Solutions for Tutorial: Opamps

0. Warm-up.

The first circuit is a classic inverting amplifier.

$$
v_{\mathrm{o}}=-\frac{R_{\text {feedback }}}{R_{\text {input }}} \cdot v_{\text {input }}=-\frac{1000 \Omega}{100 \Omega} \cdot 1 \mathrm{~V}=-10 \mathrm{~V}
$$

See the derivation of inverting amplifier gain in the notes.

The second circuit is a source and voltage divider $\left(U, R_{1}, R_{2}\right)$ with its output connected to the input of a non-inverting amplifier (made from the opamp, R_{3} and R_{4}).

The non-inverting amplifier's input connects only to one of the opamp inputs, so no current flows in it. Therefore, no current comes out from the divider, so we can consider R_{1} and R_{2} to be in series, meaning that simple voltage-division can be used to find v_{+}.
By voltage division of U, noting that the bottom of the divider has zero potential, $v_{+}=\frac{R_{2}}{R_{1}+R_{2}} U$.
By voltage division of v_{x}, we find $v_{-}=\frac{R_{4}}{R_{3}+R_{4}} v_{x}$.
Equating $v_{+}=v_{-}$(the usual assumption), $\frac{R_{4}}{R_{3}+R_{4}} v_{x}=\frac{R_{2}}{R_{1}+R_{2}} U$.
Rearranging this, and inserting the given values,

$$
v_{x}=\frac{R_{3}+R_{4}}{R_{4}} \frac{R_{2}}{R_{1}+R_{2}} U=\frac{101}{1} \frac{1}{101} 5 \mathrm{~V}=5 \mathrm{~V} .
$$

1. This was in 2016-02_EM_ks1.

a) Power supplied by the source U_{1} : $0 \quad$ (opamp input has zero current)
b) Power absorbed by $R_{1}: \quad I_{1}^{2} R_{1} \quad\left(R_{1}\right.$ is in series with current source $\left.I_{1}\right)$
c) Power absorbed by $R_{5}: \quad \frac{\left(I_{1} R_{4}+U_{1}\left(1+\frac{R_{4}}{R_{2}}\right)\right)^{2}}{R_{5}}$

To find this, find the opamp's output potential (let's call it v_{o}), then use it to find $\frac{v_{o}^{2}}{R_{5}}$. So, how can we find v_{o} ? The potential at the inverting input is $-U_{1}$: this is found from seeing that with no current through R_{3}, the potential at the non-inverting input must be $-U_{1}$; we then assume the inverting input is held to this value by the negative feedback.
KCL at the inverting input then gives an equation where v_{o} is the only unknown. A possible simplification is to notice that R_{1} is irrelevant (in series with a current source), so I_{1} and R_{2} can be source-transformed into a Thevenin source with voltage $I_{1} R_{2}$ and resistance R_{2}. But straight nodal analysis is probably just as good or better:

$$
\frac{-U_{1}-v_{\mathrm{o}}}{R_{4}}+\frac{-U_{1}}{R_{2}}-I=0 \quad \Longrightarrow \quad v_{\mathrm{o}}=-I_{1} R_{4}-U_{1}\left(1+\frac{R_{4}}{R_{2}}\right)
$$

d) The opamp output current: $\quad i_{o}=-\frac{R_{2}+R_{4}+R_{5}}{R_{2} R_{5}} U_{1}-\left(1+\frac{R_{4}}{R_{5}}\right) I_{1}-I_{2}$

Method: using v_{o} from before, the currents in R_{4} and R_{5} can be found, then KCL can be applied to the node of the opamp output to obtain

$$
i_{\mathrm{o}}=\frac{v_{\mathrm{o}}}{R_{5}}+\frac{v_{\mathrm{o}}-\left(-U_{1}\right)}{R_{4}}-I_{2}
$$

Substituting the known expression for v_{o} (see part ' c ') then rearranging into coefficients of U_{1}, I_{1} and I_{2}, the final expression for i_{o} is found. It's not obvious what is the simplest way to express this, so many variations (rearrangements) of the solution would be acceptable.
2. This was in 2015-09_E_ks1.

