Mutual Inductance and Transformers
What we've seen already; inductors (separdicly) What we now study:

MUTUAL INDUCTANCE
consider two "coils"
cant ${ }^{2}$ even coll everebe a singe lop
if one is "open circuit" it has no current, so does not make magnetic field, so does not affect
 the other ... then the other is a simple inductor.

- but, when current flows in one coil it can induce voltage in the other due to the coupled magnetic field (linked)

Definitions for two coupled inductors:

$$
\begin{aligned}
& U_{1}=j \omega i_{1} L_{1}+j \omega i_{2} M \\
& u_{2}=j \omega i_{2} L_{2}+j \omega i_{1} M
\end{aligned}
$$

L.7 Self induratinces

M mutual inductance betiven the coils K coupling coefficient

These arena' independent",

$$
M=k \sqrt{L_{1} L_{2}}
$$

the part we have used earlier with simple inducers

che part due to the "other" currents magnets field
the "dots" shay" the relative directions of the two coils (more on this latherer)
for a plain inductor, relative direction g) u ei definitions determines the sign in the component's equation:

The same is true for each separate inductor in coupled inductors?

$$
\begin{aligned}
& u_{1}=\nexists \omega L_{1} i_{1} \not \pm j \omega M i_{2} \\
& u_{2}= \pm j \omega L_{2} i_{2} \pm j \omega M i_{1}
\end{aligned}
$$

no dote t
show the
can see from. the "convention"

What are the relative directions of the "coils"

The dots.

If current i, going into the dot on L_{1} makes a positive term in the voltage U_{1} equator, then current i_{2} into the dot on L_{2} also males a positive term in this equation.

(\dagger j $\omega M i_{2}$
slime sign
because $i_{1} e$ in have same direction relorevive to dots

In this simple geometry the dots mean "these ends of the inductors are at the same end of the magnetic path
.. currents into the dots travel the same direction
-. - induced voltages have the same direction relative to the dots.

Anther way to think of mutual inductance (interns of already.

$$
\text { from the equations: }\left\{\begin{array}{l}
u_{1}=j \omega L_{1} i_{1}+j \omega M_{i_{2}} \\
u_{2}=j \omega L_{2} i_{2}+j \omega M_{1}
\end{array}\right.
$$

Nothing special ... no great insight... just another way to think of A, that some people might like.

Calculations with mutual inductances.
coping
If you only know $\left(k, L_{1}, L_{2}\right.$ then find $M=k \sqrt{L, L_{2}}$
As usual: A calmly write all your lonauledge of the circuit.

- define any unknown 4 or i that are needed
- write equation for mutrial inductance:
- Write other circuit equations, (parts artoside the mutonal inductance)

$$
\left\{\begin{array}{l}
u_{1}=j \omega L_{1} i_{1}+j \omega M_{i_{2}} \\
u_{2}=e x c
\end{array}\right.
$$

$$
\begin{gathered}
\text { Careful about signs } \\
\text { dots }
\end{gathered}
$$

* then try to solve
(e check dimensions!)
KVL is aten useful, taken at each side go the malutual inductors.

Transformers - the ideal transformer

Practically: good "magnetic circuit" (iron) - thick, short,

- linking both inductors closely
- (not much porn for flux to "leal"" (link one winding laws not the e other)

describe the number of turns on each (i) as Ni_{1} \& N_{2}

Nos, with N_{1} "turns" around the magnets core on one sidle (primary") and N_{2} on the other ("secondary"), and with each turn linking around all the magnetic field (perfect coupling), ...

Each tum has the same voltage induced (same magnetic field)

$$
\Rightarrow \frac{U_{1}}{N_{1}}=\frac{U_{2}}{N_{2}} \Rightarrow \frac{U_{2}}{U_{1}}=\frac{N_{2}}{N_{1}}
$$

Currents must practically cancel each other,
$i_{1} \operatorname{tin}^{i_{2}}$ ie total current around the magnetic core $\simeq 0$, else
, leading to bis voltage that forces the currents to reach balance.

$$
i_{1} N_{1}+i_{2} N_{2} \simeq 0 \Rightarrow \frac{i_{2}}{i_{1}}=-\frac{N_{1}}{N_{2}}
$$

Commonly we define one arrens "ont" to avoid the negative:

or define $1: r$ where $r=\frac{N_{2}}{N_{1}}$

Notice: ideal transformer is defied purely by its
"turns ration" es $\mathrm{N}_{2} / \mathrm{N}_{1}$,

(same pave ot boohsichs)
$\Rightarrow a$ single number instead of three (L, L, M)
If nothing is connected 60 one side (open) no current flaws in the other.
"Transferring across" the transformer.

seen ar the terminals $a-b$ this

Transferring an impedance
First, a derivation based on the same circuits as used with the sources (then we set some negative signs because of having relative directions of $u l i$ in the "active convention"),

$$
\left[\begin{array}{l}
i_{2}=\frac{N_{1}}{N_{2}} i_{1} \\
u_{1}=\frac{N_{1}}{N_{2}} u_{2} \\
i_{1}=\frac{-u_{1}}{z}
\end{array}\right] \text { transformer eqnaritions law (active convention) }
$$

