
Solutions for Tutorial: Opamps

0. Warm-up.

The first circuit is a classic inverting amplifier.

vo = −Rfeedback

Rinput
· vinput = −1000 Ω

100 Ω
· 1 V = −10 V.

See the derivation of inverting amplifier gain in the notes.
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The second circuit is a source and voltage divider (U , R1, R2) with its output connected to the
input of a non-inverting amplifier (made from the opamp, R3 and R4).
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vx = U = 5 V

let R1 = R3 = 10 MΩ

and R2 = R4 = 100 kΩ

and U = 5 V

The non-inverting amplifier’s input connects only to one of the opamp inputs, so no current
flows in it. Therefore, no current comes out from the divider, so we can consider R1 and R2 to
be in series, meaning that simple voltage-division can be used to find v+.

By voltage division of U , noting that the bottom of the divider has zero potential, v+ = R2
R1+R2

U .

By voltage division of vx, we find v− = R4
R3+R4

vx.

Equating v+ = v− (the usual assumption), R4
R3+R4

vx = R2
R1+R2

U .

Rearranging this, and inserting the given values,

vx =
R3 + R4

R4

R2

R1 + R2
U =

101

1

1

101
5 V = 5 V.



1. This was in 2016-02 EM ks1.
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a) Power supplied by the source U1: 0 (opamp input has zero current)

b) Power absorbed by R1: I21R1 (R1 is in series with current source I1)

c) Power absorbed by R5:

(
I1R4 + U1

(
1 + R4

R2

))2

R5

To find this, find the opamp’s output potential (let’s call it vo), then use it to find v2o
R5

.
So, how can we find vo? The potential at the inverting input is −U1: this is found from seeing
that with no current through R3, the potential at the non-inverting input must be −U1; we
then assume the inverting input is held to this value by the negative feedback.
KCL at the inverting input then gives an equation where vo is the only unknown. A possible
simplification is to notice that R1 is irrelevant (in series with a current source), so I1 and R2

can be source-transformed into a Thevenin source with voltage I1R2 and resistance R2. But
straight nodal analysis is probably just as good or better:

−U1 − vo
R4

+
−U1

R2
− I = 0 =⇒ vo = −I1R4 − U1

(
1 +

R4

R2

)
.

d) The opamp output current: io = − R2 + R4 + R5

R2R5
U1 −

(
1+

R4

R5

)
I1 − I2

Method: using vo from before, the currents in R4 and R5 can be found, then KCL can be applied
to the node of the opamp output to obtain

io =
vo
R5

+
vo − (−U1)

R4
− I2.

Substituting the known expression for vo (see part ‘c’) then rearranging into coefficients of U1,
I1 and I2, the final expression for io is found. It’s not obvious what is the simplest way to
express this, so many variations (rearrangements) of the solution would be acceptable.



2. This was in 2015-09 E ks1.
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a) In the open-circuit condition, no current flows in R5: the node b is therefore at zero
potential, and so the marked voltage u is equal to the opamp’s output potential.

This potential can be found by a step-by-step approach or by formal nodal analysis.

The nodal analysis could be done in the following way. Define the opamp’s output potential
as vo. Define the potential of the opamp inputs: we only need to define one symbol vi, as we
assume the input potentials are equal for an ideal opamp with negative feedback.

KCL can be written for the nodes at the two opamp inputs. The opamp output and the point
above source U can be treated as fixed potentials where we don’t care about the current in the
voltage sources (the supernode type of approach). Remember: we ultimately only want to find
vo.

KCL(+)(out) : 0 =
vi − vi
R2

+
vi − U

R3
(1)

KCL(−)(out) : 0 =
vi − vi
R2

+
vi
R1
− I +

vi − vo
R4

(2)

After solving for vo, which was shown above to the equal to u for the open-circuit case, the
result is

u = vo = U

(
1 +

R4

R1

)
− IR4

The less formal, step-by-step method is to notice that no current can flow in R2 if the opamp
inputs have equal potential, and thus that no current can flow in R3 either, as the opamp input
has no current. Thus, both inputs are at potential U . KCL can then be written for the inverting
input, using potential U ; the only unknown is the sought potential vo.



b) The ideal opamp’s output can be treated as an ideal voltage-source with its other side
connected to earth. The Thevenin resistance between the opamp’s output and earth is therefore
zero.

