking for complex
or apparent power instead of power. But that would divert attention from the core purpose of
seeing symmetries and using

√
3 factors.)
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Answer 9

(i) This is a classic Y-Y source and load. The shown neutral-connection has no effect, as the
system is balanced: no current flows in the neutral, and the voltages in the circuit will not
change if the neutral is removed.

The nodes at the left and right (the star-points [neutrals] of the Y-connections) have the same
potential, so KVL can be applied for each phase separately: e.g. we can study just the series-
connected source and two impedances in the top row, and know that the other rows have the
same properties except for having every angle shifted by ±120°. As we only are interested in
magnitudes, we don’t even have to keep track of any absolute angle. The current i is found by
KVL and Ohm’s law. The voltage across one resistor R is found by iR, then this value (the
phase-voltage in a Y-connected load) is multiplied by

√
3 to give the line voltage u,

i =
U

(1 + x)R
u =
√

3iR =

√
3U

1 + x
P = 3i2R =

3U2

(1 + x)2R
.

The calculation of power as i2R was based on seeing that the line current i also flows in the
load resistors R. An alternative is to use the standard three-phase power formula P =

√
3ui, as

u and i are the line values.

(ii) This is similar, but the load resistors are ∆-connected. We could analyse this directly, by
noticing that the current in each resistor R (the load’s phase-current) is u/R, and that the line
current (for ∆-connection) is therefore

√
3u/R. But we don’t directly know u: it is not the same

as U or as
√

3U , due to the further resistance xR.

This can be handled by solving a suitable pair of equations, but it’s easier just to find u and
i by ∆-Y conversion of the load. That’s the “three-phase short-cut”. Then we can analyse just
the components in one phase, as in circuit (i). Thus, we convert this circuit to one like (i), but
with a load made of resistors R/3. Similarly to the previous case, we find u and i,

i =
U

(1/3 + x)R
=

3U

(1 + 3x)R
u =
√

3i
R

3
=

√
3U

1 + 3x
P = 3(i/

√
3)2R =

9U2

(1 + 3x)2R
.

The power here was found by noting that a current i/
√

3 flows in each phase of the ∆ load (each
resistor R), as this is the relation of line and phase currents for a ∆ connection. The same result
could be found by analysing the load power in the equivalent Y load, or by the formula

√
3ui. Try!

(iii) Same as circuit (i)!

Yes, there’s no neutral wire. But we discussed already that that makes no difference: it’s all
balanced three-phase.

And yes, the sources are “connected funny”: their positive-reference sides are on the source’s
neutral point. That makes no difference: it’s as if each source were shifted by 180°, but we didn’t
define any phase-angles anyway, so that can’t matter! (However . . . if one of the sources had
been connected the other way up than the other – e.g. two having the ‘+’ side on the neutral
point, and one having the ‘−’ side there – that would make a huge difference. Then it wouldn’t
be a balanced three-phase source any more; it would have 60° shift between the phases [not
evenly spaced] and they would sum to 2U instead of 0!)

21



(iv) Same as circuit (ii)!

This is getting a little repetitive, isn’t it? In each branch (phase) between the neutral point
(bottom left) and the connections to the ∆ load, there are a source U and a resistor xR, in
series. This is true for (ii) and for (iv). It doesn’t matter which order these two components are
arranged in: they are series connected, and KVL along the branch gives the same result either
way.

In other words “what the load sees is the same in both cases”. This is like our approach to writing
nodal analysis equations more simply when we have a branch with several voltage sources and
resistors: when we write KCL at the node at the end of the branch, we just look at the sum
of resistance and sum of voltage along the branch, as long as we don’t care about finding the
internal details of potentials within the branch.

(v) This looks similar to circuit (iii), except that the source is ∆-connected. In both circuits, the
source has three terminals, providing a three-phase voltage. What is “seen” at these terminals
is identical if this delta-connected source (each phase of which has voltage U) is replaced with
a star-connected source in which each phase has voltage U

√
3.

We can therefore (as usual) simplify this circuit to a purely Y-connected one, in which it is clear
how each phase can be treated separately. In that case, we can just use the results from (iii) or
(i), but substitute U/

√
3 instead of U .

i =
U√

3(1 + x)R
u =
√

3iR =
U

1 + x
P = 3i2R =

U2

(1 + x)2R
.

