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Abstract

We give explicit solutions, that decay to zero at infinity, to the class of equa-
tions

−∂2xQ+ cQ− βQ2p+1 − αQp+1 = 0,

where c > 0, β > 0, p > 0 and α ∈ R. This class of equations appears as
the equation for the ground state for a solitary wave in the generalized nonlinear
Schrödinger equation in one dimension and in the generalized KdV equation.

Keywords: explicit solutions, solitons, solitary waves, ground state, nonlinear scalar
field equations.

1 Explicit solutions

Consider the class of one dimensional equations

−∂2xQ+ cQ−Q2p+1 − αQp+1 = 0, (1)

with p > 0, c > 0, α ∈ R. See Remark 2 for the general case. These equations belong to
the class of nonlinear scalar field equations see e.g., Berestycki & Lions (1983) [1] and
references therein. Applications include the ground state to the nonlinear Schrödinger
equation see e.g., Chaio et al. (1964) [2] and to the Korteweg–de Vries (1894) [3]
equation. We have the following lemma:

Proposition 1. For fixed p > 0, c > 0 and α ∈ R the equation (1) has solutions that
decay to zero as |x| → ∞ of the form

Q(x) =

(
α

c(2 + p)
+

√
1

c(1 + p)
+

α2

c2(2 + p)2
cosh

(
p
√
c(x− x0)

))−1/p
, (2)

for any translation constant x0 ∈ R.
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Proof. Equation (1) is translational invariant, and hence it suffice to consider the case
x0 = 0. To verify that (2) is a solution to (1) we substitute it into (1). First consider
the term ∂2xQ. We have

∂xQ(x) = −

√
1

1 + p
+

α2

c(2 + p)2
sinh(p

√
cx)Qp+1(x), (3)

and hence

− ∂2xQ(x) = p
√
c

√
1

1 + p
+

α2

c(2 + p)2
cosh(p

√
cx)Qp+1(x)

−
(

1 +
α2(p+ 1)

c(2 + p)2

)
sinh2(p

√
cx)Q2p+1(x). (4)

To the end of comparing ∂2xQ with the remaining terms in (1) we break out Q2p+1 and
use the explicit form of Qp to obtain

− ∂2xQ(x) = Q2p+1(x)

((
α

c(2 + p)
+

√
1

c(1 + p)
+

α2

c2(2 + p)2
cosh(p

√
cx)

)
·

p
√
c

√
1

1 + p
+

α2

c(2 + p)2
cosh(p

√
cx) −

(
1 +

α2(p+ 1)

c(2 + p)2

)
sinh2(p

√
cx)

)
. (5)

Recalling that cosh2(y) − sinh2(y) = 1 and collecting equal powers of cosh(·) together,
gives

− ∂2xQ(x) = Q2p+1(x)

(
αp√

c(2 + p)

√
1

1 + p
+

α2

c(2 + p)2
cosh(p

√
cx)

−
(

1

1 + p
+

α2

c(2 + p)2

)
cosh2(p

√
cx) + 1 +

α2(p+ 1)

c(2 + p)2

)
. (6)

Re-writing the remaining terms of (1) using the explicit form of Qp yields

cQ(x)−Q2p+1(x)− αQp+1(x) = Q2p+1(x)·(
−1 + c

(
α

c(2 + p)
+

√
1

c(1 + p)
+

α2

c2(2 + p)2
cosh(p

√
cx)

)2

− α

(
α

c(2 + p)
+

√
1

c(1 + p)
+

α2

c2(2 + p)2
cosh(p

√
cx)

))
. (7)
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Expanding the square and collecting terms of equal powers in cosh(·), we find

cQ(x)−Q2p+1(x)− αQp+1(x) = Q2p+1(x)

((
1

1 + p
+

α2

c(2 + p)2

)
cosh2(p

√
cx)

− pα√
c(2 + p)

√
1

1 + p
+

α2

c(2 + p)2
cosh(p

√
cx)− 1− α2(1 + p)

c(2 + p)2

)
. (8)

Since (6) is minus (8), summing them yields zero.

Remark 1. For α = 0 we recover the well known solution, see von Sz.-Nagy (1941) [4],
Titchmarsh (1946) [5]

Q(x) =
(
c(1 + p)

)1/2p
sech1/p

(
p
√
c(x+m)

)
. (9)

Remark 2. The class of equations

−∂2xQ+ cQ− βQ2p+1 − αQp+1 = 0, (10)

with β > 0, c > 0, and α ∈ R have solutions, that decay to zero as |x| → ∞, of the form

Q(x) =

(
α

c(2 + p)
+

√
β

c(1 + p)
+

α2

c2(2 + p)2
cosh

(
p
√
c(x− x0)

))−1/p
, (11)

for any translation constant x0. This result follows directly from Proposition 1 as the
rescaling transformation {α, c, x − x0} 7→ {αβ, cβ, (x − x0)β

−1/2} maps (10) to (1).
Furthermore, in the limit β → 0, α > 0, using the ‘half-angle formula’ for cosh(·) we
once again recover the solution (9), with p 7→ p/2.

Remark 3. For the nonlinear eigenvalue parameter, c, the solution is a one bump
solution for all positive values of c. Thus there are no excited states.

Remark 4. Consider the decaying-to-zero at infinity solutions to the class of equations

−∂2xQ+ cQ−
∑
j∈I

ajQ
pj = 0, (12)

for constants {aj, pj}j∈I , with aj ∈ R and pj > 0 where I ⊂ Z. That equation (12) is
translational invariant suggest the change of variable v = ∂xQ, ∂xv = ∂Qv ∂xQ = v∂Qv.
Replace ∂2xQ in terms of v yields a separable equation, integration gives

2−1v2 =

∫
cQ−

∑
j∈I

ajQ
pj dQ = 2−1cQ2 −

∑
j∈I

(pj + 1)−2ajQ
pj+1 + k, (13)
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for some constant k. For functions that decay at infinity both Q and v = ∂xQ are zero
at infinity, thus k = 0. When the solution, Q, exists and is smooth, the critical points of
Q are at ∂xQ = 0 and (13) gives the explicit value of Q at these points as the solution
to the polynomial equation

2−1cQ2 =
∑
j∈I

(pj + 1)−2ajQ
pj+1. (14)

This has applications as the starting point for a shooting algorithm, when numerically
solving (13).
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