Putting these together,

$$
\begin{aligned}
& i_{2}=\frac{N_{1}}{N_{2}} \cdot \frac{N_{1}}{N_{2}} \cdot \frac{-U_{2}}{Z} \\
& S_{0} \frac{-U_{2}}{i_{2}}=\left(\frac{N_{2}}{N_{1}}\right)^{2} z
\end{aligned}
$$

alternatively, we can be more conventional, putting the impedance on the rgiththand side (classic "load", with source on the left).
 $\int \begin{aligned} & \text { equivalent when seen } \\ & \text { at the terminals } a-b \text {. }\end{aligned}$

$$
\left\{\begin{array}{l}
i_{1}=\frac{N_{2}}{N_{3}} i_{2} \\
u_{2}=\frac{N_{2}}{N_{1}} u_{1} \\
i_{2}=\frac{u_{2}}{Z} \\
i_{1}=\frac{N_{2}}{N_{1}} \frac{N_{2}}{N_{1}} \frac{U_{1}}{Z} \\
\frac{s_{2}}{i_{1}}=\left(\frac{U_{1}}{N_{2}}\right)^{2} 7 \text { transformer law }
\end{array}\right.
$$

the impedance that
behaves the same as the original impedance did when ar the N_{2} side of an $N_{1}: N_{2}$ transforine.

In some cases (typically when only interested in a solution at one side) it is helpful to "remove" the transformer after converting all components on the other side according to the turns ratio. Es. find Thevenin $a-b$.

See next.

now transfer U, T, L
to the other side:

$$
\begin{aligned}
& U^{\prime}=\frac{N_{2}}{N_{1}} U \quad I^{\prime}=\frac{N_{1} I}{N_{2}} I\left(\frac{N_{2}}{N_{1}}\right)^{2} L
\end{aligned}
$$

$$
\begin{gathered}
U_{a b(o c)}=U_{T} \\
\frac{k C L}{} \frac{U_{x}}{R}+\frac{U_{2}-U^{\prime}}{j \omega L^{\prime}}-I=0 \\
\Rightarrow U_{x}=\frac{\left(U^{\prime}+j \omega L^{\prime} I^{\prime}\right)}{1+j \omega L^{\prime} / R} \\
\therefore U_{T}=\frac{\frac{N_{2}}{N_{1}} U+j \omega L I \frac{N_{2}^{2}}{N_{1}^{2}} \frac{N_{1}}{N_{2}}}{\left.1+j \omega 4 \frac{N_{2}}{N_{1}}\right)^{\prime} / R} \\
Z_{T}=R \| j \omega L^{\prime}=\frac{j \omega\left(\frac{N}{N}\right)^{2} L R}{R+J \omega\left(\frac{N_{2}}{N_{1}} L^{2} L\right.}
\end{gathered}
$$

Example of transformes solution with "transfersing" components.

find Norton equivendent at $x-y$.

Nate that we could equally well have written $1: n$, in, which case the lace solutions would have $x n$ ins teat
We care about what is seen at $x-y$. So lets transfer everything to the rognt-hand side of the transformer:

(Then solve in the usual way.)

Norton impedance (source set to Zero)
Norton current (shor-arevit, $x-y$)

$$
\begin{aligned}
& \left\{\begin{array}{l}
m=\frac{j \omega L}{n^{2}} \frac{I}{T} z_{c}=\frac{1}{j \omega C n^{2}} \\
y_{0}
\end{array} \Rightarrow Z_{N}^{m}\right. \\
& Z_{N}=R+\frac{z_{l} z_{C}}{z_{1}+z_{C}}=R+\frac{\left.\left(\frac{j \omega L}{n^{2}}\right) \cdot \frac{1}{j \omega Z_{n}^{2}}\right)}{\frac{j \omega L}{n^{2}}+\frac{1}{j \omega C n^{2}}} \\
& Z_{N}=R+j \frac{1}{Z^{2}\left(\frac{1}{\omega L}-\omega C\right)}
\end{aligned}
$$

(Nose the complexity came from the) ac analysis, not from the transformer)
ANs yer

KCLL above capacitor:

$$
\begin{aligned}
& \frac{u-\frac{U L 0}{n}}{j \omega L / n^{2}}+\frac{u}{\left.i / j \omega c n^{2}\right)}+\frac{u}{R}=0 \\
& u\left(\frac{n^{2}}{j \omega L}+j \omega c_{n}^{2}+\frac{1}{R}\right)=\frac{U L 0 n^{2}}{j \omega L X}
\end{aligned}
$$

$u=\frac{U 0_{0} n}{\operatorname{juL}\left(\frac{n^{2}}{j \omega L}+j \omega C n^{2}+\frac{1}{R}\right)}$

$$
I_{N}=\frac{u}{R}=\frac{U \angle 0}{n R\left(1-\omega^{2} L C\right)+j \omega L / n}
$$

