A title

authors*

September 3, 2014

Abstract

Short explanation of some important results.

1 Introduction

An introduction

$$i\partial_t \psi = (-\Delta + V_\epsilon)\psi - g(|\psi|^2)\psi , \qquad (1.1)$$

In this introduction (1.1) is discussed. Discussion. In Appendix A nothing is ever said. We use bibtex to add references, here we only have 3 such [3, 2, 1]

Question 1. To be or not to be?

Remark 1. A remark like the question 1 is really old! See Willy!

A The appendix

Nothing is ever said here, but in Section 1 they mention an equation (1.1). An equation

$$i\partial_t \psi = (-\Delta + V_\epsilon)\psi - g(|\psi|^2)\psi , \qquad (A.1)$$

Theorem 1. A presumable true statement.

Proof of Theorem 1. The waterproof proof of the statement. \Box

^{*}authors are having fun writing this.

DRAFT

B End of Document

$$e^{i\pi} = -1, \tag{B.1}$$

Nice symbols come with ams package: $\mathbb R$ Also proof:

Proof. This is no proof.

References

- [1] T. Cazenave. An introducion to nonlinear Schrödinger equations. Instituto de Matematica - UFRJ, Rio de Janeiro, RJ, second edition, 1993.
- [2] J. Frölich, T.-P. Tsai, and H.-T. Yau. On the point-particle (newtonian limit of the non-linear hartree equation. *Comm. Math. Phys.*, 225(2):223– 274, 2002.
- [3] A. Soffer and M. I. Weinstein. Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data. J. Differential Equations, 98(2):376–390, 1992.