(vi) Interesting! Redrawing, we see a Y-connected load of resistors R, and a ∆-connection
where each phase has a series source U and resistor xR. That’s not so familiar. But it’s very
practically relevant. Realistic voltage sources have some impedance; if we connected them in a
delta, this circuit would be a good model.

But we can convert this to look like circuit (iii)! Replace the delta-connected phases of U and
xR, by a star-connected source U/

√
3, and series resistances xR/3! Then the previous solution

can be used again, substituting these changes:

i =
U√

3(1 + x/3)R
u =
√

3iR =
U

1 + x/3
P = 3i2R =

U2

(1 + x/3)2R
.

Is this valid? In circuit (v), a ∆-connected source (with no resistance) was able to be converted
to a Y-connected source that gave the same behaviour at its terminals. If the series resistance
xR is added to each phase of the ∆-connected source, then a balanced line-current i will cause
a phase-current i/

√
3 which passes in each resistor. Thus, the phase-voltage is decreased9 by

xRi/
√

3, and (for a ∆) the line-voltage seen at the terminals changes by the same amount. If
we want to try to get the same behaviour from a resistor in series with the Y-connected source
in (iii), then we need to make each phase of the source change by 1/

√
3 of this amount, as this

is the relation of line and phase voltages in a Y connection. Hence, we want a line-current i to

9In general, with arbitrary phase of the current (arbitrary load), the phase’s total voltage is changed by a
phasor that depends on the phase-angle of the current. This might reduce or increase the voltage magnitude.
But in our case, we know the impedances are all resistors, and everything is balanced: so the sources must give
output currents that are in phase with their voltages. The voltage drop across the series resistor xR is therefore
always exactly subtracting from the source voltage. With capacitors or inductors, or with unbalanced sources,
more work would be needed, using phasors all the way.
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change the phase voltage by (xRi/
√

3)/
√

3. This is achieved by using a series resistor of xR/3,
instead of the xR that we had in case (iii), given that the current i flows in this resistor due to
the line and phase currents being the same in a Y connection.

You are wise if during the above reasoning you are worrying “what about all the phase-shifts
between voltage sources, voltage drops across impedances, and currents or voltages in the phases
and lines?”. We made it simpler having just resistance. For balanced circuits it is valid for
arbitrary impedances, as long as their complex values are used throughout the calculation.
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Exercise 10

The known quantities in this circuit are U , ZL and ZP .

Find the following quantities as phasors:

a) ia and ib

b) i1

c) u3

d) ubc
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Answer 10

Note also: in answer ‘a)’, ib = ia · e−j2π/3 = (U −120°)/(ZL + ZP/3).
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Exercise 11

A modern aeroplane’s “Auxiliary Power Unit” (APU), i.e. an on-board generator, can be used to
provide lighting, air-conditioning and engine-starting while the plane is parked. When available,
a “Ground Power Unit” (GPU) is preferred for supplying the required electricity for a parked
aircraft, in order to avoid the fuel-burn and noise of an APU. The energy can then be obtained
from the airport’s power network, passing through a power-electronic converter that provides the
necessary voltage and frequency for the plane. You might have seen the fairly thick multi-wire
cables for ground power being plugged into a plane that has landed.

One example of a GPU is the Hobart 2400 exampleGPU[pdf] which converts ground power to
the required voltage and frequency, and supplies this to the plane through a 24 m cable. From
a Boeing 787 specification acaps-787[pdf] (p.67–72), we see that this plane has inlets for up to
three GPU cables of 90 kVA, 200/115 V (three-phase), 400 Hz, with all three being needed in
order to start the engines in the worst conditions while also keeping all cabin loads running.
This is a quite modern plane that is “all electric”; others may require pneumatic connections
to run some services.

The voltage specification means 200 V line voltage (huvudspänning), and therefore 200 V/
√

3 =
115 V as the phase voltage (fasspänning) between each line and the neutral. It’s a common
way of showing both voltages, and thereby implying a “three-phase four-wire” system. The
low-voltage distribution network that we’re used to in Europe is often described as ‘400/230 V,
50 Hz’, or sometimes with the voltages reversed: 230/400 V.

