systemakic methods! NODAL ANALLYSIS $\left(P_{t .1}\right.$. $)$
We 've seen "tricks" like:

On the other hand, we claimed that KVL, KCL, and the component definitions, were sufficient for all our circuits! (The trouble is that they quidely give us lots of equations,)
We want a systematic way to get minimal number of equations to sole any circuit containing our known components.

What is the meaning and advantage of being SYSTEMATIC?
We mean: following a particular set of rules (always) (by implication: a simple set of rules.)
advantage.

- Solution is not so dependent on our luck and skill at seeing which dover trick to use we can program a computer (easily) to do areviit analysis.
(disadvantage)
the equations we generwe may be hard to solve "by hand".
- other methods may make us "understand" the circuit better by having to think whom is important to our solution

Bad idea)
using ALL rules

Number every node

Define u \& i for every component
Then write everything we know:

$$
\left.\left.\left.\begin{array}{l}
u_{2}=U_{2} \\
i_{1}=I_{1} \\
\frac{u_{3}}{i_{3}}=R_{3} \\
\text { etc }
\end{array}\right\} \begin{array}{cc}
u_{3}-u_{2}=0 \\
\text { demponinitions } & u_{4}+u_{5}-u_{6}=0 \\
\text { etc. }
\end{array}\right\} \begin{array}{l}
i_{1}+i_{4}-i_{5}=0 \\
\begin{array}{l}
i_{1}+i_{2}+i_{3}=0 \\
\text { live every } \\
\text { lope }
\end{array} \\
\text { etc }
\end{array}\right\} \text { kat at }
$$

That "bad idea" way should work
But it's lots of equations and new variables. In our single case : $6+3+\underset{\text { conppenets kiel }}{4}$ equations.

We dort need so many,

One efficient systematic method "mesh analysis"
 skip this page unless interested)

Dad points: - Not so easy to define minimal number of loops in a circuit that cant be drawn flat wont crossings.

- Mesh currents arent directly physical currents in some cases.

Our choice of an efficient systematic meted: NODAL ANALYSIS a compument o mesh analysio: define potentials, and use $\mathbb{K C L}$

Basicicules (see additions on later- pages!!)
Define one node as Zero ((grand d)
Define potentials at other nodes
Write KCl ar these other nodes (not the evan rode)

Example: Noolat analysis

Let's take that annoying circuit that we couldn't solve! (We could but not easily by ar toolbox of simplification and tricks.)

(40) Suppose we want to find the voyage u_{5} across the central resistor. Then we can use the case $R_{1}=R_{2}=R_{3}=R_{4}=R_{5}$ to prove that $u_{5}=0$ for this symmetric case.

- Perhaps wed also like to find the relation $4 / i$ which tells us the equivalent resistance of this circuit.
so apply the noclal analysis rules.
(Let's start with the case where we define current i by a source I)

- Set a zero node $\frac{1}{5}$
- mark potentials at the the nodes - write KCL at each of these:
(nader)

$$
\begin{aligned}
& \frac{V_{1}-0}{R_{1}}+\frac{V_{1}-V_{2}}{R_{5}}+\frac{V_{1}-V_{3}}{R_{3}}=0 \\
& \frac{\text { oder }}{\frac{V_{2}-0}{R_{2}}+\frac{V_{2}-V_{1}}{R_{5}}+\frac{V_{2}-V_{3}}{R_{4}}=0}
\end{aligned}
$$

$$
\frac{3_{3}-V_{1}}{R_{3}}+\frac{V_{3}-V_{2}}{R_{4}}-I=0
$$

That gave was 3 (independent!) $\begin{gathered}\text { equations and } 3 \text { unknowns. Its solvable: }\end{gathered}$
Quite hand work to solve symbolically for all of V_{1}, V_{2}, V_{3}.
(But a computer is happy to do te.)

