




























Non-inverting amplifier

The non-inverting amplifier puts the amplifier’s
input into the opamp’s non-inverting input v+.

That’s similar to the buffer, which gave 100%
feedback so that the output would need to have
the same potential as the input.

But here, instead of feeding back 100% of the
output to the input, the output is divided, by
resistors R1 and R2.
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That means the output has to ‘work harder’ to
force v− = v+. If we divide by 10, the output
must become 10 times as much as the input!

Analysis:

R1 and R2 are series-connected (because no
current goes into the ideal opamp input that’s
connected between them).

Voltage division gives

v− =
R1

R1 + R2
uo.

Given that

v− = v+ and v+ = ui

we derive the gain as

K =
uo

ui
=

R1 + R2

R1
= 1 +

R2

R1
.

Assuming {R1, R2} > 0, gain must be K > 1.

As the amplifier’s input connects only to one
of the opamp inputs, no current flows into the
amplifier,

Rin =∞.



Inverting amplifier

The inverting amplifier in its simplest form is an
input resistor that meets a feedback resistor at
the inverting input.
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By negative feedback and ideal opamp behaviour,
the opamp’s output adjusts to be whatever is
needed to obtain v− = v+.

In this simple example, the non-inverting input
is connected to earth so v+ = 0.

The feedback therefore forces v− = 0. We call it
a virtual earth: it is not part of the earth node,
although it has the same potential; a separate
KCL can be written at node v−.

Analysis:

KCL at the inverting input v−,

ui − v−
R1

+
uo − v−

R2
= 0,

but we’ve already claimed v− = v+ = 0, so

ui

R1
+

uo

R2
= 0,

which gives the gain as

K =
uo

ui
=
−R2

R1
.

Again assuming {R1, R2} > 0, we see K < 0.
This amplifier always changes the signal’s sign.
It can reduce the magnitude (−1 < K < 0) or
increase it (K < −1) or just invert (negate) the
input (K = −1).

The input resistance is seen from the resistor
between the input and virtual earth (v− = 0),

Rin =
ui

ii
=

ui
ui−0
R1

= R1.



Current-input amplifier

Up to now, we’ve considered amplifiers where the
input and output are both potentials.

Another choice is an output voltage proportional
to an input current.

This can be achieved by removing the input
resistor on the inverting amplifier, leaving just
a feedback resistor R.
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Here, the input is held to a constant 0 V (virtual
ground) by the feedback.

Analysis:

By KCL and Ohm’s law, the gain is

uo

i
= −R.

This is a transimpedance, meaning a ratio of
output voltage to input current (dimension:
resistance).

A circuit designed for measuring current should
ideally have very low input resistance (an ideal
ammeter is like a short-circuit). Then it accepts
the measured current without creating a voltage
that affects how much current flows.

This amplifier has the desired property: its input
voltage is held to zero, so

Ri = ∆ui/∆i = 0.

Practical detail:

We use basically this circuit for measuring
femtoampere currents in insulation materials in
the high-voltage lab.



Adder (översättning: huggorm)

The ‘virtual earth’ in an inverting amplifier is
convenient! We can have multiple input resistors,
each with a current proportional to the potential
applied to it: v1 and v2 in this circuit.
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The output voltage is whatever is needed to allow
all this input current to flow through the feedback
resistor Rf .

Analysis:

By KCL at the inverting input,

vo = −Rf

(
v1

R1
+

v2

R2

)
.

If R1 = R2 = Rf , the output potential is the sum
of the input potentials. Varied resistances permit
‘weighted’ sums and amplification or attenuation
(reduction).

You’d have trouble getting this convenient
arithmetic without an opamp!

The input resistances are (as with a one-input
inverting amplifier) equal to the resistances on
the respective inputs: R1 or R2.



Non-zero references / sources

An amplifier circuit (containing an opamp) is not
limited to only resistors.

Below is an example where the non-inverting
input is held to U instead of 0, in an inverting
amplifier. Other sources could also be included
in the circuit.
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The source introduces constants in the equations
for e.g. uo and iin. Then it cannot be assumed
that ∆uo

∆ui
= uo

ui
.

Analysis:

As before, KCL at the inverting input v− gives

ui − v−
R1

+
uo − v−

R2
= 0,

but now we have v− = v+ = U , so

uo

R2
= U

(
1

R1
+

1

R2

)
− ui

R1
,

which gives the output voltage as

uo =
U(R1 + R2)

R1
− R2

R1
ui.

The gain is how the input affects the output,

K =
∆uo

∆ui
=
−R2

R1
,

The input current is

ii =
ui − U

R1
=

ui

R1
− U

R1
,

from which input resistance is

Rin =
∆ui

∆ii
= R1.



More about input and output impedance

Here’s another non-inverting amplifier, with
further dividers on the input and the output. A
bit artificial, but it’s for pedagogical purposes!
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In the earlier circuits we didn’t discuss output
resistance. In fact, those amplifiers’ outputs
behaved as ideal voltage sources, driven directly
by the ideal opamp output: Ro = 0.

Analysis:

Let’s now consider all of K, Rin, Rout.

From the previous non-inverting amplifier’s
analysis, we see that

vx = v+
R3 + R4

R4
.

