## Solutions for Tutorial: Continuity

Just final answers are given so far. By solving the initial equilibrium, and using continuity to fill the values of capacitor voltages and inductor currents even after a step change in the circuit, a solvable dc circuit should be obtained that will give the requested solution.
1.
a) $\quad i\left(0^{+}\right)=\frac{U}{3 R}$
b) $u\left(0^{+}\right)=I R$
c) $\quad u\left(0^{+}\right)=-U$
d) $\quad u\left(0^{+}\right)=\frac{1}{2} I R \quad i\left(0^{+}\right)=0$
e) $\quad u\left(0^{+}\right)=I R$
f) $\quad u\left(0^{+}\right)=0$
2.

At $t=0^{-}$:
The switch is open. The circuit is assumed to be in equilibrium, so the usual replacements (capacitors open, inductors shorted) can be made.

Due to the open-circuit capacitor and KCL,

$$
i_{y}\left(0^{-}\right)=G u_{x}
$$

To find $u_{x}$, take KVL around the complete upper loop:

$$
u_{x}+i_{y} R_{1}+0+U+0+I R_{2}=0
$$

Putting these together,

$$
u_{x}\left(0^{-}\right)=-\frac{U+I R_{2}}{1+G R_{1}}
$$

from which

$$
i_{y}\left(0^{-}\right)=-\frac{U+I R_{2}}{1+G R_{1}} G
$$

At $t=0^{+}$:
The switch is closed, short-circuiting the current-source and making the circuit rather simpler.
We replace the capacitor with a voltage source: by continuity,

$$
u_{x}\left(0^{+}\right)=u_{x}\left(0^{-}\right)=-\frac{U+I R_{2}}{1+G R_{1}}
$$

We replace the inductors by current sources based on the values from $t=0^{-}$, with current $I$ passing right to left through $L_{2}$, and $I+G u_{x}$ downwards through $L_{1}$.
KVL around the bottom loop (with the closed switch, $R_{1}, C$ ) shows that

$$
i_{y}\left(0^{+}\right)=-\frac{u_{x}}{R_{1}}=\frac{U+I R_{2}}{R_{1}\left(1+R_{1} G\right)}
$$

(At this point [or earlier?] we realise we didn't actually need to include the inductor currents into the circuit in order to solve the requested values.)

