Tutorial Questions: Opamps

0. Warm-up: find v_o and v_x .

1. Find:

- **a)** The power delivered by U_1 .
- **b)** The power absorbed (consumed) by R_1 .
- c) The power absorbed by R_5 .
- d) The marked current i_{o} .

2.

- **a)** What is the voltage u in open-circuit condition (i = 0)?
- b) Find the Thevenin equivalent of this circuit, seen at terminals a-b.

a) Determine the Thevenin equivalent between poles 'a' and 'b', i.e. where the voltage u is marked. (Assume the circuit is as shown, with open-circuit between 'a'-'c'. So R_3 , R_4 and the opamp can be ignored for this solution.)

b) The terminals 'a' and 'c' are now joined (short-circuit). What is the potential v_0 ?

4.

Use nodal analysis to write equations from which the marked node-potentials v_1 , v_2 , v_3 , v_4 , v_5 can be solved. You are *not expected* to solve or simplify the equations!

This is the classic nodal-equations type of question that we studied in topic 3, but now there is an opamp to include in the equations.

Remember the two main rules:

zero current at inputs,

equal potential at inputs.

(And *don't* assume zero output current – the output is like a "voltage source from earth".)

3.