KTH, Electric Circuit Analysis, EI1120 VT-2021

Solutions for Tutorial 03 (Nodal Analysis)

These were in fact old exam questions, from
2014-02_EM_ks1.pdf Question 3 and 2016-03_EM_tenta.pdf Question 2
1.

We'll number the nodes 0 (earth), 1 (left), 2 (centre), 3 (top), 4 (right), as shown above. You might have made different choices.

Extended nodal analysis without simplifications

Define the unknown currents in voltage sources U and $h i_{y}$ as i_{α} and i_{β} respectively, into the sources' + poles (passive).

KCL at all nodes except earth:

$$
\begin{align*}
\mathrm{KCL}(1): & 0=\frac{v_{1}-v_{3}}{R_{1}}-i_{\beta} \tag{1}\\
\mathrm{KCL}(2): & 0=\frac{v_{2}-v_{0}}{R_{4}}+i_{\beta}+g u_{x}+\frac{v_{2}-v_{3}}{R_{3}} \tag{2}\\
\mathrm{KCL}(3): & 0=\frac{v_{3}-v_{1}}{R_{1}}+\frac{v_{3}-v_{2}}{R_{3}}+\frac{v_{3}-v_{4}}{R_{2}} \tag{3}\\
\mathrm{KCL}(4): & 0=\frac{v_{4}-v_{3}}{R_{2}}-g u_{x}+i_{\alpha} \tag{4}
\end{align*}
$$

Now there are 8 unknowns $\left(v_{0} \ldots v_{4}, u_{x}, i_{\alpha}, i_{\beta}\right)$, and 4 equations. If we use the information that one node $\left(v_{0}\right)$ has been defined as a zero-reference (earth), there's a 5 th equation:

$$
\begin{equation*}
v_{0}=0 . \tag{5}
\end{equation*}
$$

Adding KCL at the earth node does not provide a useful equation: with N nodes the N th node's KCL is just a linear combination of the KCL equations, so it provides no extra information. Instead, use the information given by the voltage sources:

$$
\begin{align*}
v_{2}-v_{1} & =h i_{y} \tag{6}\\
v_{4}-v_{0}=v_{4} & =U \tag{7}
\end{align*}
$$

Now there are 7 equations, but 9 unknowns because i_{y} has been introduced. So define the controlling variables of the dependent sources in terms of existing variables - then there are 9 equations and 9 unknowns.

$$
\begin{gather*}
u_{x}=v_{1}-v_{3} \tag{8}\\
i_{y}=\frac{v_{2}}{R_{4}} \tag{9}
\end{gather*}
$$

The systematic way in which this was done is important! There are plenty of ways to write a sufficient set of equations, but we cannot just be confident that " n unknowns, n equations, therefore it's all ok" is true. The above method of handling $N-1$ nodes, then earth potential and the information given by voltage-sources, then defining controlling variables in terms of known variables, is one way to develop linearly independent equations.

Supernode and Simplifications method (fewer equations, more thinking)

Nodes 0 and 4 become a supernode (an earth supernode); we choose to always use U instead of v_{4} in the equations (and 0 instead of v_{0}).

Nodes 1 and 2 become another supernode; we choose to define unknown potential v_{2}, and always write $\left(1-h / R_{4}\right) v_{2}$ instead of v_{1}.
Node 3 is a further node, with unkown potential v_{3}.
We define the dependent current-source's current in terms of our chosen node potentials as $g u_{x}=g\left(\left(1-h / R_{4}\right) v_{2}-v_{3}\right)$.
There are now only two unkown variables: v_{2} and v_{3}.
Writing KCL at the two non-earth nodes/supernodes,

$$
\left.\left.\begin{array}{rl}
\mathrm{KCL}(1 \& 2): & 0 \\
\mathrm{KCL}(3): & 0 \tag{2}
\end{array}\right) \frac{v_{2}}{R_{4}}+\frac{v_{2}-v_{3}}{R_{3}}+\frac{\left(1-h / R_{4}\right) v_{2}-v_{3}}{R_{1}}+g\left(\left(1-\frac{h}{R_{4}}\right) v_{2}-v_{3}\right)\right)
$$