The frequency 400 Hz is common in aircraft and some ships. An advantage of higher frequency
is that electromagnetic machines (generators, motors, transformers) can have a smaller size and
mass for a given power rating when the frequency is higher. A disadvantage of higher frequency
is that inductive reactances are increased (giving more voltage drop in the lines when load
current passes through them) and capacitive reactances are decreased (requiring more current
to charge the parallel capacitance of cables).

a) What current does the 90 kVA GPU described above have to supply when providing its full
rated power? This is the current magnitude in each of the three conductors, i.e. the line current;
people dealing with networks might say “the current in each phase of the cable”.

b) Suppose that the 24 m cable between the GPU output and the plane’s input has a series
resistance R = 10 mΩ and series inductance L = 7.0 µH per phase.10 Consider the situation
where the voltage at the plane is the rated value of 200 V, and the power flow into the plane at
this point is 90 kVA at pf = 1.
What is the line-voltage magnitude at the source (GPU) end of the cable?
What reactive power does the source (GPU) supply?

c) Do subquestion ‘b)’ again, but with pf = 0.5 lagging.

10No details about the GPU cable have been found. The resistance suggested here is realistic for a cable that
can carry the current we find in question ‘a)’, as that current suggests rather more than 50 mm2 of copper being
needed. The inductance suggested here is typical for a cable where the conductors are tightly bundled together:
it would be more if they were far apart as in an open-wire overhead line.
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Answer 11

a) Using total complex power S, and [rms] line-quantities U and I,

|I| =
|S|√
3|U |

=
90.0 kVA√
3 · 200 V

= 260 A.

b) Each phase of the line (cable) has an impedance of

Z = R+ jωL = 10.0 mΩ + j2π · 400 Hz · 7.0 µH = (10.0+j17.6) mΩ.

The magnitude of this impedance is close to 20 mΩ. When the line current of 260 A passes
through this impedance, the magnitude of the voltage across this phase of the cable is

|ucable| = |I||Z| = 260 A · 20 mΩ = 5.3 V.

But we cannot just add this (as a scalar) to the voltage at the plane, to find the voltage at the
GPU. In our KVL we have to consider the phasors, with angle as well as magnitude; the angles
of the impedance and of the load-current (relative to the load voltage) are both relevant.

Probably the easiest approach is to consider just a single phase of this balanced three-phase
circuit, treating all loads and sources as Y-connected. In a balanced circuit, we know that all
three phases have identical diagram, powers, impedances, and voltage and current magnitudes;
the difference is just that all voltage and current angles are shifted 120° between the phases.
Let’s draw one phase, and define the voltage up at the plane as our reference angle. This will
be the phase voltage, of 200 V√

3
= 115.5 V.11 The power supplied in this phase is 1/3 of the total

power.

+
−Ux

Z

+ −
ucable

i 115.5 V 0°

Zp

+

−

up
GPU

cable
plane

power supplied: 30 kW
(= 1/3 · 90 kVA at pf=1)

The load’s complex power and phasor voltage are known, from which the phasor line-current is

i =

(
(30+j0) kVA

115.5 V

)∗
= (260+j0) A,

which is purely real, as the load’s power is purely real (active power) and its voltage was defined
as the reference angle.

The voltage marked across this phase-conductor of the cable is

ucable = iZ = (260+j0) A · (10.0+j17.6) mΩ = (2.6+j4.6) V.

11The specification of ‘200/115’ rounds the phase voltage to 115 V, but 200V√
3

is much closer to 115.5 V. We
will keep our calculation a bit more precise than is of practical need, just so that we don’t get confused later by
small differences between the phase and line voltages in our final answer.
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The magnitude of voltage Ux at the source is

|Ux| = |up + ucable | = | (115.5+j0) V + (2.6+j4.6) V | = | (118.1+j4.6) V | = 118.2 V.

Notice that the imaginary part of the cable’s voltage had very little effect on the difference in
voltage magnitudes between the two ends of the cable, because it was added at 90° to a much
bigger number: think of ‘small angle approximation’, or that

√
1 + k2 ' 1 if k � 1.