a) In the open-circuit condition, no current flows in R_{5} : the node b is therefore at zero potential, and so the marked voltage u is equal to the opamp's output potential.
This potential can be found by a step-by-step approach or by formal nodal analysis.
The nodal analysis could be done in the following way. Define the opamp's output potential as v_{o}. Define the potential of the opamp inputs: we only need to define one symbol v_{i}, as we assume the input potentials are equal for an ideal opamp with negative feedback.
KCL can be written for the nodes at the two opamp inputs. The opamp output and the point above source U can be treated as fixed potentials where we don't care about the current in the voltage sources (the supernode type of approach). Remember: we ultimately only want to find v_{o}.

$$
\begin{align*}
& \mathrm{KCL}(+)_{(\text {out })}: \quad 0=\frac{v_{\mathrm{i}}-v_{\mathrm{i}}}{R_{2}}+\frac{v_{\mathrm{i}}-U}{R_{3}} \tag{1}\\
& \mathrm{KCL}(-)_{(\text {out })}: \quad 0=\frac{v_{\mathrm{i}}-v_{\mathrm{i}}}{R_{2}}+\frac{v_{\mathrm{i}}}{R_{1}}-I+\frac{v_{\mathrm{i}}-v_{\mathrm{o}}}{R_{4}} \tag{2}
\end{align*}
$$

After solving for v_{o}, which was shown above to the equal to u for the open-circuit case, the result is

$$
u=v_{\mathrm{o}}=U\left(1+\frac{R_{4}}{R_{1}}\right)-I R_{4}
$$

The less formal, step-by-step method is to notice that no current can flow in R_{2} if the opamp inputs have equal potential, and thus that no current can flow in R_{3} either, as the opamp input has no current. Thus, both inputs are at potential U. KCL can then be written for the inverting input, using potential U; the only unknown is the sought potential v_{0}.
b) The ideal opamp's output can be treated as an ideal voltage-source with its other side connected to earth. The Thevenin resistance between the opamp's output and earth is therefore zero.

However, in the shown circuit, the terminals $a-b$ are not exactly connected to the opamp output and earth \ldots resistor R_{5} is in series with the output current. Thus the Thevenin resistance between $a-b$ is $R_{\mathrm{T}}=R_{5}$. The Thevenin voltage is the open-circuit voltage of the circuit, which was found in part ' a '.
An equivalent circuit should be shown as a diagram, to make clear the direction of the voltage relative to the marked terminals.

3. This was in 2015-02_EM_ks1.

a) The source U_{0} is irrelevant, as it's in series with a current source and we don't want to find any quantities within this branch.
Nodal analysis (KCL at a single node) gives, for the open-circuit situation,

$$
-I+\frac{u}{R_{1}}+\frac{u-U_{1}}{R_{2}}=0,
$$

whence

$$
u_{\mathrm{oc}}=U_{\mathrm{T}}=\frac{\left(U_{1}+I R_{2}\right) R_{1}}{R_{1}+R_{2}}
$$

The Thevenin resistance (source resistance) can be found by short-circuit current, or by setting the sources I and U_{1} (and U_{0} if we haven't noticed that it has no influence) to zero and calculating the equivalent resistance of the circuit. Using the latter approach, we have R_{1} and R_{2} in parallel, so