To do as the question required, one should also write as equations the earlier statements that would let us define v_{1} and v_{4} after the above equations are solved for v_{2} and v_{3},

$$
\begin{align*}
& v_{1}=\left(1-\frac{h}{R_{4}}\right) v_{2} \tag{3}\\
& v_{4}=U \tag{4}
\end{align*}
$$

2. The nodes in this case are already marked with potentials.

Extended nodal analysis

Let's define the unknown currents in the voltage sources, with the positive direction going into the source's + terminal: i_{α} in the independent voltage source U, and i_{β} in the dependent voltage source.
Write KCL (let's take outgoing currents) at all nodes except earth:

$$
\begin{array}{ll}
\mathrm{KCL}(1): & 0=\frac{v_{1}}{R_{1}}+\frac{v_{1}-v_{3}}{R_{3}}-i_{\alpha} \\
\mathrm{KCL}(2): & 0=\frac{v_{2}}{R_{2}}+\frac{v_{2}-v_{4}}{R_{4}}+i_{\alpha}+K_{1} i_{x} \\
\mathrm{KCL}(3): & 0=I+\frac{v_{3}-v_{1}}{R_{3}}+i_{\beta} \\
\mathrm{KCL}(4): & 0=\frac{v_{4}-v_{2}}{R_{4}}-i_{\beta} \tag{4}
\end{array}
$$

The voltage sources introduced the problem of two extra unknowns in the above equations; they can solve this problem by providing two extra equations without further unknowns:

$$
\begin{align*}
& v_{2}-v_{1}=U \tag{5}\\
& v_{3}-v_{4}=K_{2} v_{2} \tag{6}
\end{align*}
$$

The controlling variables of the dependent sources need to be defined in terms of the other known or unknown quantities. Our dependent voltage source's controlling variable is the potential v_{2}, which is an unknown that we already introduced in the KCL equations: nothing more needs to be done for that. Our dependent current source's controlling variable is a current i_{x} marked in R_{2}. This can be described as

$$
\begin{equation*}
i_{x}=-\frac{v_{2}}{R_{2}} \tag{7}
\end{equation*}
$$

Supernode and Simplifications approach (fewer equations, more thinking)

Identify the supernodes:
Nodes 1 and 2 are joined by source U, so they can be treated as a supernode.
Let's keep potential v_{1} in the circuit, and replace v_{2} with $v_{1}+U$.
Similiarly, nodes 3 and 4 are joined by VCVS $K_{2} v_{2}$.
Let's keep v_{4}, and replace v_{3} with $v_{4}+K_{2} v_{2}$.
The only remaining node is the reference node (earth), on which we do not write KCL.

$$
\begin{align*}
& \mathrm{KCL}(1 \& 2): 0=\frac{v_{1}}{R_{1}}+\frac{v_{1}+U}{R_{2}}-\frac{K_{1}\left(v_{1}+U\right)}{R_{2}}+\frac{v_{1}-\left(v_{4}+K_{2} v_{2}\right)}{R_{3}}+\frac{\left(v_{1}+U\right)-v_{4}}{R_{4}} \tag{1}\\
& \mathrm{KCL}(3 \& 4): 0=\frac{\left(v_{4}+K_{2} v_{2}\right)-v_{1}}{R_{3}}+\frac{v_{4}-\left(v_{1}+U\right)}{R_{4}}+I \tag{2}
\end{align*}
$$

In the text above, we mentioned that we'd "replace v_{2} with $v_{1}+U$ " etc. But we should also ensure this is clearly declared in our equation system - it's essential information to let us find v_{2} and v_{3} :

$$
\begin{align*}
& v_{2}=v_{1}+U \tag{3}\\
& v_{3}=v_{4}+K_{2} v_{2} \tag{4}
\end{align*}
$$

Together, the above set of 4 equations in the 4 unknown node potentials should be able to give our solution.
3. If you tried question 8 from this Topic's "exercises" file, then see the solution in the same file.