Including the effect of the input divider v+/ui and
the output divider uo/vx,

K =
uo

ui
=

R6

R5 + R6
· R3 + R4

R4
· R2

R1 + R2
.

No current goes into the opamp inputs, so the
circuit’s input appears as two resistors to earth:

Ri = R1 + R2.

The opamp’s output vx is ‘stiff’ (ideal voltage
source). But the complete amplifier circuit’s
output is through a divider of Thevenin resistance

Ro = R5 ‖ R6 =
R5R6

R5 + R6
.



Still more input and output impedance

Here we’ve ‘simplified’ by taking the output from
the feedback divider, and omitting the input
divider. It looks close to the original non-inverting
amplifier circuit.
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How differently does this behave from the
previous circuit, in which Ro 6= 0?

Analysis:

From the previous non-inverting amplifier’s
analysis, we see that

vx = v+
R3 + R4

R4
.

But we have taken uo here from the point
connected to v−, so we can expect that uo = v− =
v+ = ui . . . it is just a buffer,

K =
uo

ui
= 1 =

R3 + R4

R4
· R4

R3 + R4
.

No current goes into the opamp inputs, so

Ri =∞.

The opamp output vx has zero output resistance.
But we take our output via the divider: shouldn’t
that mean we have non-zero output resistance?
No! The feedback has to keep v− = v+. So vx will
adjust to force uo = ui always,

Ro =
∆uo

∆io
= 0.



Summary

The key assumptions used for analysis of “ideal
opamp with negative feedback” are:

• Input potentials are equal: v− = v+.

• No current goes into the opamp inputs.

• The opamp’s output potential will become
whatever is needed in order to push v− to
match v+. Define an unknown potential if
the output potential is not already defined.

• The opamp’s output can supply any current
that’s needed to achieve this and to
supply any loads connected to the output.
Remember that the three-terminal opamp
symbol is a trick: its output is “taking
current from a hidden earth connection”.

Simplifications-based analysis of opamps

One way to analyse a circuit that contains
opamps is a step-by-step method, with perhaps
a mixture of simplification, KVL, KCL, source-
transformation, superposition, etc.

Compared to a systematic application of nodal
analysis, the simplifications-based method might
help us more to feel how the circuit behaves, and
to avoid getting lots of equations to handle at
once.

On the other hand, we might sometimes get stuck
by not being able to see what step can be made
next. And we’d like a method that scales for
computer solution of big circuits. For this we’ll
look at systematic methods.



Example
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Analysis (step by step)

The current in Rr must be zero, as the only route
for this current is through an (ideal) opamp’s
input.

By Ohm’s law, there can then be no voltage
across this resistor:

v4 = 0, and so v3 = U2.

By the usual opamp assumption, the negative
feedback holds the two inputs to equal potentials:

v2 = v3 = U2.

By KCL in the node marked v2,

U2 − U1

Ri
− I +

U2 − v5

Rf
= 0,

in which the output voltage v5 (the only
unknown) is found as

v5 = Rf

((
1

Ri
+

1

Rf

)
U2 −

1

Ri
U1 − I

)
.



Nodal analysis (by systematic rules)

Only a few rules need to be added to what we
already know about systematic nodal analysis, in
order to include an opamp.

The opamp model that shows a dependent
voltage source driving the output gives a good
indication of how to treat the opamp output: a
voltage source connected between the earth node
and opamp output.

The trouble is that a normal dependent voltage
source has some finite value: we can then define
its output voltage as e.g. Hix. An ideal opamp
has infinite gain, and from this we’ve inferred that
the controlling variable (v+ − v−) is zero! So we
have a source with 0 · ∞, which is not directly
helpful.

The important point is that we can define an
unknown potential at the output, and the opamp
gives us an extra equation of v+ = v− which
makes the equation system solvable. (The inputs
provide two different KCL equations, but only
one independent potential.)

So the rules for including an opamp are:

Define the opamp output’s potential, e.g. vx,
if not already defined.

Extended nodal analysis: define output
current e.g. ix, with an arrow. (Supernode:
don’t need the current, as opamp output is
part of ‘earth supernode’, for which KCL is
not needed.)

Write the further equation v− = v+.



Nodal analysis: write the equations

First, KCL at all nodes except the ground node.
This is just the usual procedure in extended nodal
analysis. We have to define the unknown currents
in voltage sources: let’s define iα and iβ into the
+-terminals of sources U1 and U2 respectively,
and io out of the opamp as shown in the above
diagram.

KCL(1): 0 = iα +
v1 − v2

Ri

KCL(2): 0 =
v2 − v1

Ri
− I +

v2 − v5

Rf

KCL(3): 0 = iβ

KCL(4): 0 = −iβ +
v4

Rr

KCL(5): 0 =
v5

Ro
+

v5 − v2

Rf
− io

Then, each voltage source brings its own relation
between voltages,

VSRC(1): v1 = U1

VSRC(2): v3 − v4 = U2,

and the opamp is slightly different in that it
relates the node potentials connected to its
inputs,

OPAMP: v3 = v2

There are no dependent sources with controlling
variables that need to be defined, so we’re now
finished with writing the equations: there are 8
equations, and 8 unknowns (5 node-potentials
and 3 currents).

Good luck with solving the above, for v5!
Not recommended: waste of time!
Seeing the principle was the important thing.