$$
R_{\mathrm{T}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

You really should then draw the diagram showing the Thevenin voltage and resistance with the right direction of voltage with respect to the marked terminals!
b) The usual inverting-amplifier formula can easily be derived for the relation $\frac{v_{0}}{v_{\mathrm{C}}}=\frac{-R_{4}}{R_{3}}$. But we can't just use this together with the open-circuit potential $v_{a}=U_{\mathrm{T}}$, to find v_{o}. In this circuit, $v_{\mathrm{o}} \neq \frac{-R_{4}}{R_{3}} U_{\mathrm{T}}$. That's because this opamp circuit does not have an infinite input resistance at terminal ' c ', and the earlier circuit (left) does not have a zero output resistance at point ' a '.
If a potential v is put on terminal ' c ', then a current $\frac{v}{R_{3}}$ will flow from ' c ' to the virtual earth node of the opamp's inverting input, as the non-inverting input is connected to the earth node (current into the virtual earth node leaves it through $R_{4} \ldots$ the opamp's input terminal has no current). And, if a current is drawn from terminal ' a ', the voltage u will change compared to its open-circuit value. So when the terminals ' a '- 'c' are connected (shorted together) a current will flow between them, and the voltage u will depend on the Thevenin voltage and resistance of the circuit on the left and on the input resistance of the opamp circuit on the right.
With 'a'-'c' connected, we find (by using the Thevenin equivalent and voltage division between R_{T} and R_{3}) that

$$
u_{\mathrm{ab}}=a_{\mathrm{cb}}=v_{\mathrm{c}}=U_{\mathrm{T}} \frac{R_{3}}{R_{\mathrm{T}}+R_{3}} .
$$

The inverting amplifier gain $\frac{-R_{4}}{R_{3}}$ can be used if we've correctly worked out what v_{c} is for the complete circuit:

$$
v_{\mathrm{o}}=U_{\mathrm{T}} \cdot \frac{-R_{4}}{R_{3}} \cdot \frac{R_{3}}{R_{\mathrm{T}}+R_{3}}=-\frac{\left(U_{1}+I R_{2}\right) R_{1}}{R_{1}+R_{2}} \cdot \frac{R_{4}}{R_{3}} \cdot \frac{R_{3}}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}}=-\frac{\left(U_{1}+I R_{2}\right) R_{1} R_{4}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} .
$$

Extended nodal analysis (simple to write, but perhaps not to solve)

We'll define the unknown currents in the two voltage-sources to be going into the source's + terminal.
We'll call them i_{α} in the independent source U, and i_{β} in the dependent source $h i_{y}$. The current out of the opamp's output can be called i_{0}.
First we write KCL at all nodes except ground:

$$
\begin{array}{ll}
\operatorname{KCL}(1)_{(\text {out })}: & 0=\frac{v_{1}}{R_{1}}+\frac{v_{1}-v_{2}}{R_{2}}-i_{\mathrm{o}} \\
\operatorname{KCL}(2)_{(\text {out })}: & 0=\frac{v_{2}-v_{1}}{R_{2}}-i_{\beta}-I \\
\operatorname{KCL}(3)_{(\text {out })}: & 0=i_{\beta}+\frac{v_{3}-v_{4}}{R_{3}} \\
\operatorname{KCL}(4)_{(\text {out })}: & 0=\frac{v_{4}-v_{3}}{R_{3}}-i_{\alpha} \\
\operatorname{KCL}(5)_{(\text {out })}: & 0=\frac{v_{5}}{R_{4}}+i_{\alpha} . \tag{7}
\end{array}
$$

These are only 5 equations so far, but with 8 unknowns: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, i_{\alpha}, i_{\beta}, i_{0}$.
We can add the further information given by the voltage sources, which compensates for the extra unknowns caused by their (initially) unknown currents,

$$
\begin{align*}
& v_{5}-v_{4}=U \tag{8}\\
& v_{3}-v_{2}=k u_{x} . \tag{9}
\end{align*}
$$

One of those equations introduced a further unknown, u_{x}, which reminds us that we need to define the marked (but unknown) quantities controlling any dependent sources in the circuit:

$$
\begin{equation*}
u_{x}=v_{5} . \tag{10}
\end{equation*}
$$

Now there are 8 equations, but 9 unknowns. The opamp is guilty of having introduced an unknown output current i_{o} and an unknown output voltage v_{1} that is not directly defined in the way that it would be for a normal dependent voltage source. But the usual opamp assumption (negative feedback and an ideal opamp) lets us state that the opamp input potentials must be equal,

$$
\begin{equation*}
v_{3}=v_{5} . \tag{11}
\end{equation*}
$$