Final step! Remember that we’ve studied just one phase, considering loads and sources as being
single phases of a Y-connected three-phase system. If the phase-voltage is larger by 118.2 V −
115.5 V = 2.7 V at the source than the load, then in a balanced system the line-voltage should
be larger by

√
3 · 2.7 V = 4.7 V. Alternatively, we can calculate the line voltage at the source

directly from the phase voltage 118.2 V at the source,

UGPU =
√

3 · 118.2 V = 204.7 V.

c) Repeat ‘b)’, but pf = 0.5 lagging. Easily done, following the exact procedure used above,
but with a different complex power at the load.

The power-factor angle is θ = cos−1(0.5) = 60°. This is the angle between the voltage and
current phasors. It represents the current lagging the voltage, because we were told that the
power factor was lagging, and voltage is the conventional reference angle for defining lagging or
leading power factors. So the complex power is

S = |S| · ejπ/3 = (45.0+j77.9) kVA,

and the line current is

i =

(
1
3 · (45.0+j77.9) kVA

115 V

)∗
= (130−j225) A,

leading to a voltage across the cable of

ucable = iZ = (130−j225) A · (10.0+j17.6) mΩ = (5.3+j0.035) V.

The magnitude of voltage Ux at the source is

|Ux| = | (115.5+j0) V + (5.3+j0.035) V | = 120.8 V,

so if we think back to the actual circuit (not just the single-phase model), the line voltage at
the GPU is

UGPU =
√

3 · 120.8 V = 209.2 V.

With this lower power factor, we have seen more difference in voltage between the sending and
receiving ends of the cable. That is because the load current angle (relative to load voltage) is
now very similar to the angle of the line’s impedance. The voltage ucable is then almost in phase
with the load voltage, so the phasor sum of the two voltages is almost the same as the sum of
magnitudes.
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Exercise 12

This diagram shows a three-phase source, coupled through a line of impedance Z to the primary
of a three-phase transformer that is made of three ideal single-phase transformers. The secondary
side of the transformer feeds a ∆-connected inductive-resistive load and a set of ‘power factor
correction’ capacitors.

The line voltage at the transformer primary is 10 kV, so |u′bc| = 10 kV.
The frequency is 50 Hz.
The transformer ratio is n = 25.
Use the source’s a-phase (UA) as the reference angle: UA = 0.

a) Find |ucn|, |ubc| and |u3|.

b) Find |i1| and |ia| in terms of R, L and C. For neatness, define ω = 2π · 50 Hz and u = |ucn|.

c) What reactive power Q and apparent power |S| does the ∆-connected load consume, if its
active power consumption is 30 kW and its power-factor is 0.9 lagging?

d) What values do R and L have if this ∆-connected consumes the complex power indicated
in subquestion ‘c’?

e) What value must C then be in order to give complete power-factor correction, so that the
transformer supplies only active power?

f) What are the magnitudes of line-currents |ia| and |iA|?

g) If Z = (3.16 + j3.16) Ω, what is |UA|?

h) Again assuming Z = (3.16 + j3.16) Ω, what is ucn?
Note: not just as magnitude . . . phase-angle also.
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Answer 12

a) The transformer’s windings are in ∆ (primary) – Y (secondary) connection.
Everything’s balanced in this system.
We are told the line-voltage on the primary side of the transformer: it is |u′bc| = 10 kV.
Each single-phase transformer has its primary connected between two lines, i.e. 10 kV.
With the transformer’s ratio n = 25, the voltage on its secondary side is 10 kV/25 = 400 V.
The marked ucn is the voltage across one of these secondary windings, so |ucn| = 400 V.
The marked line-voltage ubc on the secondary side is |ubc| =

√
3 · 400 V = 692 V, as the secondary

sides of the transformers are Y-connected and have a phase-voltage of 400 V.
Voltage u3 is also |u3| = 692 V, as this voltage is marked between two lines.

b) Current i1 is defined in one phase of the ∆-connected balanced load. The voltage across
this phase has magnitude 692 V, as we see from subquestion ‘a’. By the relation

current magnitude =
voltage magnitude

impedance magnitude
,

we find

|i1| =
692 V√

R2 + ω2L2
.

