Explicit solitary-wave ground states in one dimension

B. Lars G. Jonsson
The Fields Institute, 222 College St., M5T 3J1 Toronto, ON Canada
Dept. of Math., University of Toronto, M5S 3G3 Toronto, ON Canada.

2004-05-14

Abstract

We give explicit solutions, that decay to zero at infinity, to the class of equations $$
-\partial_{x}^{2} Q+c Q-\beta Q^{2 p+1}-\alpha Q^{p+1}=0,
$$ where $c>0, \beta>0, p>0$ and $\alpha \in \mathbb{R}$. This class of equations appears as the equation for the ground state for a solitary wave in the generalized nonlinear Schrödinger equation in one dimension and in the generalized KdV equation.

Keywords: explicit solutions, solitons, solitary waves, ground state, nonlinear scalar field equations.

1 Explicit solutions

Consider the class of one dimensional equations

$$
\begin{equation*}
-\partial_{x}^{2} Q+c Q-Q^{2 p+1}-\alpha Q^{p+1}=0 \tag{1}
\end{equation*}
$$

with $p>0, c>0, \alpha \in \mathbb{R}$. See Remark 2 for the general case. These equations belong to the class of nonlinear scalar field equations see e.g., Berestycki \& Lions (1983) [1] and references therein. Applications include the ground state to the nonlinear Schrödinger equation see e.g., Chaio et al. (1964) [2] and to the Korteweg-de Vries (1894) [3] equation. We have the following lemma:

Proposition 1. For fixed $p>0, c>0$ and $\alpha \in \mathbb{R}$ the equation (1) has solutions that decay to zero as $|x| \rightarrow \infty$ of the form

$$
\begin{equation*}
Q(x)=\left(\frac{\alpha}{c(2+p)}+\sqrt{\frac{1}{c(1+p)}+\frac{\alpha^{2}}{c^{2}(2+p)^{2}}} \cosh \left(p \sqrt{c}\left(x-x_{0}\right)\right)\right)^{-1 / p} \tag{2}
\end{equation*}
$$

for any translation constant $x_{0} \in \mathbb{R}$.

Proof. Equation (1) is translational invariant, and hence it suffice to consider the case $x_{0}=0$. To verify that (2) is a solution to (1) we substitute it into (1). First consider the term $\partial_{x}^{2} Q$. We have

$$
\begin{equation*}
\partial_{x} Q(x)=-\sqrt{\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}} \sinh (p \sqrt{c} x) Q^{p+1}(x) \tag{3}
\end{equation*}
$$

and hence

$$
\begin{align*}
-\partial_{x}^{2} Q(x)=p \sqrt{c} \sqrt{\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}} & \cosh (p \sqrt{c} x) Q^{p+1}(x) \\
& -\left(1+\frac{\alpha^{2}(p+1)}{c(2+p)^{2}}\right) \sinh ^{2}(p \sqrt{c} x) Q^{2 p+1}(x) \tag{4}
\end{align*}
$$

To the end of comparing $\partial_{x}^{2} Q$ with the remaining terms in (1) we break out $Q^{2 p+1}$ and use the explicit form of Q^{p} to obtain

$$
\begin{align*}
&-\partial_{x}^{2} Q(x)=Q^{2 p+1}(x)\left(\left(\frac{\alpha}{c(2+p)}+\sqrt{\frac{1}{c(1+p)}+\frac{\alpha^{2}}{c^{2}(2+p)^{2}}} \cosh (p \sqrt{c} x)\right) .\right. \\
&\left.p \sqrt{c} \sqrt{\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}} \cosh (p \sqrt{c} x)-\left(1+\frac{\alpha^{2}(p+1)}{c(2+p)^{2}}\right) \sinh ^{2}(p \sqrt{c} x)\right) . \tag{5}
\end{align*}
$$

Recalling that $\cosh ^{2}(y)-\sinh ^{2}(y)=1$ and collecting equal powers of $\cosh (\cdot)$ together, gives

$$
\begin{align*}
-\partial_{x}^{2} Q(x)=Q^{2 p+1}(x)(& \frac{\alpha p}{\sqrt{c}(2+p)} \sqrt{\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}} \cosh (p \sqrt{c} x) \\
& \left.-\left(\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}\right) \cosh ^{2}(p \sqrt{c} x)+1+\frac{\alpha^{2}(p+1)}{c(2+p)^{2}}\right) . \tag{6}
\end{align*}
$$

Re-writing the remaining terms of (1) using the explicit form of Q^{p} yields

$$
\begin{align*}
& c Q(x)-Q^{2 p+1}(x)-\alpha Q^{p+1}(x)=Q^{2 p+1}(x) \\
& \left(-1+c\left(\frac{\alpha}{c(2+p)}+\sqrt{\frac{1}{c(1+p)}+\frac{\alpha^{2}}{c^{2}(2+p)^{2}}} \cosh (p \sqrt{c} x)\right)^{2}\right. \\
& \tag{7}\\
& \left.\quad-\alpha\left(\frac{\alpha}{c(2+p)}+\sqrt{\frac{1}{c(1+p)}+\frac{\alpha^{2}}{c^{2}(2+p)^{2}}} \cosh (p \sqrt{c} x)\right)\right)
\end{align*}
$$

