
Solutions for Tutorial 04b: Thevenin/Norton Equivalent, Maximum Power

0. Quick, numeric, lab-relevant

Find two-terminal equivalents (let’s suggest Thevenin equivalents) of the following four circuits,
between their pairs of letter-marked terminals. Be careful about directions.

Finding open-circuit voltage then finding equivalent resistance by setting the sources to zero is
probably easiest.

Some of the point of this is to get quicker at judging the Thevenin reistance, which can be
relevant in practical situations, e.g. our old op-amp lab which used to be ‘lab 2’ but which has
not been done since 2017. (It was relevant in lab1 also, if you think of the dividers’ outputs
being Thevenin sources loaded by connecting a voltmeter.)
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1. By finding u, i relation directly

This circuit came up in the lecture notes (2016) as an example solved by finding short-circuit
and open-circuit behaviour.

Try it now by the method of finding an equation that relates u and i. This is the first method
shown in the notes, but it was shown there on a more complicated circuit.

Find the Norton equivalent of this circuit between terminals a-b. Check whether you agree with
the solution in the notes.
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We can write KCL at the node above source I, in terms of just the unknowns u and i,

u− U

R
− I + i = 0.

The u,i relation of a Norton source can be written as

i = IN −
1

RN

u.

Our KCL can be rearranged to give the same form,

i =

(
I +

U

R

)
− 1

R
u.

By comparing the coefficients in the above equation, IN = I + U
R , and RN = R.

That felt actually easier than the short-circuit, open-circuit method.

To prove that we understand what a Norton source is made of, and what direction its current
source must point relative to the terminals to make it equivalent to the original circuit, let’s
draw it.
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2. By short-circuit current and open-circuit voltage

This circuit also came up in the notes, as the first example. Now we’ll find the Thevenin
equivalent at a-b, using the method of finding isc and uoc.

+
−U

R1

Gu

R2 i a

+

−

u

b

I

v

Open-circuit condition: find u when i = 0.
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We have two unknown potentials, u and v.

Writing a KCL at node v,
v − U

R1
+ Gu− I = 0

This is one equation with two unknowns. If we were looking for a u,i relation and had just u
and i as unknowns, we’d be happy with a system we can’t fully solve. But here we’re looking
at a specific case (open-circuit, i = 0) that has a specific solution: we need to solve for u. So a
further equation is needed to let us eliminate v.

Nodal analysis tells us to write another KCL, at the other node with unknown potential,

u− v

R2
− I = 0.

Using this, we can substitute v = u− IR2 in the earlier equation to eliminate v.

(u− IR2)− U

R1
+ Gu− I = 0 =⇒ u

(
1

R1
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)
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(
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)
giving the open-circuit voltage as

u =

U
R1

+ I
(

1 + R2
R1

)
1
R1

+ G
=

U + I(R1 + R2)

1 + GR1
.

Short-circuit conditions: find i when u = 0.
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We have fixed u = 0, so the dependent source Gu has zero output. Being a zeroed current
source, it can be removed (open-circuit) from the diagram.

By KVL around the outer loop, and Ohm’s law, the current from left to right in R2 is

i2 =
U

R1 + R2
.

By KCL above the current source,

i = I + i2 = I +
U

R1 + R2
.

Total

Now that we have the short-circuit current and open-circuit voltage, the Thevenin equivalent
can be written.

UT = uoc =
U + I(R1 + R2)

1 + GR1
.

RT =
uoc
isc

=
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3. Maximum power

What value of Rm (as a function of U and R) will result in the highest possible power being
delivered to Rm?

What is the delivered power to Rm in this case?

To simplify the final expression, we’re given that Ua = Ub = U and Ra = Rb = Rs = R.

This is definitely a “maximum power” question! If we find an equivalent (I seem to choose
Thevenin equivalents by preference) for rest of the circuit (outside Rm) then we can directly
apply the results from maximum power theory to find that Rm = RT maximises the power
transfer to Rm , and to find this power as U2

T
/4Rm .
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The open-circuit voltage at a-b (Rm not connected) can be found by KVL in the loop,

uab(oc) = UT = Ua +
Ub − Ua

Ra + Rb + 2Rs
Ra =

Ua(Rb + 2Rs) + UbRa

Ra + Rb + 2Rs

The source resistance can be found by setting the sources to zero and simplifying the resistors
to a single resistance; these resistors are Ra in parallel with the series branch of Rb and two Rs.

RT =
Ra (Rb + 2Rs)

Ra + Rb + 2Rs

By the maximum power theorem, the power into Rm (if we can choose Rm but cannot change
the rest of the circuit) is obtained if Rm = RT.

The actual power in that case is

P(max) =
U2

T

4RT

=
(Ua(Rb + 2Rs) + UbRa)

2

4Ra (Rb + 2Rs) (Ra + Rb + 2Rs)

On seconds thoughts, finding short-circuit current and a Norton-source would probably have
simplified the arithmetic a bit in this question.



4. A dependent source

Here’s another familiar circuit, that came up in the superposition exercises. Again, we define
R, and let R1 = R2 = R3 = R4 = R.

“Find what value of source I should be chosen in order to maximize the power supplied to this
current source from the rest of the circuit.”
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By a similar re-drawing to the one used for superposition (previous set of exercises) we can get
the following circuit, where va−vb is the same as uoc (marked above). Notice that the reference
node (earth) has been moved in order to help our thinking: this choice of a reference does not
affect the u,i behaviour at the terminals a-b.1
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From this re-drawing, we see that the resistors on the left don’t affect the solution of ix(1): the
voltage source is connected in parallel with this pair of resistors, so we can reduce all of U , R3,
R4 to just the source U without affecting the branch where ix(1) is marked. To put it another
way, we can write KVL around the loop U , R1, R2, without being affected by the components
on the left.

By KCL, the current downward in R1 is

iR1 = Kix(1) − ix(1) = (K − 1)ix(1).

1Later, with opamps, we see that several earth symbols can be used in a circuit, and are in that case assumed
to be connected together, i.e. all the same node, so currents can flow between them. A ‘two-terminal equivalent’
is based on there only being two nodes connecting between the part that’s an equivalent, and the rest of a circuit.
If there are earth nodes that let current move between the inside and outside of the equivalenced part, then
these are already one of the nodes . . . we can then define only one (not two) more connections if we want to use
‘two-terminal equivalent’ methods.



Taking KVL around the loop of U , R1, R2, we find

U − (−ix(1))R2 − (K − 1)ix(1)R1 = 0,

Therefore,

ix(1) =
U

(K − 1)R1 −R2
=

−U
(1−K)R1 + R2

,

where the second form may be preferred for making clear that when the dependent source is
weak (K small) so that the resistors have the strongest influence, ix is defined against the
direction that the voltage source is ‘pushing’.

State 2: Only I active.

The voltage source is zeroed (short-circuit), so we can make the nodes on both sides of it into
a single node. Then the resistors R3 and R4 are in parallel, and this parallel combination is
in series with the current source, so we can ignore their values and just write the sum of their
currents as I.
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The potential of the top node can be expressed as −ix(2)R2.
By KCL,

0 = I +
−ix(2)R2

R1
− ix(2) + Kix(2),

giving

ix(2) =
I

1 + R2
R1
−K

=
IR1

(1−K)R1 + R2
.

Total: Summing these two superposition states to find ix,

ix = ix(1) + ix(2) =
−U

(1−K)R1 + R2
+

IR1

(1−K)R1 + R2
=

IR1 − U

(1−K)R1 + R2
.


