New components: CAPACITOR and INDNCTOR condensates

$$
v(t)=C \frac{d u(t)}{d t}
$$

$$
u(t)=L \frac{d i(t)}{d t}
$$

These are the fundamental definitions... a bit like a resistor, but with a denvative.
"Now you know all your meed to know" (again ...but we reed (as long as you can do the maths.-.)

Relation to earlier knowledge...

$$
\begin{aligned}
\operatorname{Thu} & \frac{d}{d t}(Q)=\frac{d}{d t}(v)
\end{aligned} \quad \Longrightarrow(i)=C \frac{d v}{d t}
$$

(for inductor, there isn't such an easy physical concept as "charge"... but it you use a voltage \times time product you can do the same solis of calculations.

Now our equations will be differential equations instead of just algebraic as in de circuits win $U, 1, R$.

These "reactive" components (C, L) Store energy $\left\{\begin{array}{l}\text { electric field } \operatorname{in} " \mathrm{C}) \\ \text { magnetic field }(\operatorname{in} L\end{array}\right)$ This stored energy cannot be instantaneously changed
... it tales time... we see an inertia (trigheat)
The components (by their energy) have a "memory".
CAPACitor e \rightarrow electric field energy $\rightarrow \underset{\substack{\text { Voltage dent change easily } \\ \text { spanningestrag }}}{ }$
INDUCTOR \rightarrow magnetic field energy $\rightarrow \underset{\substack{\text { Stromtrogs }}}{\text { current dost change cosily }}$
this shows hov the "continuous" (troy) quantity has a value depending on all of the past similarly for inductor;

$$
z_{2}^{u=\frac{L d i}{d t}}
$$

$$
\int \underset{\text { integrate bobs sides }}{\int U(t) d t}=\int_{t_{0}}^{d t} L \frac{d i(t)}{d t} \Rightarrow i(t)=\frac{L}{L} \int_{t_{0}}^{t} u(t) d \tau+i\left(t_{0}\right)
$$

We used the term "Continuous ghantity" for the energy-Storing kontinurertig stashes variable (the troy one)
That means it doesiti 'jump' - it changes gradually, needing time for energy to move in or out.

Let's test our confidence in the component definitions and in simple graphical calculus?

plot $u(t)$ e $i(t)$ for eula case. assume $u(0)=i(0)=0$

So these cases (ceep pumping more and mare energy in! (Not of practical interest... resistance becomes significant!)

Note the contrast of continuous/noncontinuous quantities.

How about these? time-varying sources.
(a)

(c)

(b)

find $i(k)$ or $u(t)$ in each case
(d)

Answers:
(a) $\left.i=C \frac{d u}{d t}=C \frac{d}{d t}(U \sin \omega t)\right)=\omega C(U \cos (\omega t)$
(b) "Same, by dwality" (swap $\{i, u\},(4, c\})$

$$
u=L \frac{d \dot{d}}{d t}=L \frac{d}{d t}(I \cdot \sin (\omega t))=\omega L I \cos (\omega t)
$$

(c) $i(t)=\frac{U(t)}{R}=\frac{U \cdot \sin \omega t}{R}=\frac{U}{R} \sin (\omega t)+$ easy ino "dynamics"
(d) Trickier! $i(t)=I \sin \left(\omega(t)=C \frac{d u(t)}{d t}\right.$ integrate boin sixles
blese wèd need more infarmuicion to sdve complutely.
we wercot given $\left.\begin{array}{r}\text { Eg. "assimme } U(0)=0 \text { "oxf/which tells uso bhark } u_{k}=\frac{I}{\omega C} \\ a_{t} t=0\end{array}\right)$ enafh infomation to find this!
finally...

$$
t u(0)=0
$$

Plot $u(t)$ e $i(t)$
in book cases.

Energy in capacitor and inductor ... depends on the continuous ghantiey

$$
\left\{_{p}^{\psi i} L\right.
$$

(not a mere coincidence!)

$$
W=\frac{1}{2} c u^{2}
$$

"work" or energy
(we cite use this, lexter, as E is used for electric field)

Reminaled of any tang form mechanics?
how to derive the energy...
take an uncharged capacitor.... $q=0$, so $u=0$, no energy. keep pushing changes $d q$ into it!
the work needed to push each one on is $d w=u(d q$ do Chis until we reach charge Q
energy voltage $\underset{\text { change }}{ }$

$$
\begin{aligned}
& \int 1 d w=\int u s d q=\int \frac{q}{c} d q \in \begin{array}{c}
\text { er as } \\
\text { we testa } \\
\text { ar fer } \\
\text { enc } \text { by }
\end{array} \\
& W=\left(\left.\frac{1}{c} \frac{1}{2} q^{2}\right|_{0} ^{Q}=\frac{1}{2} \frac{1}{c} Q^{2}+{ }^{\text {conc }}\right. \text { Cons }
\end{aligned}
$$

Now substitute the final ullage: $U=\frac{Q}{C}$ ie $Q=U C$

$$
W=\frac{1}{2} \frac{1}{C}(Q)^{2}=\frac{1}{2} \frac{1}{C} U^{2} C^{2}=\frac{1}{2} C U^{2}
$$

Similarly) for inductor energy (but again we doit have a nice word/concept lice "charge" for the $\int \tilde{u} d t$ product)

Parallel and series.
The same denvorious can be used as for resistors, bus with es. $\frac{d i}{d t}$ for inductor (instead $\% i$) or $\frac{d n}{d t}$ for capacitor

Unit step and switch
function $1(t): \frac{1}{0}$ i $t \geqslant 0$

close at time 0
es.

open at time t_{0}