- We could solve for just V_{3} to help find the ciraip's equivalent respitance ($\frac{U_{3}}{I}$)
- Or for V_{1} e V_{2} to find U_{5}
- It's easier of R_{1}, R_{2} ext have numenc values.: then we get simple coefficients, es. $\frac{1}{R_{1}}+\frac{1}{R_{2}} \underset{\text { becomes }}{\Rightarrow} 2,56$

Zoom in ... how did we write KCL:

Quick way of harding resister:

current out from here to there is: $\frac{V_{\text {here }}-V_{\text {there }}}{R}$

Ok We can handle $\underbrace{\text { current sources }}_{\text {current by definition }}$ and $\underset{\substack{\text { pestentiad difference } \\ \text { and }}}{\text { remidflan }}$ i KCl

But what if there had been a UdTAGE source?? Weave always said "it tells us nothing about the current"
 how to get kC here?
currents in resistors are ok (as before) What above voltage source's current? ?

SOLUTIOW: define an unknown current but then we have more unknowns than equoutions ...

$K C L$, using defined unknown i_{α} :
(1) $\frac{V_{1}}{R_{1}}+\frac{V_{1}-V_{2}}{R_{5}}+\frac{V_{1}-V_{3}}{R_{3}}=0$
(2) $\frac{V_{2}}{R_{2}}+\frac{V_{2}-V_{1}}{R_{5}}+\frac{V_{2}-V_{3}}{R_{4}}=0$
(3) $\frac{v_{3}-v_{1}}{R_{3}}+\frac{v_{3}-v_{2}}{R_{4}}+i_{\alpha}=0$

3 equations, 4 unkpains of $v_{1} v_{2} v_{3} i_{\alpha}$,
$K E Y$: The voltage source gave an extra unknown $i_{\alpha}(B A D)$ BUT it provides an extra equation too:
\qquad

Now we have the rules for wring natal analysis equations in circuits with Voltage sources, current sources and REEISTORS. $\left(\begin{array}{l}\text { We could handle a circuit of } 1000 \text { components, if we have a } \\ \text { computer to solve the equations for us... }\end{array}\right.$

Whats missing ...?

... we haveñt considered DEPENDENT T voltage or Current Sources

Goad news they're nothing special

- treat the sane as an independent sarre, and then define the contraling variable

Example with dependent sources:

NOTE: i_{4} and U_{5} are the controlling variables of the dependent senses
We define the current in each Voltage scarce: here we have i_{α} and i_{β}
$\left\{\begin{array}{l}\text { (1) } \frac{v_{1}}{R_{1}}+\frac{v_{1}-v_{2}}{R_{5}}+\left(-G u_{5}\right)=0 \\ \text { (2) } \frac{v_{1} v_{3}}{R_{4}}+\frac{v_{2}-v_{1}}{R_{5}}+\left(-i_{\beta}\right)=0 \\ \text { (3) } G u_{5}+\frac{v_{3}-v_{2}}{R_{4}}+i_{\alpha}=0\end{array}\right.$
And define controlling variables in terms al exiting varintlas:

$$
i_{4}=\frac{V_{3}-V_{2}}{R_{4}}, \quad u_{5}=V_{2}-V_{1}
$$

The previous page shows a very general and reliable method, based on very few rules, for handling conversion of circuit diagrams to equations.

I used to call it "the simple meth ed". I''s commonly called "extended nodal analysis", as it includes and solves for the unknown currenter in voltage sources.

There are several ways that we can simplify the equations before or during waiting them! This is wsepul for "Solving by hand" (It's particularly easy when we dort care about some of the "solving by hand"
variables solutions).
The rest of this topic is about these various ways of writing more human -friendly nodal analysis equation!

Example 9 nodal analysis with simplification before writing the equations...

"find i " (by nodal analysis, symbdically
Whonato computer)
By the machine-like use of rules from the earlier cases, we would write 4 KCl equations, with 4 potentials, and an unknown current in source U..
\Rightarrow Sequations, 5 unknowns
Then solve for $i=\frac{V_{\text {top }}-V_{\text {bottom }}}{R_{3}}$ names at the nodes R_{3}

Sxaingle contr.
Instead: recognise that we only want the potential at one side of R_{3} (call the other side zero).
...t then we need only ane KCL.. can we adequately. express the currents into the node?

The previous example gave us a neat, quick solution.
We could have written a more simple circuit first, but one gets familiar with treating whale branches

Often, nodal analysis is a gard choice: "Write KCL^{\prime} "!
Often, it needs to be simplified by avoiding variables we dint want, or simplifying branches, if 12 3 to site nice equations.
Next session farther simplifications: "supernale".