However, in the shown circuit, the terminals a-b are not exactly connected to the opamp output
and earth . . . resistor R5 is in series with the output current. Thus the Thevenin resistance
between a-b is RT = R5. The Thevenin voltage is the open-circuit voltage of the circuit, which
was found in part ‘a’.

An equivalent circuit should be shown as a diagram, to make clear the direction of the voltage
relative to the marked terminals.

+
−UT = U

(
1 + R4

R1

)
− IR4

RT = R5 i
a

+

−

u

b



3. This was in 2015-02 EM ks1.
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a) The source U0 is irrelevant, as it’s in series with a current source and we don’t want to
find any quantities within this branch.

Nodal analysis (KCL at a single node) gives, for the open-circuit situation,

−I +
u

R1
+

u− U1

R2
= 0,

whence

uoc = UT =
(U1 + IR2)R1

R1 + R2
.

The Thevenin resistance (source resistance) can be found by short-circuit current, or by setting
the sources I and U1 (and U0 if we haven’t noticed that it has no influence) to zero and
calculating the equivalent resistance of the circuit. Using the latter approach, we have R1 and
R2 in parallel, so

RT =
R1R2

R1 + R2
.

You really should then draw the diagram showing the Thevenin voltage and resistance with the
right direction of voltage with respect to the marked terminals!



b) The usual inverting-amplifier formula can easily be derived for the relation vo
vc

= −R4
R3

. But
we can’t just use this together with the open-circuit potential va = UT, to find vo. In this circuit,
vo 6= −R4

R3
UT. That’s because this opamp circuit does not have an infinite input resistance at

terminal ‘c’, and the earlier circuit (left) does not have a zero output resistance at point ‘a’.

If a potential v is put on terminal ‘c’, then a current v
R3

will flow from ‘c’ to the virtual earth
node of the opamp’s inverting input, as the non-inverting input is connected to the earth node
(current into the virtual earth node leaves it through R4 . . . the opamp’s input terminal has no
current). And, if a current is drawn from terminal ‘a’, the voltage u will change compared to
its open-circuit value. So when the terminals ‘a’-‘c’ are connected (shorted together) a current
will flow between them, and the voltage u will depend on the Thevenin voltage and resistance
of the circuit on the left and on the input resistance of the opamp circuit on the right.

With ‘a’-‘c’ connected, we find (by using the Thevenin equivalent and voltage division between
RT and R3) that

uab = acb = vc = UT
R3

RT + R3
.

The inverting amplifier gain −R4
R3

can be used if we’ve correctly worked out what vc is for the
complete circuit:

vo = UT ·
−R4

R3
· R3

RT + R3
= −(U1 + IR2)R1

R1 + R2
· R4

R3
· R3

R1R2
R1+R2

+ R3

= − (U1 + IR2)R1R4

R1R2 + R1R3 + R2R3
.



4. This is also from 2016-02 EM ks1
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Extended nodal analysis (simple to write, but perhaps not to solve)

We’ll define the unknown currents in the two voltage-sources to be going into the source’s +
terminal.
We’ll call them iα in the independent source U , and iβ in the dependent source hiy. The current
out of the opamp’s output can be called io.

First we write KCL at all nodes except ground:

KCL(1)(out) : 0 =
v1
R1

+
v1 − v2
R2

− io (3)

KCL(2)(out) : 0 =
v2 − v1
R2

− iβ − I (4)

KCL(3)(out) : 0 = iβ +
v3 − v4
R3

(5)

KCL(4)(out) : 0 =
v4 − v3
R3

− iα (6)

KCL(5)(out) : 0 =
v5
R4

+ iα. (7)

These are only 5 equations so far, but with 8 unknowns: v1, v2, v3, v4, v5, iα, iβ, io.

We can add the further information given by the voltage sources, which compensates for the
extra unknowns caused by their (initially) unknown currents,

v5 − v4 = U (8)

v3 − v2 = kux. (9)

One of those equations introduced a further unknown, ux, which reminds us that we need to
define the marked (but unknown) quantities controlling any dependent sources in the circuit:

ux = v5. (10)

Now there are 8 equations, but 9 unknowns. The opamp is guilty of having introduced an
unknown output current io and an unknown output voltage v1 that is not directly defined in the
way that it would be for a normal dependent voltage source. But the usual opamp assumption
(negative feedback and an ideal opamp) lets us state that the opamp input potentials must be
equal,

v3 = v5. (11)


