Tutorial Questions: Opamps

0. Warm-up: find v_{o} and v_{x}.

1. Find:
a) The power delivered by U_{1}.
b) The power absorbed (consumed) by R_{1}.
c) The power absorbed by R_{5}.
d) The marked current i_{o}.

2.

a) What is the voltage u in open-circuit condition $(i=0)$?
b) Find the Thevenin equivalent of this circuit, seen at terminals a-b.

3.
a) Determine the Thevenin equivalent between poles ' a ' and ' b ', i.e. where the voltage u is marked. (Assume the circuit is as shown, with open-circuit between 'a'-'c'. So R_{3}, R_{4} and the opamp can be ignored for this solution.)
b) The terminals 'a' and 'c' are now joined (short-circuit). What is the potential v_{o} ?

4.

Use nodal analysis to write equations from which the marked node-potentials $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ can be solved. You are not expected to solve or simplify the equations!

This is the classic nodal-equations type of question that we studied in topic 3 , but now there is an opamp to include in the equations.

Remember the two main rules:
zero current at inputs,
equal potential at inputs.
(And don't assume zero output current - the output is like a "voltage source from earth".)