Current ia is the line-current to this ∆ load, added to the current to the Y-connected capacitors.
This addition has to be done using phasors, even if we only want magnitude in our final result:
the magnitude of the total current depends on the relative angles of the added currents. It seems
simplest and safest to do a ∆-Y conversion so that each phase of the Y-connected equivalent is
a series R/3 and L/3, and then to consider just one phase. We can start by finding the total
admittance of the C and L-R loads (per phase), and simplifying this. Then the magnitude of
current can be found from the magnitude of voltage and the magnitude of admittance, by the
same principle as we used for |i1|. Alternatively, we could work with currents from the start,
which would just mean that an extra factor of voltage 400 V at some arbitrary angle would have
to be carried through the equations. The admittance of each phase is

Y =
1

R
3 + jωL3

+ jωC =
3R

R2 + ω2L2
+ j

(
ωC − 3ωL

R2 + ω2L2

)
,

which has magnitude

|Y | =

√
(3R)2 + (ωCR2 + ω3CL2 − 3ωL)2

R2 + ω2L2
.

When the phase-voltage of 400 V is applied to this admittance, the current into it will have the
same magnitude as the sought line-current |ia|,

|ia| = 400 V · |Y |.

There seems little point copying all the long expression for |Y | into this equation: we know how
we could calculate if we had values of the components.

c) What reactive power Q and apparent power |S| does the ∆-connected load consume, if its
active power consumption is 30 kW and its power-factor is 0.9 lagging?
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From pf = 0.9 we know

|S| = P

0.9
=

30.0 kW

0.9
= 33.3 kVA,

and from this,
Q =

√
|S|2 − P 2 = 14.5 kvar.

We know that this positive value of reactive power is the value into the load; reactive power is
consumed by a load that has lagging power factor. We can confirm the reasonableness of lagging
power factor, since this load consists only of resistance and inductance.

d) What values do R and L have if P and Q are the values in ‘c’, above.

For an impedance Z, with voltage magnitude u applied to it,

S =
|u|2

Z∗
.

In our case, S = (1/3) · (33.3+j14.5) kVA because the impedance in each phase of the load
contributes 1/3 of the load power. The voltage across each is u = 692 V. The impedance for each
series R-L pair is then

Z =
|u|2

S∗
=

(692 V)2

1
3 · (30.0−j14.5) kVA

= (38.8+j18.8) Ω = R+ jωL.

By equating real and imaginary terms in the above, we get

R = 38.8 Ω and L =
18.8 Ω

2π · 50 Hz
= 59.7 mH.

e) With all the above values of L, ucn etc, what value of C is needed in order to give complete
power-factor correction of the ∆-connected load?

Looking back to subquestion ‘b’, we have an expression for the total admittance Y per phase. Or
if we’d chosen an alternative method, we might have found an expression for the total current
caused by applying 400 V to this admittance.

These expressions apply to the combination of the Y-connected load and the capacitors. Com-
plete power-factor correction means that this combination has unity power-factor, or in other
words has zero reactive power: the capacitors supply what reactive power the load consumes.

From the expression for Y , this condition requires

ωC − 3ωL

R2 + ω2L2
= 0 =⇒ C =

3L

R2 + ω2L2
.

Putting in the values we found before,

C =
3L

R2 + ω2L2
=

3 · 59.7 mH

(38.8 Ω)2 + (2π · 50 Hz · 59.7 mH)2
= 96 µF.

f) Line-current magnitudes |ia| and |iA|, given the values of R, L, C determined in earlier
subquestions.

The secondary-side line-current magnitude |ia| was already derived in subquestion ‘b’, in terms
of R, L, C, etc. Now that we know these values we can find |ia|; we can even try being cunning,
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noticing that the imaginary part in the expression for Y can be ignored (since we chose C to
set this part to zero), so

Y =
3R

R2 + ω2L2
.

The actual line current is identical to the phase-current in the single-phase Y-equivalent model
for which Y was derived, so

|ia| = |400 V| ·
∣∣∣∣ 3R

R2 + ω2L2

∣∣∣∣ = etc!

But we might notice that there’s a quicker way! The load consumes active power of 30 kW.
With complete power-factor compensation of the load, the transformer therefore supplies S =
P = 30 kW. So, by the familiar formula for balanced three-phase power in terms of line voltage
and current,

|ia| =
30 kW√
3 · 692 V

= 25.0 A.