Expanding the square and collecting terms of equal powers in $\cosh (\cdot)$, we find

$$
\begin{align*}
c Q(x)-Q^{2 p+1}(x) & -\alpha Q^{p+1}(x)=Q^{2 p+1}(x)\left(\left(\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}\right) \cosh ^{2}(p \sqrt{c} x)\right. \\
& \left.-\frac{p \alpha}{\sqrt{c}(2+p)} \sqrt{\frac{1}{1+p}+\frac{\alpha^{2}}{c(2+p)^{2}}} \cosh (p \sqrt{c} x)-1-\frac{\alpha^{2}(1+p)}{c(2+p)^{2}}\right) . \tag{8}
\end{align*}
$$

Since (6) is minus (8), summing them yields zero.
Remark 1. For $\alpha=0$ we recover the well known solution, see von Sz.-Nagy (1941) [4], Titchmarsh (1946) [5]

$$
\begin{equation*}
Q(x)=(c(1+p))^{1 / 2 p} \operatorname{sech}^{1 / p}(p \sqrt{c}(x+m)) . \tag{9}
\end{equation*}
$$

Remark 2. The class of equations

$$
\begin{equation*}
-\partial_{x}^{2} Q+c Q-\beta Q^{2 p+1}-\alpha Q^{p+1}=0, \tag{10}
\end{equation*}
$$

with $\beta>0, c>0$, and $\alpha \in \mathbb{R}$ have solutions, that decay to zero as $|x| \rightarrow \infty$, of the form

$$
\begin{equation*}
Q(x)=\left(\frac{\alpha}{c(2+p)}+\sqrt{\frac{\beta}{c(1+p)}+\frac{\alpha^{2}}{c^{2}(2+p)^{2}}} \cosh \left(p \sqrt{c}\left(x-x_{0}\right)\right)\right)^{-1 / p} \tag{11}
\end{equation*}
$$

for any translation constant x_{0}. This result follows directly from Proposition 1 as the rescaling transformation $\left\{\alpha, c, x-x_{0}\right\} \mapsto\left\{\alpha \beta, c \beta,\left(x-x_{0}\right) \beta^{-1 / 2}\right\}$ maps (10) to (1). Furthermore, in the limit $\beta \rightarrow 0, \alpha>0$, using the 'half-angle formula' for $\cosh (\cdot)$ we once again recover the solution (9), with $p \mapsto p / 2$.

Remark 3. For the nonlinear eigenvalue parameter, c, the solution is a one bump solution for all positive values of c. Thus there are no excited states.

Remark 4. Consider the decaying-to-zero at infinity solutions to the class of equations

$$
\begin{equation*}
-\partial_{x}^{2} Q+c Q-\sum_{j \in I} a_{j} Q^{p_{j}}=0, \tag{12}
\end{equation*}
$$

for constants $\left\{a_{j}, p_{j}\right\}_{j \in I}$, with $a_{j} \in \mathbb{R}$ and $p_{j}>0$ where $I \subset \mathbb{Z}$. That equation (12) is translational invariant suggest the change of variable $v=\partial_{x} Q, \partial_{x} v=\partial_{Q} v \partial_{x} Q=v \partial_{Q} v$. Replace $\partial_{x}^{2} Q$ in terms of v yields a separable equation, integration gives

$$
\begin{equation*}
2^{-1} v^{2}=\int c Q-\sum_{j \in I} a_{j} Q^{p_{j}} \mathrm{~d} Q=2^{-1} c Q^{2}-\sum_{j \in I}\left(p_{j}+1\right)^{-2} a_{j} Q^{p_{j}+1}+k \tag{13}
\end{equation*}
$$

for some constant k. For functions that decay at infinity both Q and $v=\partial_{x} Q$ are zero at infinity, thus $k=0$. When the solution, Q, exists and is smooth, the critical points of Q are at $\partial_{x} Q=0$ and (13) gives the explicit value of Q at these points as the solution to the polynomial equation

$$
\begin{equation*}
2^{-1} c Q^{2}=\sum_{j \in I}\left(p_{j}+1\right)^{-2} a_{j} Q^{p_{j}+1} . \tag{14}
\end{equation*}
$$

This has applications as the starting point for a shooting algorithm, when numerically solving (13).

References

[1] Berestycki, H. \& Lions, P.-L. 1983 Nonlinear Scalar Field Equations. I. Existence of a ground state. Arch. Rational Mech. Anal., 82(4), 313-345.
[2] Chiao, R. Y., Garmire, E. \& Townes, C. H. 1964 Self-Trapping of Optical Beams. Phys. Rev. Lett. 13, 479-482.
[3] Korteweg, D. F. \& de Vries, G. 1894 On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves. Philosophical Magazine, 5th series, 36, 422-443.
[4] von Sz.-Nagy, B. 1941 Über Integralungleichunger zwischen einer Funktion und ihrer Ableitung. Acta Sci. Math. (Szeged), 10, 64-74.
[5] Titchmarsh, E. C. 1946 Eigenfunction expansions associated with second-order differential equations. Part 1. Oxford: Clarendon Press.