To find the line-current magnitude at the primary side of the transformer, |iA|, we can do
the same: we know the line voltage at the transformer’s primary, and we know that an ideal
transformer must have the same complex power going in as coming out,

|iA| =
30 kW√
3 · 10 kV

= 1.73 A Yep: genuinely
√

3 A!

Another way to find this would be to note that the secondary-winding phase currents are equal
to the secondary line currents (Y-connection); the primary-winding phase currents are 1/n of
this; then the primary line-currents are a factor

√
3 larger (due to ∆-connection):

|iA| =
√

3

n
|ia| = 1.73 A.

g) |UA| given that Z = (3.16+j3.16) Ω.

As usual for balanced conditions, it’s convenient to use a per-phase view of the circuit.

The load has complete power-factor correction, and the transformer is ideal, so the power
transfer at the transformer primary is purely real. It is 30 kW, which means 10 kW per phase.

We know the line-voltage magnitude at the transformer primary is |u′ab| = 10 kV. For our
per-phase equivalent we can consider phase-a; this is convenient, as phase-a of the source is the
reference angle. Let’s define as u the phase-a potential at the transformer, denoting its unknown
angle as α. The per-phase equivalent is then the following:

+
−|UA| 0

iA
Z = (3.16+j3.16) Ω

+ −
uz = ZiA

Sa = 10 kW

+

−

u = 10 kV√
3
α

In this circuit, the variables we already know are Z, |iA|, and |u|.
We need to find |UA|. The obvious way to start is KVL,

UA = u+ uz = u+ ZiA or |UA| 0 =
10 kV√

3
α+ (3.16+j3.16) Ω · |iA| β (where β = iA),
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but this equation contains three unknown parts: the magnitude |UA|, the angle α and the angle
β of the current iA. The circuit is not directly solvable from just this information; to find |UA|
the phasor sum of u+ uz is needed, but both of these voltages have unknown angles.

However, to find the magnitude of the phasor sum, we only need to know the relative angles of
u and uz. This, fortunately, can be found from our knowledge that Sa = 10 kW. This tells us
that

iA =

(
Sa
u

)∗
,

iA = −( Sa − u) =⇒ u− iA = Sa = (10+j0) kVA = 0.

In other words, as the load looks purely real (‘resistive’), the current iA and voltage u are in
phase with each other. The magnitude |u+ uz| is then

|UA| = |u+ uz| =
∣∣∣∣|u|+ |iA|Z∣∣∣∣ =

∣∣∣∣10 kV√
3

+ 1.73 A · (3.16+j3.16) Ω

∣∣∣∣ = 5.78 kV.

Notice that the same result would have come if instead of taking magnitudes of |u| and |iA| we
had given both of these quantities an arbitrary angle, the same for both. If Sa had not been
purely real, then we’d have to have added a further angle of Sa to u in the calculation.

This result for |UA| is very similar to the voltage magnitude |u|, since uz is so small: the voltage
difference is 5.5 V in 5.77 kV.

We have now got the solution, |UA| = 5.78 kV. This quantity was part of the per-phase circuit
drawn above: that’s because UA is one phase of a Y-connected source, and we chose to work
with phase-a. If instead the line-voltage at the source had been requested, it would be necessary
to multiply by

√
3.

h) ucn given Z = (3.16+j3.16) Ω.

As seen in part ‘g’, the voltage across impedance Z is very small compared to UA, u′bc etc. There
is negligible difference in angle, between the source and the transformer primary.12 The zero
angle defined in this system is phase-a of the source. The bottom transformer supplies the voltage
ucn on its secondary, seen from the dotted end relative to the other end. The primary, seen in
the same direction with respect to the dots, sees 10 kV with a phase angle of UC − UA = 150°,
on the above assumption that there is negligible phase-shift from the currents iA,B,C in the
impedances Z.

Therefore, ucn = (400 150°) V, or ucn = (−346+j200) V.

12If you sensibly want to know “how negligible”, then the result of (180/pi) * angle( 1.73*(3.16+3.16j)

+ 10e3/sqrt(3) ) tells us the angle is 0.05°!
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